1
|
Pan F, Zhang F, Li MD, Liang Y, Wang WS, Sun K. Disturbance of Fetal Growth by Azithromycin Through Induction of ER Stress in the Placenta. Antioxid Redox Signal 2025; 42:16-35. [PMID: 38877798 DOI: 10.1089/ars.2024.0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Aim: Azithromycin (AZM) is widely used to treat mycoplasma infection in pregnancy. However, there is no adequate evaluation of its side effect on the placenta. In this study, using human placental syncytiotrophoblasts and a mouse model, we investigated whether AZM use in pregnancy might adversely affect placental function and pregnancy outcome. Results: Transcriptomic analysis of AZM-treated human placental syncytiotrophoblasts showed increased expression of endoplasmic reticulum (ER) stress-related genes and decreased expression of genes for hormone production and growth factor processing. Verification studies showed that AZM increased the abundance of ER stress mediators (phosphorylated eIF2α, activating transcription factor 4 [ATF4], and C/EBP Homologous Protein [CHOP]) and decreased the abundance of enzymes involved in progesterone and estradiol synthesis (STS, CYP11A1, and CYP19A1) and insulin-like growth factor binding protein (IGFBP) cleavage (PAPPA and ADAM12) in human placental syncytiotrophoblasts. Inhibition of ER stress blocked AZM-induced decreases in the expression of CYP19A1, CYP11A1, PAPPA, and ADAM12, suggesting that the inhibition of AZM on those genes' expression was secondary to AZM-induced ER stress. Further mechanism study showed that increased ATF4 in ER stress might repressively interact with C/EBPα to suppress the expression of those genes, including CEBPA itself. Mouse studies showed that AZM administration decreased fetal weights along with increased ER stress mediators and decreased levels of insulin-like growth factor, estrogen, and progesterone in the maternal blood, which could be alleviated by inhibition of ER stress. Innovation and Conclusion: These findings first support the fact that AZM, often used during pregnancy, may affect fetal growth by inhibiting crucial enzymes for estrogen and progesterone synthesis and disrupting crucial proteases for IGFBP cleavage via inducing ER stress in placental syncytiotrophoblasts. Antioxid. Redox Signal. 42, 16-35.
Collapse
Affiliation(s)
- Fan Pan
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Fan Zhang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Meng-Die Li
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - YaKun Liang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wang-Sheng Wang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Kang Sun
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| |
Collapse
|
2
|
Sadasivam N, Park WR, Choi B, Seok Jung Y, Choi HS, Kim DK. Exploring the impact of estrogen-related receptor gamma on metabolism and disease. Steroids 2024; 211:109500. [PMID: 39159854 DOI: 10.1016/j.steroids.2024.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Estrogen-related receptor gamma (ERRγ) is a member of the ERR orphan nuclear receptor family which possesses three subtypes, α, β, and γ. ERRγ is reportedly predominantly expressed in metabolically active tissues and cells, which promotes positive and negative effects in different tissues. ERRγ overexpression in the liver, pancreas, and thyroid cells is related to liver cancer, oxidative stress, reactive oxygen species (ROS) regulation, and carcinoma. Reduced ERRγ expression in the brain, immune cells, tumor cells, and energy metabolism causes neurological dysfunction, gastric cancer, and obesity. ERRγ is a constitutive receptor; however, its transcriptional activity also depends on co-regulators, agonists, and antagonists, which, when after forming a complex, can play a role in targeting and treating diseases. Moreover, ERRγ has proven crucial in regulating cellular and metabolic activity. However, many functions mediated via ERRγ remain unknown and require further exploration. Hence, considering the importance of ERRγ, this review focuses on the critical findings and interactions between ERRγ and co-regulators, agonists, and antagonists alongside its relationship with downstream and upstream signaling pathways and diseases. This review highlights new findings and provides a path to understanding the current ideas and future studies on ERRγ-mediated cellular activity.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Byungyoon Choi
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yoon Seok Jung
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Hueng-Sik Choi
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Rosen EM, Stevens DR, McNell EE, Wood ME, Engel SM, Keil AP, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Longitudinal associations between urinary biomarkers of phthalates and replacements with novel in vivo measures of placental health. Hum Reprod 2024; 39:2104-2114. [PMID: 38970902 PMCID: PMC11373341 DOI: 10.1093/humrep/deae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Indexed: 07/08/2024] Open
Abstract
STUDY QUESTION What is the longitudinal association between gestational phthalate exposure and in vivo placental outcomes? SUMMARY ANSWER Phthalates were adversely associated with placental microvasculature, stiffness, and presence of calcification, with different metabolites associated with different outcomes. WHAT IS KNOWN ALREADY Phthalate exposure is ubiquitous and implicated as a contributor to adverse pregnancy outcomes, possibly through impacts on the placenta. STUDY DESIGN, SIZE, DURATION A total of 303 women were recruited in early pregnancy and prospectively followed for up to eight visits across gestation in the Human Placenta and Phthalates study. PARTICIPANTS/MATERIALS, SETTING, METHODS At each visit, women provided urine samples and underwent placental ultrasounds. Urine was analyzed for 18 metabolites of phthalates and replacements. We took the geometric mean of repeated measurements to reflect pregnancy-averaged phthalate or replacement exposure for each participant (n = 303). Placental microvasculature, stiffness, and microcalcification presence were quantified from ultrasounds at each visit. Higher scores reflected worse placental function for all measures. Generalized linear mixed models