1
|
Calcaterra V, Lacerenza M, Rossi V, Zanelli S, Contini D, Amendola C, Buttafava M, Torricelli A, Zuccotti G. Reference values for cerebral and peripheral tissue oximetry in children: A clinical TD-NIRS study. Acta Paediatr 2025; 114:515-525. [PMID: 39425553 PMCID: PMC11828717 DOI: 10.1111/apa.17459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
AIM Current non-invasive near-infrared spectroscopy (NIRS) tissue oximetry suffers from suboptimal reproducibility over probe repositioning, hindering clinical threshold establishment. Time Domain-NIRS (TD-NIRS) offers higher precision but lacks sufficient paediatric data, preventing effective clinical application. We aimed to establish reference ranges for cerebral and mid-upper arm (MUA) tissue haemodynamics in paediatric subjects using TD-NIRS and explore correlations with auxological variables. METHODS TD-NIRS measurements were conducted acquiring data from cerebral and MUA regions with the NIRSBOX tissue oximeter. Morphological and clinically relevant information were collected to explore potential correlations with TD-NIRS derived parameters. RESULTS TD-NIRS assessment was applied in 350 children (8.4 ± 5.0 years). Precision of TD-NIRS was demonstrated with standard deviations of 0.9% (StO2) and 4.2 μM (tHb) for frontotemporal cerebral cortex, and 0.8% (StO2) and 3.7 μM (tHb) for MUA. No user dependency was observed. The trends of values for cerebral and peripheral regions vary differently according to age and auxological parameters. CONCLUSION This study reports resting-state optical and haemodynamic values for a healthy paediatric population, providing a foundation for future investigations into clinically relevant deviations in these parameters. Furthermore, correlations with anthropometric and demographic values provide valuable insights for a deeper understanding of tissue haemodynamic evolution in childhood.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal MedicineUniversity of PaviaPaviaItaly
- Pediatric DepartmentBuzzi Children's HospitalMilanItaly
| | | | | | - Sara Zanelli
- Pediatric DepartmentBuzzi Children's HospitalMilanItaly
| | | | | | | | | | - Gianvincenzo Zuccotti
- Pediatric DepartmentBuzzi Children's HospitalMilanItaly
- Department of Biomedical and Clinical ScienceUniversity of MilanMilanItaly
| |
Collapse
|
2
|
Leadley G, Austin T, Bale G. Review of measurements and imaging of cytochrome-c-oxidase in humans using near-infrared spectroscopy: an update. BIOMEDICAL OPTICS EXPRESS 2024; 15:162-184. [PMID: 38223181 PMCID: PMC10783912 DOI: 10.1364/boe.501915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
This review examines advancements in the measurement and imaging of oxidized cytochrome-c-oxidase (oxCCO) using near-infrared spectroscopy (NIRS) in humans since 2016. A total of 34 published papers were identified, with a focus on both adult and neonate populations. The NIRS-derived oxCCO signal has been demonstrated to correlate with physiological parameters and hemodynamics. New instrumentation, such as systems that allow the imaging of changes of oxCCO with diffuse optical tomography or combine the oxCCO measurement with diffuse correlation spectroscopy measures of blood flow, have advanced the field in the past decade. However, variability in its response across different populations and paradigms and lack of standardization limit its potential as a reliable and valuable indicator of brain health. Future studies should address these issues to fulfill the vision of oxCCO as a clinical biomarker.
