1
|
Mani S, Lalani SR, Pammi M. Genomics and multiomics in the age of precision medicine. Pediatr Res 2025:10.1038/s41390-025-04021-0. [PMID: 40185865 DOI: 10.1038/s41390-025-04021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
Precision medicine is a transformative healthcare model that utilizes an understanding of a person's genome, environment, lifestyle, and interplay to deliver customized healthcare. Precision medicine has the potential to improve the health and productivity of the population, enhance patient trust and satisfaction in healthcare, and accrue health cost-benefits both at an individual and population level. Through faster and cost-effective genomics data, next-generation sequencing has provided us the impetus to understand the nuances of complex interactions between genes, diet, and lifestyle that are heterogeneous across the population. The emergence of multiomics technologies, including transcriptomics, proteomics, epigenomics, metabolomics, and microbiomics, has enhanced the knowledge necessary for maximizing the applicability of genomics data for better health outcomes. Integrative multiomics, the combination of multiple 'omics' data layered over each other, including the interconnections and interactions between them, helps us understand human health and disease better than any of them separately. Integration of these multiomics data is possible today with the phenomenal advancements in bioinformatics, data sciences, and artificial intelligence. Our review presents a broad perspective on the utility and feasibility of a genomics-first approach layered with other omics data, offering a practical model for adopting an integrated multiomics approach in pediatric health care and research. IMPACT: Precision medicine provides a paradigm shift from a conventional, reactive disease control approach to proactive disease prevention and health preservation. Phenomenal advancements in bioinformatics, data sciences, and artificial intelligence have made integrative multiomics feasible and help us understand human health and disease better than any of them separately. The genotype-first approach or reverse phenotyping has the potential to overcome the limitations of the phenotype-first approach by identifying new genotype-phenotype associations, enhancing the subclassification of diseases by widening the phenotypic spectrum of genetic variants, and understanding functional mechanisms of genetic variations.
Collapse
Affiliation(s)
- Srinivasan Mani
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA.
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mohan Pammi
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
2
|
Kansal R. Rapid Whole-Genome Sequencing in Critically Ill Infants and Children with Suspected, Undiagnosed Genetic Diseases: Evolution to a First-Tier Clinical Laboratory Test in the Era of Precision Medicine. CHILDREN (BASEL, SWITZERLAND) 2025; 12:429. [PMID: 40310077 PMCID: PMC12025730 DOI: 10.3390/children12040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
The completion of the Human Genome Project in 2003 has led to significant advances in patient care in medicine, particularly in diagnosing and managing genetic diseases and cancer. In the realm of genetic diseases, approximately 15% of critically ill infants born in the U.S.A. are diagnosed with genetic disorders, which comprise a significant cause of mortality in neonatal and pediatric intensive care units. The introduction of rapid whole-genome sequencing (rWGS) as a first-tier test in critically ill children with suspected, undiagnosed genetic diseases is a breakthrough in the diagnosis and subsequent clinical management of such infants and older children in intensive care units. Rapid genome sequencing is currently being used clinically in the USA, the UK, the Netherlands, Sweden, and Australia, among other countries. This review is intended for students and clinical practitioners, including non-experts in genetics, for whom it provides a historical background and a chronological review of the relevant published literature for the progression of pediatric diagnostic genomic sequencing leading to the development of pediatric rWGS in critically ill infants and older children with suspected but undiagnosed genetic diseases. Factors that will help to develop rWGS as a clinical test in critically ill infants and the limitations are briefly discussed, including an evaluation of the clinical utility and accessibility of genetic testing, education for parents and providers, cost-effectiveness, ethical challenges, consent issues, secondary findings, data privacy concerns, false-positive and false-negative results, challenges in variant interpretation, costs and reimbursement, the limited availability of genetic counselors, and the development of evidence-based guidelines, which would all need to be addressed to facilitate the implementation of pediatric genomic sequencing in an effective widespread manner in the era of precision medicine.
Collapse
Affiliation(s)
- Rina Kansal
- Molecular Oncology and Genetics, Diagnostic Laboratories, Versiti Blood Center of Wisconsin, Milwaukee, WI 53233, USA;
- Department of Pathology and Anatomical Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Jenkins SM, Palmquist R, Shayota BJ, Solorzano CM, Bonkowsky JL, Estabrooks P, Tristani-Firouzi M. Breaking barriers: fostering equitable access to pediatric genomics through innovative care models and technologies. Pediatr Res 2025:10.1038/s41390-025-03859-8. [PMID: 39821137 DOI: 10.1038/s41390-025-03859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
The integration of genomic medicine into pediatric clinical practice is a critical need that remains largely unmet, especially in socioeconomically challenged and rural areas where healthcare disparities are most pronounced. This review seeks to summarize the barriers responsible for delayed diagnosis and treatment, and examines diverse care models, technological innovations, and strategies for dissemination and implementation aimed at addressing the evolving genomic needs of pediatric populations. Through a comprehensive review of the literature, we explore proposed methodologies to bridge this gap in pediatric healthcare, with a specific emphasis on understanding and speeding implementation approaches and technologies to mitigate disparities in underserved populations, including rural and marginalized communities. There are both external and internal factors to consider in demographic and social determinants when evaluating patient access. To address these barriers, potential solutions include telegenetic services, alternative care delivery models, pediatric subspecialist expansion, and non-genetic provider education. By improving access to pediatric genomic services, therapeutic interventions will also be more available to all pediatric patients. IMPACT STATEMENT: Genomic testing has clinical utility in pediatric populations but access for people from diverse demographic and social-economic groups is problematic. Understanding barriers responsible for delayed genetic diagnosis and treatment in pediatric populations will improve reach, adoption, implementation, and maintenance of genomic medicine in pediatric healthcare context. Innovative care models, adaptation of appropriate technologies, and strategies aimed at addressing pediatric genomic needs are needed.
Collapse
Affiliation(s)
- Sabrina Malone Jenkins
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brian J Shayota
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chelsea M Solorzano
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
- Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Paul Estabrooks
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, USA
| | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Mowery A, Wong B, Seale J, Brunelli L. Exploring the Role of Genetic Testing in Decisions to Redirect Care in Critically Ill Infants. Am J Hosp Palliat Care 2024:10499091241296544. [PMID: 39487806 DOI: 10.1177/10499091241296544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVE Genetic disorders are a major determinant of morbidity and mortality within neonatal intensive care units (NICUs). Studies have found genetic testing in critically ill infants may lead to changes in clinical decisions such as pursuing end of life care. This study surveyed palliative care providers to explore the influence of genetic testing on decisions to redirect care in critically ill infants. METHODS This study was conducted retrospectively on cases who were admitted to the Level IV NICU at Primary Children's Hospital, underwent redirection to end of life care, and whose death date was between 2019-2023. A review of the case's electronic medical record was performed to construct a clinical case summary. The clinical summary and questionnaire were sent to the case's palliative care provider. RESULTS Fifty-six cases were included in this study and 73% had genetic testing completed. Our results suggest the information from genetic testing played a relatively minor role in the decision to redirect care for cases with negative or uncertain genetic testing and positive genetic testing results, although the influence appeared higher in the latter group. CONCLUSION Our results suggest the assumptions of several studies that genetic testing is responsible for changes in clinical management and cost savings, especially in cases of redirection of care may have been overestimated. Our results fill a critical gap in current literature and demonstrate the need for further investigation to clarify the direct role of genetic testing in clinical decisions in the NICU, especially related to redirection of care.