were created to estimate the association between pregnancy-averaged exposure biomarker concentrations and repeated outcome measurements for microvasculature and stiffness. Gestational age at the time of calcification detection was modeled using Cox proportional hazards models. MAIN RESULTS AND THE ROLE OF CHANCE Monocarboxyisononyl phthalate and summed di(2-ethylhexyl) phthalate metabolites were associated with impaired microvasculature development, such that an interquartile range increase in concentration was associated with 0.11 standard deviation increase in the microvasculature ratio, indicating poorer vascularization (95% CI: 0.00, 0.22); 0.11 [95% CI: -0.01, 0.22], respectively. Monoethyl phthalate was associated with increased placental stiffness (0.09 [95% CI: -0.01, 0.19]) while summed di-iso-butyl phthalate metabolites and monobenzyl phthalate were associated with increased hazard of calcification detection (hazard ratios: 1.18 [95% CI: 0.98, 1.42]; 1.13 [95% CI: 0.96, 1.34]). LIMITATIONS, REASONS FOR CAUTION Outcomes used in this study are novel and further investigation is needed to provide clinical context and relevance. WIDER IMPLICATIONS OF THE FINDINGS We found evidence of associations between select phthalate biomarkers and various aspects of in vivo placental health, although we did not observe consistency across placental outcomes. These findings could illustrate heterogeneous effects of phthalate exposure on placental function. STUDY FUNDING/COMPETING INTEREST(S) This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ZIA ES103344), and NIEHS T32ES007018. The authors declare that they have no competing interests to disclose. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the US Department of Health and Human Services. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Mollie E Wood
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Keil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ann Przybylska
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfred Abuhamad
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
4
|
Kandel SE, Tooker BC, Lampe JN. Drug metabolism of ciprofloxacin, ivacaftor, and raloxifene by Pseudomonas aeruginosa cytochrome P450 CYP107S1. J Biol Chem 2024; 300:107594. [PMID: 39032655 PMCID: PMC11382314 DOI: 10.1016/j.jbc.2024.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/29/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
Drug metabolism is one of the main processes governing the pharmacokinetics and toxicity of drugs via their chemical biotransformation and elimination. In humans, the liver, enriched with cytochrome P450 (CYP) enzymes, plays a major metabolic and detoxification role. The gut microbiome and its complex community of microorganisms can also contribute to some extent to drug metabolism. However, during an infection when pathogenic microorganisms invade the host, our knowledge of the impact on drug metabolism by this pathobiome remains limited. The intrinsic resistance mechanisms and rapid metabolic adaptation to new environments often allow the human bacterial pathogens to persist, despite the many antibiotic therapies available. Here, we demonstrate that a bacterial CYP enzyme, CYP107S1, from Pseudomonas aeruginosa, a predominant bacterial pathogen in cystic fibrosis patients, can metabolize multiple drugs from different classes. CYP107S1 demonstrated high substrate promiscuity and allosteric properties much like human hepatic CYP3A4. Our findings demonstrated binding and metabolism by the recombinant CYP107S1 of fluoroquinolone antibiotics (ciprofloxacin and fleroxacin), a cystic fibrosis transmembrane conductance regulator potentiator (ivacaftor), and a selective estrogen receptor modulator antimicrobial adjuvant (raloxifene). Our in vitro metabolism data were further corroborated by molecular docking of each drug to the heme active site using a CYP107S1 homology model. Our findings raise the potential for microbial pathogens modulating drug concentrations locally at the site of infection, if not systemically, via CYP-mediated biotransformation reactions. To our knowledge, this is the first report of a CYP enzyme from a known bacterial pathogen that is capable of metabolizing clinically utilized drugs.
Collapse
Affiliation(s)
- Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Brian C Tooker
- Pulmonary Division, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
5
|
Mandò C, Castiglioni S, Novielli C, Anelli GM, Serati A, Parisi F, Lubrano C, Zocchi M, Ottria R, Giovarelli M. Placental Bioenergetics and Antioxidant Homeostasis in Maternal Obesity and Gestational Diabetes. Antioxidants (Basel) 2024; 13:858. [PMID: 39061926 PMCID: PMC11273840 DOI: 10.3390/antiox13070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Maternal obesity has been associated with short- and long-term risks of pregnancy-perinatal adverse events, possibly due to alterations of placental mitochondrial bioenergetics. However, several detrimental mechanisms occurring in the placentas of women with obesity still need to be clarified. Here, we analyzed placental mitochondrial features and oxidative environment of 46 pregnancies in relation to pre-pregnancy BMI. Seventeen Caucasian normal-weight (NW) and twenty-nine women who were obese (OB) were enrolled. The protein expression of mitochondrial CypD and electron transfer chain complexes (C) I-V were measured, as well as ATP production and oxygen consumption rates (OCRs). The protein levels of the pro/anti-oxidant enzymes TXNIP, SOD2, and PON2 were also analyzed. Despite no differences in CypD expression, OCRs were significantly lower in OB vs. NW women. Accordingly, ATP synthase (CV) levels and ATP content were decreased in OB women, positively correlating with placental efficiency, suggesting a link between ATP deficiency and placental dysfunction. SOD2 expression negatively correlated with maternal BMI, indicating a possible impairment of antioxidant defenses with increasing BMI. These changes were worsened in 10 OB women presenting with gestational diabetes mellitus. Overall, these results suggest alterations of placental bioenergetics in pregnancies of women with obesity, possibly leading to placental dysfunction and altered fetal development and programming.