Collapse
Affiliation(s)
- Georgina Leadley
- Department of Paediatrics, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, UK
| | - Gemma Bale
- Department of Engineering, University of Cambridge, UK
- Department of Physics, University of Cambridge, UK
| |
Collapse
|
3
|
Taha S, Simpson RB, Sharkey D. The critical role of technologies in neonatal care. Early Hum Dev 2023; 187:105898. [PMID: 37944264 DOI: 10.1016/j.earlhumdev.2023.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Neonatal care has made significant advances in the last few decades. As a result, mortality and morbidity in high-risk infants, such as extremely preterm infants or those infants with birth-related brain injury, has reduced significantly. Many of these advances have been facilitated or delivered through development of medical technologies allowing clinical teams to be better supported with the care they deliver or provide new therapies and diagnostics to improve management. The delivery of neonatal intensive care requires the provision of medical technologies that are easy to use, reliable, accurate and ideally developed for the unique needs of the newborn population. Many technologies have been developed and commercialised following adult trials without ever being studied in neonatal patients despite the unique characteristics of this population. Increasingly, funders and industry are recognising this major challenge which has resulted in initiatives to develop new ideas from concept through to clinical care. This review explores some of the key medical technologies used in neonatal care and the evidence to support their adoption to improve outcomes. A number of devices have yet to realise their full potential and will require further development to optimise and find their ideal target population and clinical benefit. Examples of emerging technologies, which may soon become more widely used, are also discussed. As neonatal care relies more on medical technologies, we need to be aware of the impact on care pathways, especially from a human factors approach, the associated costs and subsequent benefits to patients alongside the supporting evidence.
Collapse
Affiliation(s)
- Syed Taha
- Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Rosalind B Simpson
- Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Don Sharkey
- Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
4
|
Harvey-Jones K, Lange F, Verma V, Bale G, Meehan C, Avdic-Belltheus A, Hristova M, Sokolska M, Torrealdea F, Golay X, Parfentyeva V, Durduran T, Bainbridge A, Tachtsidis I, Robertson NJ, Mitra S. Early assessment of injury with optical markers in a piglet model of neonatal encephalopathy. Pediatr Res 2023; 94:1675-1683. [PMID: 37308684 PMCID: PMC10624614 DOI: 10.1038/s41390-023-02679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Opportunities for adjunct therapies with cooling in neonatal encephalopathy are imminent; however, robust biomarkers of early assessment are lacking. Using an optical platform of broadband near-infrared spectroscopy and diffuse correlation spectroscopy to directly measure mitochondrial metabolism (oxCCO), oxygenation (HbD), cerebral blood flow (CBF), we hypothesised optical indices early (1-h post insult) after hypoxia-ischaemia (HI) predicts insult severity and outcome. METHODS Nineteen newborn large white piglets underwent continuous neuromonitoring as controls or following moderate or severe HI. Optical indices were expressed as mean semblance (phase difference) and coherence (spectral similarity) between signals using wavelet analysis. Outcome markers included the lactate/N-acetyl aspartate (Lac/NAA) ratio at 6 h on proton MRS and TUNEL cell count. RESULTS CBF-HbD semblance (cerebrovascular dysfunction) correlated with BGT and white matter (WM) Lac/NAA (r2 = 0.46, p = 0.004, r2 = 0.45, p = 0.004, respectively), TUNEL cell count (r2 = 0.34, p = 0.02) and predicted both initial insult (r2 = 0.62, p = 0.002) and outcome group (r2 = 0.65 p = 0.003). oxCCO-HbD semblance (cerebral metabolic dysfunction) correlated with BGT and WM Lac/NAA (r2 = 0.34, p = 0.01 and r2 = 0.46, p = 0.002, respectively) and differentiated between outcome groups (r2 = 0.43, p = 0.01). CONCLUSION Optical markers of both cerebral metabolic and vascular dysfunction 1 h after HI predicted injury severity and subsequent outcome in a pre-clinical model. IMPACT This study highlights the possibility of using non-invasive optical biomarkers for early assessment of injury severity following neonatal encephalopathy, relating to the outcome. Continuous cot-side monitoring of these optical markers can be useful for disease stratification in the clinical population and for identifying infants who might benefit from future adjunct neuroprotective therapies beyond cooling.