Collapse
Affiliation(s)
- Ashley Mowery
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Bob Wong
- College of Nursing, University of Utah, Salt Lake City, UT, USA
| | - Jamie Seale
- Primary Children's Hospital, Salt Lake City, UT, USA
| | - Luca Brunelli
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- Primary Children's Hospital, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Tasker RC. Editor's Choice Articles for August. Pediatr Crit Care Med 2024; 25:685-688. [PMID: 40315156 DOI: 10.1097/pcc.0000000000003568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Affiliation(s)
- Robert C Tasker
- orcid.org/0000-0003-3647-8113
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA
- Selwyn College, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
6
|
Rodriguez KM, Vaught J, Salz L, Foley J, Boulil Z, Van Dongen-Trimmer HM, Whalen D, Oluchukwu O, Liu KC, Burton J, Syngal P, Vargas-Shiraishi O, Kingsmore SF, Kobayashi ES, Coufal NG. Rapid Whole-Genome Sequencing and Clinical Management in the PICU: A Multicenter Cohort, 2016-2023. Pediatr Crit Care Med 2024; 25:699-709. [PMID: 38668387 PMCID: PMC11300160 DOI: 10.1097/pcc.0000000000003522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
OBJECTIVES Analysis of the clinical utility of rapid whole-genome sequencing (rWGS) outside of the neonatal period is lacking. We describe the use of rWGS in PICU and cardiovascular ICU (CICU) patients across four institutions. DESIGN Ambidirectional multisite cohort study. SETTING Four tertiary children's hospitals. PATIENTS Children 0-18 years old in the PICU or CICU who underwent rWGS analysis, from May 2016 to June 2023. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A total of 133 patients underwent clinical, phenotype-driven rWGS analysis, 36 prospectively. A molecular diagnosis was identified in 79 patients (59%). Median (interquartile range [IQR]) age was 6 months (IQR 1.2 mo-4.6 yr). Median time for return of preliminary results was 3 days (IQR 2-4). In 79 patients with a molecular diagnosis, there was a change in ICU management in 19 patients (24%); and some change in clinical management in 63 patients (80%). Nondiagnosis changed management in 5 of 54 patients (9%). The clinical specialty ordering rWGS did not affect diagnostic rate. Factors associated with greater odds ratio (OR [95% CI]; OR [95% CI]) of diagnosis included dysmorphic features (OR 10.9 [95% CI, 1.8-105]) and congenital heart disease (OR 4.2 [95% CI, 1.3-16.8]). Variables associated with greater odds of changes in management included obtaining a genetic diagnosis (OR 16.6 [95% CI, 5.5-62]) and a shorter time to genetic result (OR 0.8 [95% CI, 0.76-0.9]). Surveys of pediatric intensivists indicated that rWGS-enhanced clinical prognostication ( p < 0.0001) and contributed to a decision to consult palliative care ( p < 0.02). CONCLUSIONS In this 2016-2023 multiple-PICU/CICU cohort, we have shown that timely genetic diagnosis is feasible across institutions. Application of rWGS had a 59% (95% CI, 51-67%) rate of diagnostic yield and was associated with changes in critical care management and long-term patient management.
Collapse
Affiliation(s)
- Katherine M. Rodriguez
- Rady Children’s Hospital, San Diego, CA
- Department of Pediatrics, University of California, San Diego
- Rady Children’s Institute for Genomic Medicine, San Diego, CA
| | - Jordan Vaught
- Rady Children’s Hospital, San Diego, CA
- Department of Pediatrics, University of California, San Diego
| | - Lisa Salz
- Rady Children’s Institute for Genomic Medicine, San Diego, CA
| | | | | | | | | | - Okonkwo Oluchukwu
- OSF Children’s Hospital of Illinois, Peoria, IL
- University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Kuang Chuen Liu
- University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Jennifer Burton
- OSF Children’s Hospital of Illinois, Peoria, IL
- University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Prachi Syngal
- OSF Children’s Hospital of Illinois, Peoria, IL
- University of Illinois College of Medicine at Peoria, Peoria, IL
| | | | | | - Erica Sanford Kobayashi
- Rady Children’s Institute for Genomic Medicine, San Diego, CA
- Cedars-Sinai Medical Center, Department of Pediatrics, Los Angeles, CA
- Children’s Hospital of Orange County, Orange, CA
| | - Nicole G. Coufal
- Rady Children’s Hospital, San Diego, CA
- Department of Pediatrics, University of California, San Diego
- Rady Children’s Institute for Genomic Medicine, San Diego, CA
| |
Collapse
|
7
|
Guner Yilmaz B, Akgun-Dogan O, Ozdemir O, Yuksel B, Hatirnaz Ng O, Bilguvar K, Ay B, Ozkose GS, Aydin E, Yigit A, Bulut A, Esen FN, Beken S, Aktas S, Demirel A, Arcagok BC, Kazanci E, Bingol İ, Umur O, Sik G, Isik U, Ersoy M, Korkmaz A, Citak A, Mardinoglu A, Ozbek U, Alanay Y. Rapid genome sequencing for critically ill infants: an inaugural pilot study from Turkey. Front Pediatr 2024; 12:1412880. [PMID: 39026936 PMCID: PMC11254770 DOI: 10.3389/fped.2024.1412880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Rare and ultra-rare genetic conditions significantly contribute to infant morbidity and mortality, often presenting with atypical features and genetic heterogeneity that complicate management. Rapid genome sequencing (RGS) offers a timely and cost-effective approach to diagnosis, aiding in early clinical management and reducing unnecessary interventions. This pilot study represents the inaugural use of next-generation sequencing (NGS) as a diagnostic instrument for critically ill neonatal and pediatric ICU patients in a Turkish hospital setting. Methods Ten infants were enrolled based on predefined inclusion criteria, and trio RGS was performed. The mean age of the participants was 124 days, with congenital abnormalities being the most common indication for testing. Three patients had consanguineous parents. The mean turnaround time from enrollment to delivery of results was 169 h, with a diagnostic yield of 50%. Results Three patients received a definitive molecular diagnosis, impacting their clinical management. Two patients benefited from the exclusion of Mendelian conditions, leading to alternative diagnoses. Discussion This study demonstrates the feasibility and results of RGS in Turkish hospital settings, emphasizing the importance of timely genetic diagnosis in reducing the diagnostic odyssey for families and improving patient care. Further research is needed to evaluate the cost-effectiveness and applicability of RGS in the Turkish healthcare system for children with diseases of uncertain etiology.