Collapse
Affiliation(s)
- Chiara Mandò
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Chiara Novielli
- Department of Woman, Mother and Neonate, Buzzi Children’s Hospital, ASST Fatebenefratelli Sacco, 20154 Milan, Italy
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Anaïs Serati
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Francesca Parisi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
- Department of Woman, Mother and Neonate, Buzzi Children’s Hospital, ASST Fatebenefratelli Sacco, 20154 Milan, Italy
| | - Chiara Lubrano
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Monica Zocchi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| |
Collapse
|
6
|
Kinkade CW, Aleksunes LM, Brinker A, Buckley B, Brunner J, Wang C, Miller RK, O'Connor TG, Rivera-Núñez Z, Barrett ES. Associations between mycoestrogen exposure and sex steroid hormone concentrations in maternal serum and cord blood in the UPSIDE pregnancy cohort. Int J Hyg Environ Health 2024; 260:114405. [PMID: 38878407 PMCID: PMC11441442 DOI: 10.1016/j.ijheh.2024.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Zearalenone (ZEN) is a fungal-derived toxin found in global food supplies including cereal grains and processed foods, impacting populations worldwide through diet. Because the chemical structure of ZEN and metabolites closely resembles 17β-estradiol (E2), they interact with estrogen receptors α/β earning their designation as 'mycoestrogens'. In animal models, gestational exposure to mycoestrogens disrupts estrogen activity and impairs fetal growth. Here, our objective was to evaluate relationships between mycoestrogen exposure and sex steroid hormone concentrations in maternal circulation and cord blood for the first time in humans. In each trimester, pregnant participants in the UPSIDE study (n = 297) provided urine for mycoestrogen analysis and serum for hormone analysis. At birth, placental mycoestrogens and cord steroids were measured. We fitted longitudinal models examining log-transformed mycoestrogen concentrations in relation to log-transformed hormones, adjusting for covariates. Secondarily, multivariable linear models examined associations at each time point (1st, 2nd, 3rd trimesters, delivery). We additionally considered effect modification by fetal sex. ZEN and its metabolite, α-zearalenol (α-ZOL), were detected in >93% and >75% of urine samples; >80% of placentas had detectable mycoestrogens. Longitudinal models from the full cohort exhibited few significant associations. In sex-stratified analyses, in pregnancies with male fetuses, estrone (E1) and free testosterone (fT) were inversely associated with ZEN (E1 %Δ: -6.68 95%CI: -12.34, -0.65; fT %Δ: -3.22 95%CI: -5.68, -0.70); while α-ZOL was positively associated with E2 (%Δ: 5.61 95%CI: -1.54, 9.85) in pregnancies with female fetuses. In analysis with cord hormones, urinary mycoestrogens were inversely associated with androstenedione (%Δ: 9.15 95%CI: 14.64, -3.30) in both sexes, and placental mycoestrogens were positively associated with cord fT (%Δ: 37.13, 95%CI: 4.86, 79.34) amongst male offspring. Findings support the hypothesis that mycoestrogens act as endocrine disruptors in humans, as in animal models and livestock. Additional work is needed to understand impacts on maternal and child health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Lauren M Aleksunes
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Anita Brinker
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor - UCLA Medical Center, Torrance, CA, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, Pediatrics and Pathology, University of Rochester, New York, NY, 14642, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Psychiatry, University of Rochester, NY, USA; Wynne Center for Family Research, University of Rochester, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
7
|
Kotomura N, Shimono Y, Ishihara S. CYP19A1 Expression Is Controlled by mRNA Stability of the Upstream Transcription Factor AP-2γ in Placental JEG3 Cells. Endocrinology 2024; 165:bqae055. [PMID: 38717933 DOI: 10.1210/endocr/bqae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Indexed: 05/21/2024]
Abstract
CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.