Collapse
Affiliation(s)
| | - Frederic Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Vinita Verma
- Institute for Women's Health, University College London, London, UK
| | - Gemma Bale
- Department of Engineering and Department of Physics, University of Cambridge, Cambridge, UK
| | | | | | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Magdalena Sokolska
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Francisco Torrealdea
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Xavier Golay
- Institute of Neurology, University College London, London, UK
| | - Veronika Parfentyeva
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alan Bainbridge
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | | | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
5
|
Sudakou A, Wabnitz H, Liemert A, Wolf M, Liebert A. Two-layered blood-lipid phantom and method to determine absorption and oxygenation employing changes in moments of DTOFs. BIOMEDICAL OPTICS EXPRESS 2023; 14:3506-3531. [PMID: 37497481 PMCID: PMC10368065 DOI: 10.1364/boe.492168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 07/28/2023]
Abstract
Near-infrared spectroscopy (NIRS) is an established technique for measuring tissue oxygen saturation (StO2), which is of high clinical value. For tissues that have layered structures, it is challenging but clinically relevant to obtain StO2 of the different layers, e.g. brain and scalp. For this aim, we present a new method of data analysis for time-domain NIRS (TD-NIRS) and a new two-layered blood-lipid phantom. The new analysis method enables accurate determination of even large changes of the absorption coefficient (Δµa) in multiple layers. By adding Δµa to the baseline µa, this method provides absolute µa and hence StO2 in multiple layers. The method utilizes (i) changes in statistical moments of the distributions of times of flight of photons (DTOFs), (ii) an analytical solution of the diffusion equation for an N-layered medium, (iii) and the Levenberg-Marquardt algorithm (LMA) to determine Δµa in multiple layers from the changes in moments. The method is suitable for NIRS tissue oximetry (relying on µa) as well as functional NIRS (fNIRS) applications (relying on Δµa). Experiments were conducted on a new phantom, which enabled us to simulate dynamic StO2 changes in two layers for the first time. Two separate compartments, which mimic superficial and deep layers, hold blood-lipid mixtures that can be deoxygenated (using yeast) and oxygenated (by bubbling oxygen) independently. Simultaneous NIRS measurements can be performed on the two-layered medium (variable superficial layer thickness, L), the deep (homogeneous), and/or the superficial (homogeneous). In two experiments involving ink, we increased the nominal µa in one of two compartments from 0.05 to 0.25 cm-1, L set to 14.5 mm. In three experiments involving blood (L set to 12, 15, or 17 mm), we used a protocol consisting of six deoxygenation cycles. A state-of-the-art multi-wavelength TD-NIRS system measured simultaneously on the two-layered medium, as well as on the deep compartment for a reference. The new method accurately determined µa (and hence StO2) in both compartments. The method is a significant progress in overcoming the contamination from the superficial layer, which is beneficial for NIRS and fNIRS applications, and may improve the determination of StO2 in the brain from measurements on the head. The advanced phantom may assist in the ongoing effort towards more realistic standardized performance tests in NIRS tissue oximetry. Data and MATLAB codes used in this study were made publicly available.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - André Liemert
- Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm, Germany
| | - Martin Wolf
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Adam Liebert
- Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Ko TS, Catennacio E, Shin SS, Stern J, Massey SL, Kilbaugh TJ, Hwang M. Advanced Neuromonitoring Modalities on the Horizon: Detection and Management of Acute Brain Injury in Children. Neurocrit Care 2023; 38:791-811. [PMID: 36949362 PMCID: PMC10241718 DOI: 10.1007/s12028-023-01690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/31/2023] [Indexed: 03/24/2023]
Abstract
Timely detection and monitoring of acute brain injury in children is essential to mitigate causes of injury and prevent secondary insults. Increasing survival in critically ill children has emphasized the importance of neuroprotective management strategies for long-term quality of life. In emergent and critical care settings, traditional neuroimaging modalities, such as computed tomography and magnetic resonance imaging (MRI), remain frontline diagnostic techniques to detect acute brain injury. Although detection of structural and anatomical abnormalities remains crucial, advanced MRI sequences assessing functional alterations in cerebral physiology provide unique diagnostic utility. Head ultrasound has emerged as a portable neuroimaging modality for point-of-care diagnosis via assessments of anatomical and perfusion abnormalities. Application of electroencephalography and near-infrared spectroscopy provides the opportunity for real-time detection and goal-directed management of neurological abnormalities at the bedside. In this review, we describe recent technological advancements in these neurodiagnostic modalities and elaborate on their current and potential utility in the detection and management of acute brain injury.