Collapse
Affiliation(s)
- Bengisu Guner Yilmaz
- Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozlem Akgun-Dogan
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Transitional Medicine, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozkan Ozdemir
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Division of Medical Biology, Department of Basic Sciences, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Bayram Yuksel
- Genetic Diagnosis Center, SZA OMICS, Istanbul, Turkey
| | - Ozden Hatirnaz Ng
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Division of Medical Biology, Department of Basic Sciences, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Kaya Bilguvar
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Beril Ay
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Gulsah Sebnem Ozkose
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eylul Aydin
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ayca Yigit
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aybike Bulut
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Serdar Beken
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Selma Aktas
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Atalay Demirel
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Baran Cengiz Arcagok
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ebru Kazanci
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İbrahim Bingol
- Division of Intensive Care, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozge Umur
- Division of Intensive Care, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Guntulu Sik
- Division of Intensive Care, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ugur Isik
- Division of Neurology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Melike Ersoy
- Division of Pediatric Metabolism, Department of Pediatrics, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training and Research, Istanbul, Turkey
| | - Ayse Korkmaz
- Division of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Agop Citak
- Division of Intensive Care, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Adil Mardinoglu
- Genetic Diagnosis Center, SZA OMICS, Istanbul, Turkey
- Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Ugur Ozbek
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
8
|
Migliavacca MP, Sobreira J, Bermeo D, Gomes M, Alencar D, Sussuchi L, Souza CA, Silva JS, Kroll JE, Burger M, Guarischi-Sousa R, Villela D, Yamamoto GL, Milanezi F, Horigoshi N, Cesar RG, de Carvalho WB, Honjo RS, Bertola DR, Kim CA, de Souza L, Procianoy RS, Silveria RC, Rosenberg C, Giugliani R, Campana GA, Scapulatempo-Neto C, Sobreira N. Whole genome sequencing as a first-tier diagnostic test for infants in neonatal intensive care units: A pilot study in Brazil. Am J Med Genet A 2024; 194:e63544. [PMID: 38258498 DOI: 10.1002/ajmg.a.63544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
In this pilot study, we aimed to evaluate the feasibility of whole genome sequencing (WGS) as a first-tier diagnostic test for infants hospitalized in neonatal intensive care units in the Brazilian healthcare system. The cohort presented here results from a joint collaboration between private and public hospitals in Brazil considering the initiative of a clinical laboratory to provide timely diagnosis for critically ill infants. We performed trio (proband and parents) WGS in 21 infants suspected of a genetic disease with an urgent need for diagnosis to guide medical care. Overall, the primary indication for genetic testing was dysmorphic syndromes (n = 14, 67%) followed by inborn errors of metabolism (n = 6, 29%) and skeletal dysplasias (n = 1, 5%). The diagnostic yield in our cohort was 57% (12/21) based on cases that received a definitive or likely definitive diagnostic result from WGS analysis. A total of 16 pathogenic/likely pathogenic variants and 10 variants of unknown significance were detected, and in most cases inherited from an unaffected parent. In addition, the reported variants were of different types, but mainly missense (58%) and associated with autosomal diseases (19/26); only three were associated with X-linked diseases, detected in hemizygosity in the proband an inherited from an unaffected mother. Notably, we identified 10 novel variants, absent from public genomic databases, in our cohort. Considering the entire diagnostic process, the average turnaround time from enrollment to medical report in our study was 53 days. Our findings demonstrate the remarkable utility of WGS as a diagnostic tool, elevating the potential of transformative impact since it outperforms conventional genetic tests. Here, we address the main challenges associated with implementing WGS in the medical care system in Brazil, as well as discuss the potential benefits and limitations of WGS as a diagnostic tool in the neonatal care setting.
Collapse
Affiliation(s)
| | - Joselito Sobreira
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
- Hospital Infantil Sabará, São Paulo, Brazil
| | - Diana Bermeo
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | - Dayse Alencar
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Guilherme L Yamamoto
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
- Instituto da Criança, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | - Rachel Sayuri Honjo
- Instituto da Criança, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | | | - Chong Ae Kim
- Instituto da Criança, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Lucian de Souza
- Hospital das Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Rita C Silveria
- Hospital das Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Roberto Giugliani
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
- Hospital das Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | | | - Nara Sobreira
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Linga BG, Mohammed SGAA, Farrell T, Rifai HA, Al-Dewik N, Qoronfleh MW. Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach. Cancers (Basel) 2024; 16:2017. [PMID: 38893137 PMCID: PMC11171256 DOI: 10.3390/cancers16112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
As next-generation sequencing (NGS) has become more widely used, germline and rare genetic variations responsible for inherited illnesses, including cancer predisposition syndromes (CPSs) that account for up to 10% of childhood malignancies, have been found. The CPSs are a group of germline genetic disorders that have been identified as risk factors for pediatric cancer development. Excluding a few "classic" CPSs, there is no agreement regarding when and how to conduct germline genetic diagnostic studies in children with cancer due to the constant evolution of knowledge in NGS technologies. Various clinical screening tools have been suggested to aid in the identification of individuals who are at greater risk, using diverse strategies and with varied outcomes. We present here an overview of the primary clinical and molecular characteristics of various CPSs and summarize the existing clinical genomics data on the prevalence of CPSs in pediatric cancer patients. Additionally, we discuss several ethical issues, challenges, limitations, cost-effectiveness, and integration of genomic newborn screening for CPSs into a healthcare system. Furthermore, we assess the effectiveness of commonly utilized decision-support tools in identifying patients who may benefit from genetic counseling and/or direct genetic testing. This investigation highlights a tailored and systematic approach utilizing medical newborn screening tools such as the genome sequencing of high-risk newborns for CPSs, which could be a practical and cost-effective strategy in pediatric cancer care.