Collapse
Affiliation(s)
- Naoe Kotomura
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Satoru Ishihara
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
8
|
Song W, Guo Q, Puttabyatappa M, Elangovan VR, Wang J, Li F, Liu F, Bi X, Li H, Fu G, Padmanabhan V, Wu X. FGR-associated placental insufficiency and capillary angiogenesis involves disruptions in human placental miRNAs and mRNAs. Heliyon 2024; 10:e28007. [PMID: 38509973 PMCID: PMC10951647 DOI: 10.1016/j.heliyon.2024.e28007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Fetal growth restriction (FGR) is one of the most common pregnancy complications culminating in adverse fetal outcome, including preterm birth, neonatal mortality and stillbirth. Compromised placental development and function, especially disruption in angiogenesis and inadequate nutrient supply are contributing factors. Fetal sex also influences placental function. Knowledge of gene expression changes and epigenetic factors contributing to placental dysfunction in FGR pregnancies will help identify biomarkers and help target interventions. This study tested the hypothesis that FGR pregnancies are associated with disruptions in miRNA - an epigenetic factor and mRNAs involving key mediators of angiogenesis and microvessel development. Changes in expression of key genes/proteins involved in placental dysfunction by RT-PCR and immunohistochemistry and miRNA changes by RNA sequencing were undertaken with term placenta from 12 control and 20 FGR pregnancies. Findings showed changes in expression of genes involved in steroidogenesis, steroid action, IGF family members, inflammatory cytokines and angiogenic factors in FGR pregnancies. In addition, upregulation of MIR451A and downregulation of MIR543 in placentas from FGR group with female newborns and upregulation of MIR520G in placentas from FGR group with male newborns were also noted. MIR451A and MIR543 have been implicated in angiogenesis. Consistent with gene changes, CD34, the microvessel angiogenesis marker, also showed reduced staining only in female FGR group. These findings provide evidence that epigentically regulated gene expression changes in angiogenesis and capillary development influence placental impairment in FGR pregnancies. Our preliminary observations also support for these changes to be driven in a sex-specific manner.
Collapse
Affiliation(s)
- Wenhui Song
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, PR China
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Qing Guo
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, PR China
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei, PR China
| | | | | | - Jianping Wang
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Fang Li
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Fangfang Liu
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Xuejie Bi
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Haiying Li
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Guangping Fu
- Hebei Key Laboratory of Forensic Medicine, College for Forensic Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | | | - XiaoHua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei, PR China
- The Fourth Hospital of Shijiazhuang affiliated to Hebei Medical University, Shijiazhuang, Hebei, PR China
| |
Collapse
|
9
|
Boyle P, Andralojc K, van der Velden S, Najmabadi S, de Groot T, Turczynski C, Stanford JB. Restoration of serum estradiol and reduced incidence of miscarriage in patients with low serum estradiol during pregnancy: a retrospective cohort study using a multifactorial protocol including DHEA. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 5:1321284. [PMID: 38239818 PMCID: PMC10794495 DOI: 10.3389/frph.2023.1321284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Background Low serum estradiol in early pregnancy is associated with an elevated risk of miscarriage. We sought to determine whether efforts to restore low blood estradiol via estradiol or dehydroepiandrosterone (DHEA) supplementation would reduce the risk of miscarriage as part of a multifactorial symptom-based treatment protocol. Methods This retrospective cohort study included women with low serum estradiol levels in early pregnancy, defined as ≤50% of reference levels by gestational age. Estradiol or DHEA were administered orally, and the primary outcome measure was serum estradiol level, in reference to gestational age. The secondary outcome measures included miscarriage, birth weight, and gestational age at birth. Results We found no significant effect of estradiol supplementation on serum estradiol levels referenced to gestational age, while DHEA supplementation strongly increased estradiol levels. For pregnancies with low estradiol, the miscarriage rate in the non-supplemented group was 45.5%, while miscarriage rate in the estradiol and DHEA supplemented groups were 21.2% (p = 0.067) and 17.5% (p = 0.038), respectively. Birth weight, size, gestational age, and preterm deliveries were not significantly different. No sexual abnormalities were reported in children (n = 29) of DHEA-supplemented patients after 5-7 years follow-up. Conclusions In conclusion, DHEA supplementation restored serum estradiol levels, and when included in the treatment protocol, there was a statistically significant reduction in miscarriage.
Collapse
Affiliation(s)
- Phil Boyle
- International Institute for Restorative Reproductive Medicine, London, United Kingdom
- NeoFertility Clinic, Dublin, Ireland
| | - Karolina Andralojc
- NeoFertility Clinic, Dublin, Ireland
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Shahpar Najmabadi
- Office of Cooperative Reproductive Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, United States
| | - Theun de Groot
- NeoFertility Clinic, Dublin, Ireland
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Craig Turczynski
- NeoFertility Clinic, Dublin, Ireland
- Billings Ovulation Method Association-USA, Saint Cloud, MN, United States
| | - Joseph B. Stanford
- International Institute for Restorative Reproductive Medicine, London, United Kingdom
- Office of Cooperative Reproductive Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Ruebel ML, Borengasser SJ, Zhong Y, Kang P, Faske J, Shankar K. Maternal Exercise Prior to and during Gestation Induces Sex-Specific Alterations in the Mouse Placenta. Int J Mol Sci 2023; 24:16441. [PMID: 38003633 PMCID: PMC10671464 DOI: 10.3390/ijms242216441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
While exercise (EX) during pregnancy is beneficial for both mother and child, little is known about the mechanisms by which maternal exercise mediates changes in utero. Six-week-old female C57BL/6 mice were divided into two groups: with (exercise, EX; N = 7) or without (sedentary, SED; N = 8) access to voluntary running wheels. EX was provided via 24 h access to wheels for 10 weeks prior to conception until late pregnancy (18.5 days post coitum). Sex-stratified placentas and fetal livers were collected. Microarray analysis of SED and EX placentas revealed that EX affected gene transcript expression of 283 and 661 transcripts in male and female placentas, respectively (±1.4-fold, p < 0.05). Gene Set Enrichment and Ingenuity Pathway Analyses of male placentas showed that EX led to inhibition of signaling pathways, biological functions, and down-regulation of transcripts related to lipid and steroid metabolism, while EX in female placentas led to activation of pathways, biological functions, and gene expression related to muscle growth, brain, vascular development, and growth factors. Overall, our results suggest that the effects of maternal EX on the placenta and presumably on the offspring are sexually dimorphic.