Collapse
Affiliation(s)
- Tiffany S Ko
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA.
| | - Eva Catennacio
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Samuel S Shin
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Joseph Stern
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| | - Shavonne L Massey
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
7
|
Hermans T, Carkeek K, Dereymaeker A, Jansen K, Naulaers G, Van Huffel S, De Vos M. Partial wavelet coherence as a robust method for assessment of neurovascular coupling in neonates with hypoxic ischemic encephalopathy. Sci Rep 2023; 13:457. [PMID: 36627381 PMCID: PMC9832127 DOI: 10.1038/s41598-022-27275-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
In neonates with hypoxic ischemic encephalopathy, the computation of wavelet coherence between electroencephalogram (EEG) power and regional cerebral oxygen saturation (rSO2) is a promising method for the assessment of neurovascular coupling (NVC), which in turn is a promising marker for brain injury. However, instabilities in arterial oxygen saturation (SpO2) limit the robustness of previously proposed methods. Therefore, we propose the use of partial wavelet coherence, which can eliminate the influence of SpO2. Furthermore, we study the added value of the novel NVC biomarkers for identification of brain injury compared to traditional EEG and NIRS biomarkers. 18 neonates with HIE were monitored for 72 h and classified into three groups based on short-term MRI outcome. Partial wavelet coherence was used to quantify the coupling between C3-C4 EEG bandpower (2-16 Hz) and rSO2, eliminating confounding effects of SpO2. NVC was defined as the amount of significant coherence in a frequency range of 0.25-1 mHz. Partial wavelet coherence successfully removed confounding influences of SpO2 when studying the coupling between EEG and rSO2. Decreased NVC was related to worse MRI outcome. Furthermore, the combination of NVC and EEG spectral edge frequency (SEF) improved the identification of neonates with mild vs moderate and severe MRI outcome compared to using EEG SEF alone. Partial wavelet coherence is an effective method for removing confounding effects of SpO2, improving the robustness of automated assessment of NVC in long-term EEG-NIRS recordings. The obtained NVC biomarkers are more sensitive to MRI outcome than traditional rSO2 biomarkers and provide complementary information to EEG biomarkers.
Collapse
Affiliation(s)
- Tim Hermans
- Department of Electrical Engineering (ESAT), STADIUS, KU Leuven, Leuven, Belgium.
| | - Katherine Carkeek
- grid.5596.f0000 0001 0668 7884Department of Development and Regeneration, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Neonatal Intensive Care Unit, UZ Leuven, Leuven, Belgium ,grid.48769.340000 0004 0461 6320Neonatal Intensive Care Unit, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Anneleen Dereymaeker
- grid.5596.f0000 0001 0668 7884Department of Development and Regeneration, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Neonatal Intensive Care Unit, UZ Leuven, Leuven, Belgium
| | - Katrien Jansen
- grid.5596.f0000 0001 0668 7884Department of Development and Regeneration, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Child Neurology, UZ Leuven, Leuven, Belgium
| | - Gunnar Naulaers
- grid.5596.f0000 0001 0668 7884Department of Development and Regeneration, KU Leuven, Leuven, Belgium ,grid.410569.f0000 0004 0626 3338Neonatal Intensive Care Unit, UZ Leuven, Leuven, Belgium
| | - Sabine Van Huffel
- grid.5596.f0000 0001 0668 7884Department of Electrical Engineering (ESAT), STADIUS, KU Leuven, Leuven, Belgium
| | - Maarten De Vos
- grid.5596.f0000 0001 0668 7884Department of Electrical Engineering (ESAT), STADIUS, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Optical Monitoring in Neonatal Seizures. Cells 2022; 11:cells11162602. [PMID: 36010678 PMCID: PMC9407001 DOI: 10.3390/cells11162602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neonatal seizures remain a significant cause of morbidity and mortality worldwide. The past decade has resulted in substantial progress in seizure detection and understanding the impact seizures have on the developing brain. Optical monitoring such as cerebral near-infrared spectroscopy (NIRS) and broadband NIRS can provide non-invasive continuous real-time monitoring of the changes in brain metabolism and haemodynamics. AIM To perform a systematic review of optical biomarkers to identify changes in cerebral haemodynamics and metabolism during the pre-ictal, ictal, and post-ictal phases of neonatal seizures. METHOD A systematic search was performed in eight databases. The search combined the three broad categories: (neonates) AND (NIRS) AND (seizures) using the stepwise approach following PRISMA guidance. RESULTS Fifteen papers described the haemodynamic and/or metabolic changes observed with NIRS during neonatal seizures. No randomised controlled trials were identified during the search. Studies reported various changes occurring in the pre-ictal, ictal, and post-ictal phases of seizures. CONCLUSION Clear changes in cerebral haemodynamics and metabolism were noted during the pre-ictal, ictal, and post-ictal phases of seizures in neonates. Further studies are necessary to determine whether NIRS-based methods can be used at the cot-side to provide clear pathophysiological data in real-time during neonatal seizures.