Collapse
Affiliation(s)
- BalaSubramani Gattu Linga
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | | | - Thomas Farrell
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
| | - Hilal Al Rifai
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | - Nader Al-Dewik
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha 0974, Qatar
- Faculty of Health and Social Care Sciences, Kingston University and St George’s University of London, Kingston upon Thames, Surrey, London KT1 2EE, UK
| | - M. Walid Qoronfleh
- Healthcare Research & Policy Division, Q3 Research Institute (QRI), Ann Arbor, MI 48197, USA
| |
Collapse
|
10
|
Sloper E, Jezkova J, Thomas J, Dawson K, Halstead J, Gardner J, Burke K, Oruganti S, Calvert J, Evans J, Anderson S, Corrin S, Pottinger C, Murch O. Wales Infants' and childreN's Genome Service (WINGS): providing rapid genetic diagnoses for unwell children. Arch Dis Child 2024; 109:409-413. [PMID: 38320813 DOI: 10.1136/archdischild-2023-326579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION This study reviews the first 3 years of delivery of the first National Health Service (NHS)-commissioned trio rapid whole genome sequencing (rWGS) service for acutely unwell infants and children in Wales. METHODS Demographic and phenotypic data were prospectively collected as patients and their families were enrolled in the Wales Infants' and childreN's Genome Service (WINGS). These data were reviewed alongside trio rWGS results. RESULTS From April 2020 to March 2023, 82 families underwent WINGS, with a diagnostic yield of 34.1%. The highest diagnostic yields were noted in skeletal dysplasias, neurological or metabolic phenotypes. Mean time to reporting was 9 days. CONCLUSION This study demonstrates that trio rWGS is having a positive impact on the care of acutely unwell infants and children in an NHS setting. In particular, the study shows that rWGS can be applied in an NHS setting, achieving a diagnostic yield comparable with the previously published diagnostic yields achieved in research settings, while also helping to improve patient care and management.
Collapse
Affiliation(s)
- Emily Sloper
- All Wales Medical Genomics Service, University Hospital of Wales Healthcare NHS Trust, Cardiff, UK
| | - Jana Jezkova
- All Wales Medical Genomics Service, University Hospital of Wales Healthcare NHS Trust, Cardiff, UK
| | - Joanne Thomas
- Faculty of Life Science and Education, University of South Wales, Pontypridd, UK
| | | | - Joseph Halstead
- All Wales Medical Genomics Service, University Hospital of Wales Healthcare NHS Trust, Cardiff, UK
| | - Jennifer Gardner
- All Wales Medical Genomics Service, University Hospital of Wales Healthcare NHS Trust, Cardiff, UK
| | - Katherine Burke
- Neonatal Intensive Care Unit, Singleton Hospital, Swansea, UK
| | - Sivakumar Oruganti
- Paediatric Critical Care Unit, Noah's Ark Children's Hospital for Wales, Cardiff, UK
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Jennifer Calvert
- Neonatal Intensive Care Unit, University Hospital of Wales Healthcare NHS Trust, Cardiff, UK
| | - Jennifer Evans
- Child Health, Children's Hospital for Wales, Cardiff, UK
| | - Sarah Anderson
- All Wales Medical Genomics Service, University Hospital of Wales Healthcare NHS Trust, Cardiff, UK
| | - Sian Corrin
- All Wales Medical Genomics Service, University Hospital of Wales Healthcare NHS Trust, Cardiff, UK
| | - Caroline Pottinger
- All Wales Medical Genomics Service, University Hospital of Wales Healthcare NHS Trust, Cardiff, UK
| | - Oliver Murch
- All Wales Medical Genomics Service, University Hospital of Wales Healthcare NHS Trust, Cardiff, UK
| |
Collapse
|
11
|
Schildt A, Stevenson DA, Yu L, Anguiano B, Suarez CJ. Time to diagnosis in rapid exome/genome sequencing in the clinical inpatient setting. Am J Med Genet A 2024; 194:e63483. [PMID: 38017634 DOI: 10.1002/ajmg.a.63483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Exome and genome sequencing are clinically available, with many laboratories offering expedited testing (e.g., "rapid" and "ultra-rapid"). With the increase in uptake of expedited testing, there is a need for the development of inpatient protocols for best practices based on real-life data. A retrospective 2-year review (October 2019-November 2021) of the utilization of rapid exome and genome sequencing for inpatient cases at a tertiary care center using a utilization management tracking database with subsequent chart review was performed. Thirty-three expedited "rapid/priority" exome/genome tests were performed clinically. The average total turnaround time (TAT) was 17.88 days (5-43 days) with an average TAT of 13.97 days (3-41 days) for the performing laboratory. There were 5 positive diagnostic results (15.2%), 3 likely positive diagnostic results (9%), 2 noncontributory results (6%), and 26 nondiagnostic results (69.7%). Real-life data suggest that there is an approximately 3.91-day lag in getting samples to the performing laboratory. Although laboratories may advertise their expected TAT, a number of factors can potentially impact the actual time from test order placement to communication of the results for clinical use. Understanding the points of delay will enable the development of internal protocols and policies to improve time to diagnosis.
Collapse
Affiliation(s)
- Alison Schildt
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Palo Alto, California, USA
| | - David A Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Palo Alto, California, USA
| | - Linbo Yu
- Genetic Testing Optimization Service, Stanford Hospitals and Clinics, Palo Alto, California, USA
| | - Beatriz Anguiano
- Genetic Testing Optimization Service, Stanford Hospitals and Clinics, Palo Alto, California, USA
| | - Carlos J Suarez
- Department of Pathology, Stanford University, Palo Alto, California, USA
| |
Collapse
|
12
|
Kingsmore SF, Nofsinger R, Ellsworth K. Rapid genomic sequencing for genetic disease diagnosis and therapy in intensive care units: a review. NPJ Genom Med 2024; 9:17. [PMID: 38413639 PMCID: PMC10899612 DOI: 10.1038/s41525-024-00404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Single locus (Mendelian) diseases are a leading cause of childhood hospitalization, intensive care unit (ICU) admission, mortality, and healthcare cost. Rapid genome sequencing (RGS), ultra-rapid genome sequencing (URGS), and rapid exome sequencing (RES) are diagnostic tests for genetic diseases for ICU patients. In 44 studies of children in ICUs with diseases of unknown etiology, 37% received a genetic diagnosis, 26% had consequent changes in management, and net healthcare costs were reduced by $14,265 per child tested by URGS, RGS, or RES. URGS outperformed RGS and RES with faster time to diagnosis, and higher rate of diagnosis and clinical utility. Diagnostic and clinical outcomes will improve as methods evolve, costs decrease, and testing is implemented within precision medicine delivery systems attuned to ICU needs. URGS, RGS, and RES are currently performed in <5% of the ~200,000 children likely to benefit annually due to lack of payor coverage, inadequate reimbursement, hospital policies, hospitalist unfamiliarity, under-recognition of possible genetic diseases, and current formatting as tests rather than as a rapid precision medicine delivery system. The gap between actual and optimal outcomes in children in ICUs is currently increasing since expanded use of URGS, RGS, and RES lags growth in those likely to benefit through new therapies. There is sufficient evidence to conclude that URGS, RGS, or RES should be considered in all children with diseases of uncertain etiology at ICU admission. Minimally, diagnostic URGS, RGS, or RES should be ordered early during admissions of critically ill infants and children with suspected genetic diseases.