Collapse
Affiliation(s)
- Meghan L. Ruebel
- Microbiome and Metabolism Research Unit, USDA-ARS, Southeast Area, Little Rock, AR 72202, USA;
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Sarah J. Borengasser
- Tobacco Settlement Endowment Trust Health Promotion Research Center, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics—Endocrinology & Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ying Zhong
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Ping Kang
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Jennifer Faske
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front Endocrinol (Lausanne) 2023; 14:1215353. [PMID: 37854189 PMCID: PMC10579913 DOI: 10.3389/fendo.2023.1215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Maternal endocrine homeostasis is vital to a successful pregnancy, regulated by several hormones such as human chorionic gonadotropin, estrogen, leptin, glucocorticoid, insulin, prostaglandin, and others. Endocrine stress during pregnancy can modulate nutrient availability from mother to fetus, alter fetoplacental growth and reproductive functions. Endocrine disrupters such as bisphenols (BPs) and phthalates are exposed in our daily life's highest volume. Therefore, they are extensively scrutinized for their effects on metabolism, steroidogenesis, insulin signaling, and inflammation involving obesity, diabetes, and the reproductive system. BPs have their structural similarity to 17-β estradiol and their ability to bind as an agonist or antagonist to estrogen receptors to elicit an adverse response to the function of the endocrine and reproductive system. While adults can negate the adverse effects of these endocrine-disrupting chemicals (EDCs), fetuses do not equip themselves with enzymatic machinery to catabolize their conjugates. Therefore, EDC exposure makes the fetoplacental developmental window vulnerable to programming in utero. On the one hand prenatal BPs and phthalates exposure can impair the structure and function of the ovary and uterus, resulting in placental vascular defects, inappropriate placental expression of angiogenic growth factors due to altered hypothalamic response, expression of nutrient transporters, and epigenetic changes associated with maternal endocrine stress. On the other, their exposure during pregnancy can affect the offspring's metabolic, endocrine and reproductive functions by altering fetoplacental programming. This review highlights the latest development in maternal metabolic and endocrine modulations from exposure to estrogenic mimic chemicals on subcellular and transgenerational changes in placental development and its effects on fetal growth, size, and metabolic & reproductive functions.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Kang DH, Kim MJ, Mohamed EA, Kim DS, Jeong JS, Kim SY, Kang HG, Lee GS, Hong EJ, Ahn C, Jung EM, An BS, Kim SC. Regulation of uterus and placenta remodeling under high estradiol levels in gestational diabetes mellitus models†. Biol Reprod 2023; 109:215-226. [PMID: 37255320 DOI: 10.1093/biolre/ioad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
The present study aimed to investigate the regulation of placentas and uterus remodeling and involvement of estradiol in gestational diabetes mellitus. To achieve this, we established in vitro and in vivo models for gestational diabetes mellitus placentas by culturing human placental choriocarcinoma cells (BeWo) under hyperglycemic concentration and treating pregnant rats with streptozotocin. We evaluated the expression of angiogenesis-related proteins. The expression of the anti-angiogenic factor, excess placental soluble fms-like tyrosine kinase 1 was increased in our in vitro gestational diabetes mellitus model compared with the control. Moreover, the expressions of placental soluble fms-like tyrosine kinase 1 and the von Willebrand factor were also significantly elevated in the placenta of streptozotocin-treated rats. These data indicate the disruption of angiogenesis in the gestational diabetes mellitus placentas. The expression levels of connexin 43, a component of the gap junction and collagen type I alpha 2 chain, a component of the extracellular matrix, were decreased in the gestational diabetes mellitus uterus. These results suggest that uterus decidualization and placental angiogenesis are inhibited in gestational diabetes mellitus rats. Our results also showed upregulation of the expression of genes regulating estradiol synthesis as well as estrogen receptors in vivo models. Accordingly, the concentration of estradiol measured in the culture medium under hyperglycemic conditions, as well as in the serum and placenta of the streptozotocin-treated rats, was significantly elevated compared with the control groups. These results suggest that the dysregulated remodeling of the placenta and uterus may result in the elevation of estradiol and its signaling pathway in the gestational diabetes mellitus animal model to maintain pregnancy.