Collapse
|
9
|
Early Plasma Magnesium in Near-Term and Term Infants with Neonatal Encephalopathy in the Context of Perinatal Asphyxia. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9081233. [PMID: 36010122 PMCID: PMC9406851 DOI: 10.3390/children9081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Magnesium ions are implicated in brain functioning. The disruption of brain metabolism subsequent to a perinatal hypoxic-ischaemic insult may be reflected by plasma magnesium. Infants at 36 weeks after birth or later with neonatal encephalopathy and who were admitted to our neonatal unit from 2011 to 2019 were retrospectively included. The kinetics of plasma magnesium were investigated for the first 72 h of life and correlated to the Barkovich MRI score. Among the 125 infants who met the inclusion criteria, 45 patients (36%) had moderate to severe brain lesions on neonatal MRI. Plasma magnesium values were not strongly associated with the severity of clinical encephalopathy, initial EEG background and brain lesions. Intriguingly, higher plasma magnesium values during the 0−6 h period were linked to the presence of brain injuries that predominated within the white matter (p < 0.001) and to the requirement of cardiac resuscitation in the delivery room (p = 0.001). The occurrence of seizures was associated with a lower mean magnesium value around the 24th hour of life (p = 0.005). This study supports that neonatal encephalopathy is a complex and multifactorial condition. Plasma magnesium could help to better identify the subtypes of neonatal encephalopathy. Further studies are needed to confirm these results in this prospect.
Collapse
|
10
|
Milej D, Rajaram A, Suwalski M, Morrison LB, Shoemaker LN, St. Lawrence K. Assessing the relationship between the cerebral metabolic rate of oxygen and the oxidation state of cytochrome-c-oxidase. NEUROPHOTONICS 2022; 9:035001. [PMID: 35874144 PMCID: PMC9298853 DOI: 10.1117/1.nph.9.3.035001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2022] [Indexed: 05/07/2023]
Abstract
Significance: Hyperspectral near-infrared spectroscopy (hsNIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), the cerebral metabolic rate of oxygen ( CMRO 2 ) and the oxidation state of cytochrome-c-oxidase (oxCCO). CMRO 2 is calculated by combining tissue oxygen saturation ( S t O 2 ) with CBF, whereas oxCCO can be measured directly by hsNIRS. Although both reflect oxygen metabolism, a direct comparison has yet to be studied. Aim: We aim to investigate the relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand. Approach: A hybrid hsNIRS/DCS system was used to measure hemodynamic and metabolic responses in piglets exposed to cerebral ischemia and anesthetic-induced reductions in brain activity. Results: Although a linear relationship was observed between CMRO 2 and oxCCO during ischemia, both exhibited a nonlinear relationship with respect to CBF. In contrast, linear correlation was sufficient to characterize the relationships between CMRO 2 and CBF and between the two metabolic markers during reduced metabolic demand. Conclusions: The observed relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand indicates that the two metabolic markers are strongly correlated.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Address all correspondence to Daniel Milej,
| | - Ajay Rajaram
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Marianne Suwalski
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Laura B. Morrison
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Leena N. Shoemaker
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Western University, Department of Kinesiology, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
11
|
Rajaram A, Milej D, Suwalski M, Kebaya L, Kewin M, Yip L, de Ribaupierre S, Han V, Diop M, Bhattacharya S, St Lawrence K. Assessing cerebral blood flow, oxygenation and cytochrome c oxidase stability in preterm infants during the first 3 days after birth. Sci Rep 2022; 12:181. [PMID: 34996949 PMCID: PMC8741949 DOI: 10.1038/s41598-021-03830-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