Collapse
Affiliation(s)
- Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, USA.
| | - Russell Nofsinger
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, USA
| | - Kasia Ellsworth
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, USA
| |
Collapse
|
13
|
Thompson L, Larson A, Salz L, Veith R, Tsai JP, Jayakar A, Chapman R, Gupta A, Kingsmore SF, Dimmock D, Bedrick A, Galindo MK, Casas K, Mohamed M, Straight L, Khan MA, Salyakina D. Multi-center implementation of rapid whole genome sequencing provides additional evidence of its utility in the pediatric inpatient setting. Front Pediatr 2024; 12:1349519. [PMID: 38440187 PMCID: PMC10909823 DOI: 10.3389/fped.2024.1349519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Objective Multi-center implementation of rapid whole genome sequencing with assessment of the clinical utility of rapid whole genome sequencing (rWGS), including positive, negative and uncertain results, in admitted infants with a suspected genetic disease. Study design rWGS tests were ordered at eight hospitals between November 2017 and April 2020. Investigators completed a survey of demographic data, Human Phenotype Ontology (HPO) terms, test results and impacts of results on clinical care. Results A total of 188 patients, on general hospital floors and intensive care unit (ICU) settings, underwent rWGS testing. Racial and ethnic characteristics of the tested infants were broadly representative of births in the country at large. 35% of infants received a diagnostic result in a median of 6 days. The most common HPO terms for tested infants indicated an abnormality of the nervous system, followed by the cardiovascular system, the digestive system, the respiratory system and the head and neck. Providers indicated a major change in clinical management because of rWGS for 32% of infants tested overall and 70% of those with a diagnostic result. Also, 7% of infants with a negative rWGS result and 23% with a variant of unknown significance (VUS) had a major change in management due to testing. Conclusions Our study demonstrates that the implementation of rWGS is feasible across diverse institutions, and provides additional evidence to support the clinical utility of rWGS in a demographically representative sample of admitted infants and includes assessment of the clinical impact of uncertain rWGS results in addition to both positive and negative results.
Collapse
Affiliation(s)
- Lauren Thompson
- Division of Genetics and Metabolism, Nicklaus Children’s Hospital, Miami, FL, United States
| | - Austin Larson
- Department of Pediatrics, Children’s Hospital Colorado, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lisa Salz
- RCIGM, Rady Children’s Hospital San Diego, San Diego, CA, United States
| | - Regan Veith
- Genomic Medicine, Children’s Minnesota, Minneapolis, MN, United States
| | - John-Paul Tsai
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Anuj Jayakar
- Division of Genetics and Metabolism, Nicklaus Children’s Hospital, Miami, FL, United States
| | - Rachel Chapman
- Fetal & Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, USC Keck School of Medicine, Los Angeles, CA, United States
| | - Apeksha Gupta
- Division of Genetics and Metabolism, Nicklaus Children’s Hospital, Miami, FL, United States
| | | | - David Dimmock
- RCIGM, Rady Children’s Hospital San Diego, San Diego, CA, United States
| | - Alan Bedrick
- Department of Pediatrics, Banner Diamond Children’s Medical Center, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Maureen Kelly Galindo
- Department of Pediatrics, Banner Diamond Children’s Medical Center, Tucson, AZ, United States
| | - Kari Casas
- Department of Pediatrics, Sanford Children’s Fargo, Fargo, SD, United States
| | - Mohamed Mohamed
- Department of Pediatrics, Sanford Children’s Fargo, Fargo, SD, United States
| | - Lisa Straight
- Department of Pediatrics, Sanford Children’s Sioux Falls, Sioux Falls, SD, United States
| | - M. Akram Khan
- Department of Pediatrics, Sanford Children’s Sioux Falls, Sioux Falls, SD, United States
| | - Daria Salyakina
- Division of Genetics and Metabolism, Nicklaus Children’s Hospital, Miami, FL, United States
| |
Collapse
|
14
|
Bagger FO, Borgwardt L, Jespersen AS, Hansen AR, Bertelsen B, Kodama M, Nielsen FC. Whole genome sequencing in clinical practice. BMC Med Genomics 2024; 17:39. [PMID: 38287327 PMCID: PMC10823711 DOI: 10.1186/s12920-024-01795-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
Whole genome sequencing (WGS) is becoming the preferred method for molecular genetic diagnosis of rare and unknown diseases and for identification of actionable cancer drivers. Compared to other molecular genetic methods, WGS captures most genomic variation and eliminates the need for sequential genetic testing. Whereas, the laboratory requirements are similar to conventional molecular genetics, the amount of data is large and WGS requires a comprehensive computational and storage infrastructure in order to facilitate data processing within a clinically relevant timeframe. The output of a single WGS analyses is roughly 5 MIO variants and data interpretation involves specialized staff collaborating with the clinical specialists in order to provide standard of care reports. Although the field is continuously refining the standards for variant classification, there are still unresolved issues associated with the clinical application. The review provides an overview of WGS in clinical practice - describing the technology and current applications as well as challenges connected with data processing, interpretation and clinical reporting.
Collapse
Affiliation(s)
- Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Line Borgwardt
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Sand Jespersen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Reimer Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Miyako Kodama
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Kim S, Pistawka C, Langlois S, Osiovich H, Virani A, Kitchin V, Elliott AM. Genetic counselling considerations with genetic/genomic testing in Neonatal and Pediatric Intensive Care Units: A scoping review. Clin Genet 2024; 105:13-33. [PMID: 37927209 DOI: 10.1111/cge.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
Genetic and genomic technologies can effectively diagnose numerous genetic disorders. Patients benefit when genetic counselling accompanies genetic testing and international guidelines recommend pre- and post-test genetic counselling with genome-wide sequencing. However, there is a gap in knowledge regarding the unique genetic counselling considerations with different types of genetic testing in the Neonatal Intensive Care Unit (NICU) and the Pediatric Intensive Care Unit (PICU). This scoping review was conducted to identify the gaps in care with respect to genetic counselling for infants/pediatric patients undergoing genetic and genomic testing in NICUs and PICUs and understand areas in need of improvement in order to optimize clinical care for patients, caregivers, and healthcare providers. Five databases (MEDLINE [Ovid], Embase [Ovid], PsycINFO [Ebsco], CENTRAL [Ovid], and CINHAL [Ebsco]) and grey literature were searched. A total of 170 studies were included and used for data extraction and analysis. This scoping review includes descriptive analysis, followed by a narrative account of the extracted data. Results were divided into three groups: pre-test, post-test, and comprehensive (both pre- and post-test) genetic counselling considerations based on indication for testing. More studies were conducted in the NICU than the PICU. Comprehensive genetic counselling was discussed in only 31% of all the included studies demonstrating the need for both pre-test and post-test genetic counselling for different clinical indications in addition to the need to account for different cultural aspects based on ethnicity and geographic factors.