Collapse
Affiliation(s)
- Da Hee Kang
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Min Jae Kim
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Elsayed A Mohamed
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
- Department of Genetics, Assiut University, Assiut, Egypt
| | - Da Som Kim
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Jea Sic Jeong
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - So Young Kim
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hyeon-Gu Kang
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Geun-Shik Lee
- Department of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Eui-Ju Hong
- Department of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Changhwan Ahn
- Department of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Seung-Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
13
|
Expression of Key Steroidogenic Enzymes in Human Placenta and Associated Adverse Pregnancy Outcomes. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Zou Z, Harris LK, Forbes K, Heazell AEP. Placental expression of Estrogen related receptor gamma (ESRRG) is reduced in FGR pregnancies and is mediated by hypoxia. Biol Reprod 2022; 107:846-857. [PMID: 35594451 PMCID: PMC9476228 DOI: 10.1093/biolre/ioac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/12/2022] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Fetal growth restriction (FGR) describes a fetus which has not achieved its genetic growth potential; it is closely linked to placental dysfunction and uteroplacental hypoxia. Estrogen-related receptor gamma (ESRRG) is regulated by hypoxia and is highly expressed in the placenta. We hypothesized ESRRG is a regulator of hypoxia-mediated placental dysfunction in FGR pregnancies. Placentas were collected from women delivering appropriate for gestational age (AGA; n = 14) or FGR (n = 14) infants. Placental explants (n = 15) from uncomplicated pregnancies were cultured for up to 4 days in 21% or 1% O2, or with 200 μM cobalt chloride (CoCl2), or treated with the ESRRG agonists DY131 under different oxygen concentrations. RT-PCR, Western blotting, and immunochemistry were used to assess mRNA and protein levels of ESRRG and its localization in placental tissue from FGR or AGA pregnancies, and in cultured placental explants. ESRRG mRNA and protein expression were significantly reduced in FGR placentas, as was mRNA expression of the downstream targets of ESRRG, hydroxysteroid 11-beta dehydrogenase 2 (HSD11B2), and cytochrome P-450 (CYP19A1.1). Hypoxia-inducible factor 1-alpha protein localized to the nuclei of the cytotrophoblasts and stromal cells in the explants exposed to CoCl2 or 1% O2. Both hypoxia and CoCl2 treatment decreased ESRRG and its downstream genes’ mRNA expression, but not ESRRG protein expression. DY131 increased the expression of ESRRG signaling pathways and prevented abnormal cell turnover induced by hypoxia. These data show that placental ESRRG is hypoxia-sensitive and altered ESRRG-mediated signaling may contribute to hypoxia-induced placental dysfunction in FGR. Furthermore, DY131 could be used as a novel therapeutic approach for the treatment of placental dysfunction.
Collapse
Affiliation(s)
- Zhiyong Zou
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL.,St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL.,St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Karen Forbes
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL.,St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Alexander E P Heazell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL.,St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| |
Collapse
|
15
|
Zou Z, Harris LK, Forbes K, Heazell AEP. Sex-specific effects of Bisphenol a on the signalling pathway of ESRRG in the human placenta. Biol Reprod 2022; 106:1278-1291. [PMID: 35220427 PMCID: PMC9198953 DOI: 10.1093/biolre/ioac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Bisphenol A (BPA) exposure during pregnancy is associated with low fetal weight, particularly in male fetuses. The expression of estrogen-related receptor gamma (ESRRG), a receptor for BPA in the human placenta, is reduced in fetal growth restriction. This study sought to explore whether ESRRG signaling mediates BPA-induced placental dysfunction and determine whether changes in the ESRRG signaling pathway are sex-specific. Placental villous explants from 18 normal term pregnancies were cultured with a range of BPA concentrations (1 nM–1 μM). Baseline BPA concentrations in the placental tissue used for explant culture ranged from 0.04 to 5.1 nM (average 2.3 ±1.9 nM; n = 6). Expression of ESRRG signaling pathway constituents and cell turnover were quantified. BPA (1 μM) increased ESRRG mRNA expression after 24 h in both sexes. ESRRG mRNA and protein expression was increased in female placentas treated with 1 μM BPA for 24 h but was decreased in male placentas treated with 1 nM or 1 μM for 48 h. Levels of 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1) and placenta specific-1 (PLAC1), genes downstream of ESRRG, were also affected. HSD17B1 mRNA expression was increased in female placentas by 1 μM BPA; however, 1 nM BPA reduced HSD17B1 and PLAC1 expression in male placentas at 48 h. BPA treatment did not affect rates of proliferation, apoptosis, or syncytiotrophoblast differentiation in cultured villous explants. This study has demonstrated that BPA affects the ESRRG signaling pathway in a sex-specific manner in human placentas and a possible biological mechanism to explain the differential effects of BPA exposure on male and female fetuses observed in epidemiological studies.