A major concern with preterm birth is the risk of neurodevelopmental disability. Poor cerebral circulation leading to periods of hypoxia is believed to play a significant role in the etiology of preterm brain injury, with the first three days of life considered the period when the brain is most vulnerable. This study focused on monitoring cerebral perfusion and metabolism during the first 72 h after birth in preterm infants weighing less than 1500 g. Brain monitoring was performed by combining hyperspectral near-infrared spectroscopy to assess oxygen saturation and the oxidation state of cytochrome c oxidase (oxCCO), with diffuse correlation spectroscopy to monitor cerebral blood flow (CBF). In seven of eight patients, oxCCO remained independent of CBF, indicating adequate oxygen delivery despite any fluctuations in cerebral hemodynamics. In the remaining infant, a significant correlation between CBF and oxCCO was found during the monitoring periods on days 1 and 3. This infant also had the lowest baseline CBF, suggesting the impact of CBF instabilities on metabolism depends on the level of blood supply to the brain. In summary, this study demonstrated for the first time how continuous perfusion and metabolic monitoring can be achieved, opening the possibility to investigate if CBF/oxCCO monitoring could help identify preterm infants at risk of brain injury.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, Canada.
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Lilian Kebaya
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Matthew Kewin
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Lawrence Yip
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Sandrine de Ribaupierre
- Department of Medical Biophysics, Western University, London, Canada
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Victor Han
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Soume Bhattacharya
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, Canada.
| |
Collapse
|
12
|
Sudakou A, Lange F, Isler H, Lanka P, Wojtkiewicz S, Sawosz P, Ostojic D, Wolf M, Pifferi A, Tachtsidis I, Liebert A, Gerega A. Time-domain NIRS system based on supercontinuum light source and multi-wavelength detection: validation for tissue oxygenation studies. BIOMEDICAL OPTICS EXPRESS 2021; 12:6629-6650. [PMID: 34745761 PMCID: PMC8548017 DOI: 10.1364/boe.431301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 05/15/2023]
Abstract
We present and validate a multi-wavelength time-domain near-infrared spectroscopy (TD-NIRS) system that avoids switching wavelengths and instead exploits the full capability of a supercontinuum light source by emitting and acquiring signals for the whole chosen range of wavelengths. The system was designed for muscle and brain oxygenation monitoring in a clinical environment. A pulsed supercontinuum laser emits broadband light and each of two detection modules acquires the distributions of times of flight of photons (DTOFs) for 16 spectral channels (used width 12.5 nm / channel), providing a total of 32 DTOFs at up to 3 Hz. Two emitting fibers and two detection fiber bundles allow simultaneous measurements at two positions on the tissue or at two source-detector separations. Three established protocols (BIP, MEDPHOT, and nEUROPt) were used to quantitatively assess the system's performance, including linearity, coupling, accuracy, and depth sensitivity. Measurements were performed on 32 homogeneous phantoms and two inhomogeneous phantoms (solid and liquid). Furthermore, measurements on two blood-lipid phantoms with a varied amount of blood and Intralipid provide the strongest validation for accurate tissue oximetry. The retrieved hemoglobin concentrations and oxygen saturation match well with the reference values that were obtained using a commercially available NIRS system (OxiplexTS) and a blood gas analyzer (ABL90 FLEX), except a discrepancy occurs for the lowest amount of Intralipid. In-vivo measurements on the forearm of three healthy volunteers during arterial (250 mmHg) and venous (60 mmHg) cuff occlusions provide an example of tissue monitoring during the expected hemodynamic changes that follow previously well-described physiologies. All results, including quantitative parameters, can be compared to other systems that report similar tests. Overall, the presented TD-NIRS system has an exemplary performance evaluated with state-of-the-art performance assessment methods.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Helene Isler
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pranav Lanka
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | | | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Daniel Ostojic
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Wolf
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| |
Collapse
|