Collapse
Affiliation(s)
- Sunu Kim
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carly Pistawka
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sylvie Langlois
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Women's Health Research Institute, Vancouver, British Columbia, Canada
| | - Horacio Osiovich
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Women's Health Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Virani
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Ethics Service, Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Vanessa Kitchin
- Woodward Library, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison M Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Women's Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Solomon BD. The future of commercial genetic testing. Curr Opin Pediatr 2023; 35:615-619. [PMID: 37218641 PMCID: PMC10667560 DOI: 10.1097/mop.0000000000001260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
PURPOSE OF REVIEW There are thousands of different clinical genetic tests currently available. Genetic testing and its applications continue to change rapidly for multiple reasons. These reasons include technological advances, accruing evidence about the impact and effects of testing, and many complex financial and regulatory factors. RECENT FINDINGS This article considers a number of key issues and axes related to the current and future state of clinical genetic testing, including targeted versus broad testing, simple/Mendelian versus polygenic and multifactorial testing models, genetic testing for individuals with high suspicion of genetic conditions versus ascertainment through population screening, the rise of artificial intelligence in multiple aspects of the genetic testing process, and how developments such as rapid genetic testing and the growing availability of new therapies for genetic conditions may affect the field. SUMMARY Genetic testing is expanding and evolving, including into new clinical applications. Developments in the field of genetics will likely result in genetic testing becoming increasingly in the purview of a very broad range of clinicians, including general paediatricians as well as paediatric subspecialists.
Collapse
Affiliation(s)
- Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, United States of America
| |
Collapse
|
17
|
Marasa M, Ahram DF, Rehman AU, Mitrotti A, Abhyankar A, Jain NG, Weng PL, Piva SE, Fernandez HE, Uy NS, Chatterjee D, Kil BH, Nestor JG, Felice V, Robinson D, Whyte D, Gharavi AG, Appel GB, Radhakrishnan J, Santoriello D, Bomback A, Lin F, D’Agati VD, Jobanputra V, Sanna-Cherchi S. Implementation and Feasibility of Clinical Genome Sequencing Embedded Into the Outpatient Nephrology Care for Patients With Proteinuric Kidney Disease. Kidney Int Rep 2023; 8:1638-1647. [PMID: 37547535 PMCID: PMC10403677 DOI: 10.1016/j.ekir.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction The diagnosis and management of proteinuric kidney diseases such as focal segmental glomerulosclerosis (FSGS) are challenging. Genetics holds the promise to improve clinical decision making for these diseases; however, it is often performed too late to enable timely clinical action and it is not implemented within routine outpatient nephrology visits. Methods We sought to test the implementation and feasibility of clinical rapid genome sequencing (GS) in guiding decision making in patients with proteinuric kidney disease in real-time and embedded in the outpatient nephrology setting. Results We enrolled 10 children or young adults with biopsy-proven FSGS (9 cases) or minimal change disease (1 case). The mean age at enrollment was 16.2 years (range 2-30). The workflow did not require referral to external genetics clinics but was conducted entirely during the nephrology standard-of-care appointments. The total turn-around-time from enrollment to return-of-results and clinical decision averaged 21.8 days (12.4 for GS), which is well within a time frame that allows clinically relevant treatment decisions. A monogenic or APOL1-related form of kidney disease was diagnosed in 5 of 10 patients. The genetic findings resulted in a rectified diagnosis in 6 patients. Both positive and negative GS findings determined a change in pharmacological treatment. In 3 patients, the results were instrumental for transplant evaluation, donor selection, and the immunosuppressive treatment. All patients and families received genetic counseling. Conclusion Clinical GS is feasible and can be implemented in real-time in the outpatient care to help guiding clinical management. Additional studies are needed to confirm the cost-effectiveness and broader utility of clinical GS across the phenotypic and demographic spectrum of kidney diseases.
Collapse
Affiliation(s)
- Maddalena Marasa
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Dina F. Ahram
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | | | - Adele Mitrotti
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | | | - Namrata G. Jain
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, USA
| | - Patricia L. Weng
- Division of Pediatric Nephrology, Department of Pediatrics, UCLA Medical Center and UCLA Medical Center-Santa Monica, Los Angeles, California, USA
| | - Stacy E. Piva
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Hilda E. Fernandez
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Natalie S. Uy
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, USA
| | - Debanjana Chatterjee
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Byum H. Kil
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Jordan G. Nestor
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | | | | | - Dilys Whyte
- Pediatric Specialty Center of Good Samaritan Hospital Medical Center, Babylon, New York, USA
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Gerald B. Appel
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Jai Radhakrishnan
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Dominick Santoriello
- Department of Pathology and Cell Biology, Renal Pathology Division, Columbia University Medical Center, New York, USA
| | - Andrew Bomback
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| | - Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, USA
| | - Vivette D. D’Agati
- Department of Pathology and Cell Biology, Renal Pathology Division, Columbia University Medical Center, New York, USA
| | - Vaidehi Jobanputra
- The New York Genome Center, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA
| |
Collapse
|
18
|
Balciuniene J, Liu R, Bean L, Guo F, Nallamilli BRR, Guruju N, Chen-Deutsch X, Yousaf R, Fura K, Chin E, Mathur A, Ma Z, Carmichael J, da Silva C, Collins C, Hegde M. At-Risk Genomic Findings for Pediatric-Onset Disorders From Genome Sequencing vs Medically Actionable Gene Panel in Proactive Screening of Newborns and Children. JAMA Netw Open 2023; 6:e2326445. [PMID: 37523181 PMCID: PMC10391308 DOI: 10.1001/jamanetworkopen.2023.26445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Importance Although the clinical utility of genome sequencing for critically ill children is well recognized, its utility for proactive pediatric screening is not well explored. Objective To evaluate molecular findings from screening ostensibly healthy children with genome sequencing compared with a gene panel for medically actionable pediatric conditions. Design, Setting, and Participants This case series study was conducted among consecutive, apparently healthy children undergoing proactive genetic screening for pediatric disorders by genome sequencing (n = 562) or an exome-based panel of 268 genes (n = 606) from March 1, 2018, through July 31, 2022. Exposures Genetic screening for pediatric-onset disorders using genome sequencing or an exome-based panel of 268 genes. Main Outcomes and Measures Molecular findings indicative of genetic disease risk. Results Of 562 apparently healthy children (286 girls [50.9%]; median age, 29 days [IQR, 9-117 days]) undergoing screening by genome sequencing, 46 (8.2%; 95% CI, 5.9%-10.5%) were found to be at risk for pediatric-onset disease, including 22 children (3.9%) at risk for high-penetrance disorders. Sequence analysis uncovered molecular diagnoses among 32 individuals (5.7%), while copy number variant analysis uncovered molecular diagnoses among 14 individuals (2.5%), including 4 individuals (0.7%) with chromosome scale abnormalities. Overall, there were 47 molecular diagnoses, with 1 individual receiving 2 diagnoses; of the 47 potential diagnoses, 22 (46.8%) were associated with high-penetrance conditions. Pathogenic variants in medically actionable pediatric genes were found in 6 individuals (1.1%), constituting 12.8% (6 of 47) of all diagnoses. At least 1 pharmacogenomic variant was reported for 89.0% (500 of 562) of the cohort. In contrast, of 606 children (293 girls [48.3%]; median age, 26 days [IQR, 10-67 days]) undergoing gene panel screening, only 13 (2.1%; 95% CI, 1.0%-3.3%) resulted in potential childhood-onset diagnoses, a significantly lower rate than those screened by genome sequencing (P < .001). Conclusions and Relevance In this case series study, genome sequencing as a proactive screening approach for children, due to its unrestrictive gene content and technical advantages in comparison with an exome-based gene panel for medically actionable childhood conditions, uncovered a wide range of heterogeneous high-penetrance pediatric conditions that could guide early interventions and medical management.