Collapse
Affiliation(s)
- Zhiyong Zou
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Karen Forbes
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Alexander E P Heazell
- Maternal and Fetal Health Research Centre, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester, UK, M13 9WL
- St Mary’s Hospital, Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
16
|
van Hoogdalem MW, Wexelblatt SL, Akinbi HT, Vinks AA, Mizuno T. A review of pregnancy-induced changes in opioid pharmacokinetics, placental transfer, and fetal exposure: Towards fetomaternal physiologically-based pharmacokinetic modeling to improve the treatment of neonatal opioid withdrawal syndrome. Pharmacol Ther 2021; 234:108045. [PMID: 34813863 DOI: 10.1016/j.pharmthera.2021.108045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling has emerged as a useful tool to study pharmacokinetics (PK) in special populations, such as pregnant women, fetuses, and newborns, where practical hurdles severely limit the study of drug behavior. PK in pregnant women is variable and everchanging, differing greatly from that in their nonpregnant female and male counterparts typically enrolled in clinical trials. PBPK models can accommodate pregnancy-induced physiological and metabolic changes, thereby providing mechanistic insights into maternal drug disposition and fetal exposure. Fueled by the soaring opioid epidemic in the United States, opioid use during pregnancy continues to rise, leading to an increased incidence of neonatal opioid withdrawal syndrome (NOWS). The severity of NOWS is influenced by a complex interplay of extrinsic and intrinsic factors, and varies substantially between newborns, but the extent of prenatal opioid exposure is likely the primary driver. Fetomaternal PBPK modeling is an attractive approach to predict in utero opioid exposure. To facilitate the development of fetomaternal PBPK models of opioids, this review provides a detailed overview of pregnancy-induced changes affecting the PK of commonly used opioids during gestation. Moreover, the placental transfer of these opioids is described, along with their disposition in the fetus. Lastly, the implementation of these factors into PBPK models is discussed. Fetomaternal PBPK modeling of opioids is expected to provide improved insights in fetal opioid exposure, which allows for prediction of postnatal NOWS severity, thereby opening the way for precision postnatal treatment of these vulnerable infants.
Collapse
Affiliation(s)
- Matthijs W van Hoogdalem
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Scott L Wexelblatt
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Henry T Akinbi
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Maia J, Almada M, Midão L, Fonseca BM, Braga J, Gonçalves D, Teixeira N, Correia-da-Silva G. The Cannabinoid Delta-9-tetrahydrocannabinol Disrupts Estrogen Signaling in Human Placenta. Toxicol Sci 2021; 177:420-430. [PMID: 32647869 DOI: 10.1093/toxsci/kfaa110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cannabis consumption is increasing worldwide either for recreational or medical purposes. Its use during gestation is associated with negative pregnancy outcomes such as, intrauterine growth restriction, preterm birth, low birth weight, and increased risk of miscarriage, though the underlying molecular mechanisms are unknown. Cannabis sativa main psychoactive compound, Δ9-tetrahydrocannabinol (THC) is highly lipophilic, and as such, readily crosses the placenta. Consequently, THC may alter normal placental development and function. Here, we hypothesize alterations of placental steroidogenesis caused by THC exposure. The impact on placental estrogenic signaling was examined by studying THC effects upon the enzyme involved in estrogens production, aromatase and on estrogen receptor α (ERα), using placental explants, and the cytotrophoblast cell model BeWo. Aromatase expression was upregulated by THC, being this effect potentiated by estradiol. THC also increased ERα expression. Actions on aromatase were ERα-mediated, as were abolished by the selective ER downregulator ICI-182780 and dependent on the cannabinoid receptor CB1 activation. Furthermore, the presence of the aromatase inhibitor Exemestane did not affect THC-induced increase in ERα expression. However, THC effects on ERα levels were reversed by the antagonists of CB1 and CB2 receptors AM281 and AM630, respectively. Thus, we demonstrate major alterations in estrogen signaling caused by THC, providing new insight on how cannabis consumption leads to negative pregnancy outcomes, likely through placental endocrine alterations. Data presented in this study, together with our recently reported evidence on THC disruption of placental endocannabinoid homeostasis, represent a step forward into a deeper comprehension of the puzzling actions of THC.
Collapse
Affiliation(s)
- João Maia
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta Almada
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Midão
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.,Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Jorge Braga
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, 4050-371 Porto, Portugal
| | - Daniela Gonçalves
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, 4050-371 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Matheus Bremm J, Michels M, Duarte Rengel B, Gomes FG, Fraga LR, Sanseverino MTV. Genetic and in silico analysis show a role of SMAD3 on recurrent pregnancy loss. HUM FERTIL 2021; 25:754-763. [PMID: 34030553 DOI: 10.1080/14647273.2021.1922764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recurrent pregnancy loss (RPL) is one of the most common reproductive failures affecting 1-5% of couples. Smad3 is an effector of signalling of the Transforming Growth Factors-β superfamily (TGF-β), regulating the transcription of several target genes of these cytokines. The objective of this study was to evaluate the influence of a variant on SMAD3 (rs17293443) in RPL. A case-control study was carried out with 149 women who experienced RPL and 159 controls, as well as bioinformatics tools to determine the role of this variant in this condition. Our study showed an allelic (p = 0.023) and genotypic (p < 0.01) association of this variant with the RPL. Our functional in silico predictions suggest that this variant causes a change in SMAD3 expression levels. Alterations in the expression of this gene can directly compromise the Smad3-dependent signalling pathway that is fundamental for key processes for gestation such as steroid hormone regulation and implantation, as demonstrated by ontologies analyses performed and the literature. Our findings regarding the involvement of Smad3 on RPL are a novelty in this field, and they seem to be promising to the clinical management of this condition.