Collapse
Affiliation(s)
| | - Ruby Liu
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Lora Bean
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Fen Guo
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Naga Guruju
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | - Rizwan Yousaf
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Kristina Fura
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Ephrem Chin
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Abhinav Mathur
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | - Zeqiang Ma
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| | | | | | | | - Madhuri Hegde
- PerkinElmer Genomics, PerkinElmer Inc, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Auber B, Schmidt G, Du C, von Hardenberg S. Diagnostic genomic sequencing in critically ill children. MED GENET-BERLIN 2023; 35:105-112. [PMID: 38840860 PMCID: PMC10842578 DOI: 10.1515/medgen-2023-2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Rare genetic diseases are a major cause of severe illnesses and deaths in new-borns and infants. Disease manifestation in critically ill children may be atypical or incomplete, making a monogenetic disease difficult to diagnose clinically. Rapid exome or genome ("genomic") sequencing in critically ill children demonstrated profound diagnostic and clinical value, and there is growing evidence that the faster a molecular diagnosis is established in such children, the more likely clinical management is influenced positively. An early molecular diagnosis enables treatment of critically ill children with precision medicine, has the potential to improve patient outcome and leads to healthcare cost savings. In this review, we outline the status quo of rapid genomic sequencing and possible future implications.
Collapse
Affiliation(s)
- Bernd Auber
- Hannover Medical SchoolDepartment of Human GeneticsHannoverGermany
| | - Gunnar Schmidt
- Hannover Medical SchoolDepartment of Human GeneticsHannoverGermany
| | - Chen Du
- Hannover Medical SchoolDepartment of Human GeneticsHannoverGermany
| | | |
Collapse
|
20
|
Grosse SD, Gudgeon JM. Correspondence on "Cost-effectiveness of exome and genome sequencing for children with rare and undiagnosed conditions" by Lavelle et al. Genet Med 2022; 24:2595-2596. [PMID: 36129466 PMCID: PMC9768457 DOI: 10.1016/j.gim.2022.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Scott D Grosse
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA.
| | | |
Collapse
|
21
|
Beaman M, Fisher K, McDonald M, Tan QKG, Jackson D, Cocanougher BT, Landstrom AP, Hobbs CA, Cotten M, Cohen JL. Rapid Whole Genome Sequencing in Critically Ill Neonates Enables Precision Medicine Pipeline. J Pers Med 2022; 12:1924. [PMID: 36422100 PMCID: PMC9694815 DOI: 10.3390/jpm12111924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 09/07/2023] Open
Abstract
Rapid genome sequencing in critically ill infants is increasingly identified as a crucial test for providing targeted and informed patient care. We report the outcomes of a pilot study wherein eight critically ill neonates received rapid whole genome sequencing with parental samples in an effort to establish a prompt diagnosis. Our pilot study resulted in a 37.5% diagnostic rate by whole genome sequencing alone and an overall 50% diagnostic rate for the cohort. We describe how the diagnoses led to identification of additional affected relatives and a change in management, the limitations of rapid genome sequencing, and some of the challenges with sample collection. Alongside this pilot study, our site simultaneously established a research protocol pipeline that will allow us to conduct research-based genomic testing in the cases for which a diagnosis was not reached by rapid genome sequencing or other available clinical testing. Here we describe the benefits, limitations, challenges, and potential for rapid whole genome sequencing to be incorporated into routine clinical evaluation in the neonatal period.
Collapse
Affiliation(s)
- Makenzie Beaman
- Duke University Medical Scientist Training Program, Durham, NC 27710, USA
- Duke University Department of Pediatrics, Division of Medical Genetics, Durham, NC 27710, USA
| | - Kimberley Fisher
- Duke University Department of Pediatrics, Division of Neonatology, Durham, NC 27710, USA
| | - Marie McDonald
- Duke University Department of Pediatrics, Division of Medical Genetics, Durham, NC 27710, USA
| | - Queenie K. G. Tan
- Duke University Department of Pediatrics, Division of Medical Genetics, Durham, NC 27710, USA
| | - David Jackson
- Duke University Department of Pediatrics, Division of Medical Genetics, Durham, NC 27710, USA
| | - Benjamin T. Cocanougher
- Duke University Department of Pediatrics, Division of Medical Genetics, Durham, NC 27710, USA
| | - Andrew P. Landstrom
- Duke University Department of Pediatrics, Division of Cardiology, Durham, NC 27710, USA
| | - Charlotte A. Hobbs
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Michael Cotten
- Duke University Department of Pediatrics, Division of Neonatology, Durham, NC 27710, USA
| | - Jennifer L. Cohen
- Duke University Department of Pediatrics, Division of Medical Genetics, Durham, NC 27710, USA
| |
Collapse
|
22
|
Jezkova J, Shaw S, Taverner NV, Williams HJ. Rapid genome sequencing for pediatrics. Hum Mutat 2022; 43:1507-1518. [PMID: 36086948 PMCID: PMC9826377 DOI: 10.1002/humu.24466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 01/11/2023]
Abstract
The advancements made in next-generation sequencing (NGS) technology over the past two decades have transformed our understanding of genetic variation in humans and had a profound impact on our ability to diagnose patients with rare genetic diseases. In this review, we discuss the recently developed application of rapid NGS techniques, used to diagnose pediatric patients with suspected rare diseases who are critically ill. We highlight the challenges associated with performing such clinical diagnostics tests in terms of the laboratory infrastructure, bioinformatic analysis pipelines, and the ethical considerations that need to be addressed. We end by looking at what future developments in this field may look like and how they can be used to augment the genetic data to further improve the diagnostic rates for these high-priority patients.