Collapse
Affiliation(s)
- João Matheus Bremm
- Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcus Michels
- Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flavia Gobetti Gomes
- Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Departament of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Teresa Vieira Sanseverino
- Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,School of Medicine, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
19
|
Ali MM, Khater SA, Fayed AA, Sabry D, Ibrahim SF. Apoptotic endocrinal toxic effects of perchlorate in human placental cells. Toxicol Rep 2021; 8:863-870. [PMID: 33948439 PMCID: PMC8079966 DOI: 10.1016/j.toxrep.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/22/2021] [Accepted: 04/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Perchlorate is a strong oxidizing agent and has many adverse health effects. This study investigated the potential oxidative, apoptotic, and endocrinal toxic effects of perchlorate in human placenta-derived mesenchymal stem cells (HP-MSCs). METHODS HP-MSCs were treated with two doses of perchlorate (5 and 15 μg/L) for three days. The perchlorate's effects were detected by histopathological examination, aromatase/CYP19 A1 activity, reactive oxygen species production (ROS), and Caspase-3 expression. RESULTS The highest perchlorate concentration (15 μg/L) caused significant placental histopathological changes. The placental cell viability was significantly affected by a significant increase in ROS generation; caspase-3 expression, and a significant reduction of CYP 19 activity. Despite the slight induction effect of the lowest perchlorate concentration (5 μg/L) on caspase 3 expression, CYP 19 activity, and ROS generation, it did not affect placental cellular viability. CONCLUSION This study suggested that perchlorate could modulate aromatase activity and placental cytotoxicity. The continuous monitoring of the actual perchlorate exposure is needed and could be cost-effective.
Collapse
Affiliation(s)
- Mona M. Ali
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Egypt
- Forensic Medicine and Clinical Toxicology, Taif University, Saudi Arabia
| | - Sarah A. Khater
- Forensic Medicine and Clinical Toxicology- Misr University for Science and Technology, Egypt
| | - Amel Ahmed Fayed
- Clinical Department, College of Medicine, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
- Medical Biochemistry and Molecular Biology Departement, Faculty of Medicine, Badr University, Egypt
| | - Samah F. Ibrahim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Egypt
- Clinical Department, College of Medicine, Princess Nourah bint Abdulrahman University, Saudi Arabia
| |
Collapse
|
20
|
Diceglie C, Anelli GM, Martelli C, Serati A, Lo Dico A, Lisso F, Parisi F, Novielli C, Paleari R, Cetin I, Ottobrini L, Mandò C. Placental Antioxidant Defenses and Autophagy-Related Genes in Maternal Obesity and Gestational Diabetes Mellitus. Nutrients 2021; 13:nu13041303. [PMID: 33920886 PMCID: PMC8071310 DOI: 10.3390/nu13041303] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are increasing worldwide, representing risk factors for both mother and child short/long-term outcomes. Oxidative stress, lipotoxicity and altered autophagy have already been reported in obesity, but few studies have focused on obese pregnant women with GDM. Antioxidant and macro/chaperone-mediated autophagy (CMA)-related gene expressions were evaluated herein in obese and GDM placentas. A total of 47 women with singleton pregnancies delivered by elective cesarean section were enrolled: 16 normal weight (NW), 18 obese with no comorbidities (OB GDM(–)), 13 obese with GDM (OB GDM(+)). Placental gene expression was assessed by real-time PCR. Antioxidant gene expression (CAT, GPX1, GSS) decreased, the pro-autophagic ULK1 gene increased and the chaperone-mediated autophagy regulator PHLPP1 decreased in OB GDM(–) vs. NW. On the other hand, PHLPP1 expression increased in OB GDM(+) vs. OB GDM(–). When analyzing results in relation to fetal sex, we found sexual dimorphism for both antioxidant and CMA-related gene expressions. These preliminary results can pave the way for further analyses aimed at elucidating the placental autophagy role in metabolic pregnancy disorders and its potential targetability for the treatment of diabetes outcomes.
Collapse
Affiliation(s)
- Cecilia Diceglie
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
| | - Anais Serati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
| | - Fabrizia Lisso
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
| | - Francesca Parisi
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospital, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, 20154 Milano, Italy;
| | - Chiara Novielli
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
| | - Renata Paleari
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
| | - Irene Cetin
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospital, ASST Fatebenefratelli-Sacco, Università degli Studi di Milano, 20154 Milano, Italy;
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy; (C.D.); (C.M.); (A.S.); (A.L.D.); (R.P.)
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 20054 Segrate, Italy
- Correspondence: (L.O.); (C.M.); Tel.: +39-02-503-30346 (L.O.); +39-02-503-19883 (C.M.)
| | - Chiara Mandò
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milano, Italy; (G.M.A.); (F.L.); (C.N.); (I.C.)
- Correspondence: (L.O.); (C.M.); Tel.: +39-02-503-30346 (L.O.); +39-02-503-19883 (C.M.)
| |
Collapse
|