Collapse
Affiliation(s)
- Jana Jezkova
- All Wales Medical Genomics Service, Cardiff and Vale NHS TrustHeath HospitalCardiffUK
| | - Sophie Shaw
- All Wales Medical Genomics Service, Cardiff and Vale NHS TrustHeath HospitalCardiffUK
| | - Nicola V. Taverner
- All Wales Medical Genomics Service, Cardiff and Vale NHS TrustHeath HospitalCardiffUK,Centre for Medical Education, School of MedicineCardiff UniversityHeath ParkCardiffUK
| | - Hywel J. Williams
- Division of Cancer and Genetics, Genetic and Genomic Medicine, School of MedicineCardiff UniversityHeath ParkCardiffUK
| |
Collapse
|
23
|
Sanford Kobayashi EF, Dimmock DP. Better and faster is cheaper. Hum Mutat 2022; 43:1495-1506. [PMID: 35723630 DOI: 10.1002/humu.24422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
The rapid pace of advancement in genomic sequencing technology has recently reached a new milestone, with a record-setting time to molecular diagnosis of a mere 8 h. The catalyst behind this achievement is the accumulation of evidence indicating that quicker results more often make an impact on patient care and lead to healthcare cost savings. Herein, we review the diagnostic and clinical utility of rapid whole genome and rapid whole exome sequencing, the associated reduction in healthcare costs, and the relationship between these outcome measures and time-to-diagnosis.
Collapse
Affiliation(s)
- Erica F Sanford Kobayashi
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - David P Dimmock
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
24
|
Rodriguez Llorian E, Dragojlovic N, Campbell TM, Friedman JM, Osiovich H, Elliott AM, Lynd LD. The effect of rapid exome sequencing on downstream health care utilization for infants with suspected genetic disorders in an intensive care unit. Genet Med 2022; 24:1675-1683. [PMID: 35622065 DOI: 10.1016/j.gim.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/12/2023] Open
Abstract
PURPOSE This study aimed to compare downstream utilization of medical services among critically ill infants admitted to intensive care units who received rapid exome sequencing (ES) and those who followed alternative diagnostic testing pathways. METHODS Using propensity score-weighted regression models including sex, age at admission, and severity indicators, we compared a group of 47 infants who underwent rapid ES with a group of 211 infants who did not receive rapid ES. Utilization and cost indicators were compared between cohorts using negative binomial models for utilization and two-part models for costs. RESULTS After controlling for patients' sociodemographic and clinical characteristics, we found no statistically significant difference in outpatient visits, hospitalizations, intensive care unit or total length of stay, or length of stay-associated costs between the cohorts at 12- or 26-month follow-up. Similarly, there was no evidence of higher utilization or costs by the ES group when infants who died were removed from the analysis. CONCLUSION When examining utilization during and beyond the diagnostic trajectory, there is no evidence that ES changes frequency of outpatient visits or use of in-hospital resources in critically ill infants with suspected genetic disorders.
Collapse
Affiliation(s)
- Elisabet Rodriguez Llorian
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nick Dragojlovic
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Teresa M Campbell
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Horacio Osiovich
- Division of Neonatology, Department of Paediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Alison M Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Larry D Lynd
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
25
|
Biochemical testing for inborn errors of metabolism: experience from a large tertiary neonatal centre. Eur J Pediatr 2022; 181:3725-3732. [PMID: 35945291 PMCID: PMC9508208 DOI: 10.1007/s00431-022-04588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
Abstract
UNLABELLED Inborn errors of metabolism are an individually rare but collectively significant cause of mortality and morbidity in the neonatal period. They are identified by either newborn screening programmes or clinician-initiated targeted biochemical screening. This study examines the relative contribution of these two methods to the identification of inborn errors of metabolism and describes the incidence of these conditions in a large, tertiary, neonatal unit. We also examined which factors could impact the reliability of metabolic testing in this cohort. This is a retrospective, single-site study examining infants in whom a targeted metabolic investigation was performed from January 2018 to December 2020 inclusive. Data was also provided by the national newborn screening laboratory regarding newborn screening diagnoses. Two hundred and four newborns received a clinician-initiated metabolic screen during the time period examined with 5 newborns being diagnosed with an inborn error of metabolism (IEM) (2.4%). Of the 25,240 infants born in the hospital during the period examined, a further 11 newborns had an inborn error of metabolism diagnosed on newborn screening. This produced an incidence in our unit over the time described of 6.34 per 10,000 births. This number reflects a minimum estimate, given that the conditions diagnosed refer to early-onset disorders and distinctive categories of IEM only. Efficiency of the clinician-initiated metabolic screening process was also examined. The only statistically significant variable in requiring repeat metabolic screening was early day of life (z-score = - 2.58, p = 0.0098). A total of 28.4% was missing one of three key metabolic investigation parameters of blood glucose, ammonia or lactate concentration with ammonia the most common investigation missing. While hypoglycemia was the most common clinical rationale for a clinician-initiated metabolic test, it was a poor predictor of inborn error of metabolism with no newborns of 25 screened were diagnosed with a metabolic disorder. CONCLUSION Clinician-targeted metabolic screening had a high diagnostic yield given the relatively low prevalence of inborn errors of metabolism in the general population. Thoughts should be given to the rationale behind each targeted metabolic test and what specific metabolic disease or category of inborn error of metabolism they are concerned along with commencing targeted testing. WHAT IS KNOWN • Inborn errors of metabolism are a rare but potentially treatable cause of newborn mortality and morbidity. • A previous study conducted in a tertiary unit in an area with limited newborn screening demonstrated a diagnostic yield of 5.4%. WHAT IS NEW • Clinician-initiated targeted metabolic screening has a good diagnostic performance even with a more expanded newborn screening programme. • Further optimisation could be achieved by examining the best timing and also the rationale of metabolic testing in the newborn period.
Collapse
|