1
|
Wilson R, Kovacs D, Crosby M, Ho A. Global Epidemiology and Seasonality of Human Seasonal Coronaviruses: A Systematic Review. Open Forum Infect Dis 2024; 11:ofae418. [PMID: 39113828 PMCID: PMC11304597 DOI: 10.1093/ofid/ofae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background We characterized the global epidemiology and seasonality of human coronaviruses (HCoVs) OC43, NL63, 229E, and HKU1. Methods In this systematic review, we searched MEDLINE, EMBASE, Web of Science, SCOPUS, CINAHL, and backward citations for studies published until 1 September 2023. We included studies with ≥12 months of consecutive data and tested for ≥1 HCoV species. Case reports, review articles, animal studies, studies focusing on SARS-CoV-1, SARS-CoV-2, and/or Middle East respiratory syndrome, and those including <100 cases were excluded. Study quality and risk of bias were assessed using Joanna Briggs Institute Critical Appraisal Checklist tools. We reported the prevalence of all HCoVs and individual species. Seasonality was reported for studies that included ≥100 HCoVs annually. This study is registered with PROSPERO, CRD42022330902. Results A total of 201 studies (1 819 320 samples) from 68 countries were included. A high proportion were from China (19.4%; n = 39), whereas the Southern Hemisphere was underrepresented. Most were case series (77.1%, n = 155) with samples from secondary care (74.1%, n = 149). Seventeen (8.5%) studies included asymptomatic controls, whereas 76 (37.8%) reported results for all 4 HCoV species. Overall, OC43 was the most prevalent HCoV. Median test positivity of OC43 and NL63 was higher in children, and 229E and HKU1 in adults. Among 18 studies that described seasonality (17 from the Northern Hemisphere), circulation of all HCoVs mostly peaked during cold months. Conclusions In our comprehensive review, few studies reported the prevalence of individual HCoVs or seasonality. Further research on the burden and circulation of HCoVs is needed, particularly from Africa, South Asia, and Central/South America.
Collapse
Affiliation(s)
- Rory Wilson
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Dory Kovacs
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mairi Crosby
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Antonia Ho
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Karabulut N, Alaçam S, Şen E, Karabey M, Yakut N. The Epidemiological Features and Pathogen Spectrum of Respiratory Tract Infections, Istanbul, Türkiye, from 2021 to 2023. Diagnostics (Basel) 2024; 14:1071. [PMID: 38893598 PMCID: PMC11171886 DOI: 10.3390/diagnostics14111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Respiratory tract infections (RTIs) can lead to both recurrent seasonal epidemic outbreaks and devastating pandemics. The aim of this study was to evaluate the epidemiologic characteristics and pathogen spectrum of RTIs using a multiplex RT-PCR panel. A total of 9354 cases with suspected RTIs between February 2021 and July 2023 were included in this study. A total of 11,048 nasopharyngeal and oropharyngeal samples from these patients were analyzed for 23 respiratory tract pathogens using multiplex RT-PCR. H. influenzae and S. pneumoniae were considered as colonizing bacteria. At least one pathogen was detected in 70.66% of the samples; viral pathogens were detected in 48.41% of the samples, bacterial pathogens were detected in 16.06% of the samples, and viral + bacterial pathogens were detected in 35.53% of the samples. The most frequently detected viral pathogen was rhinovirus/enterovirus (RV/EV) (19.99%). Interestingly, in 2021, respiratory syncytial virus A/B showed atypical activity and replaced RV/EV as the most prevalent pathogen. Human bocavirus, H. influenzae, and S. pneumoniae were detected at higher rates in males (p: 0.038, p: 0.042, and p: 0.035, respectively), while SARS-CoV-2 and B. pertussis were detected at higher rates in females (p < 0.001 and p: 0.033). RTIs were found at higher rates in children (p < 0.001). SARS-CoV-2 and human coronaviruses 229E were detected at higher rates in adults (p < 0.001 and p: 0.001). This comprehensive study with a large sample size investigating RTI pathogens was the first in Türkiye. Understanding the current viral circulation using multiplex RT-PCR panels enables clinicians to predict the most likely pathogens affecting patients and contributes to patient management, in addition to anticipating potential threats.
Collapse
Affiliation(s)
- Nuran Karabulut
- Departmant of Medical Virology, Basaksehir Cam and Sakura City Hospital, University of Health Science, 34480 Istanbul, Türkiye
- Departmant of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| | - Sema Alaçam
- Departmant of Medical Virology, Basaksehir Cam and Sakura City Hospital, University of Health Science, 34480 Istanbul, Türkiye
| | - Esranur Şen
- Departmant of Medical Virology, Basaksehir Cam and Sakura City Hospital, University of Health Science, 34480 Istanbul, Türkiye
| | - Mehmet Karabey
- Departmant of Medical Virology, Basaksehir Cam and Sakura City Hospital, University of Health Science, 34480 Istanbul, Türkiye
| | - Nurhayat Yakut
- Departmant of Pediatric Infectious Diseases, Bahçelievler Medipol Hospital, Istanbul Medipol University, 34196 Istanbul, Türkiye
| |
Collapse
|
3
|
Zhou F, Vahokoski J, Langeland N, Cox RJ. Impact of ageing on homologous and human-coronavirus-reactive antibodies after SARS-CoV-2 vaccination or infection. NPJ Vaccines 2024; 9:37. [PMID: 38378953 PMCID: PMC10879087 DOI: 10.1038/s41541-024-00817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The endemic human coronaviruses (HCoVs) circulate worldwide yet remain understudied and unmitigated. The observation of elevated levels of HCoV reactive antibodies in COVID-19 patients highlights the urgent necessity of better understanding of HCoV specific immunity. Here, we characterized in-depth the de novo SARS-CoV-2 specific antibody responses and the boosting of HCoV-reactive antibodies after SARS-CoV-2 vaccination or infection in individuals up to 98 years old. All the vaccinees were home-dwelling with no documented SARS-CoV-2 infection before receiving the COVID-19 mRNA vaccine (BNT162b2). The first two vaccine doses elicited potent SARS-CoV-2 spike binding antibodies in individuals up to 80 years. The third dose largely boosted the previously low S2 domain binding and neutralizing antibodies in elderly 80-90 years old, but less so in those above 90 years. The endemic betacoronavirus (HKU1 and OC43) reactive antibodies were boosted in all vaccinees, although to a lesser extent in those above 80 years old. COVID-19 patients had potent elevation of alpha- and betacoronavirus (229E, NL63, HKU1 and OC43) reactive antibodies. In both patients and vaccinees, S2 domain specific antibody increases correlated with SARS-CoV-2 neutralizing and HCoV-reactive antibody responses in all ages, indicating S2 domain as a candidate for future universal coronavirus vaccine design.
Collapse
Affiliation(s)
- Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Juha Vahokoski
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospitalen, Bergen, Norway
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Soni MK, Migliori E, Fu J, Assal A, Chan HT, Pan J, Khatiwada P, Ciubotariu R, May MS, Pereira MR, De Giorgi V, Sykes M, Mapara MY, Muranski PJ. The prospect of universal coronavirus immunity: characterization of reciprocal and non-reciprocal T cell responses against SARS-CoV2 and common human coronaviruses. Front Immunol 2023; 14:1212203. [PMID: 37901229 PMCID: PMC10612330 DOI: 10.3389/fimmu.2023.1212203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
T cell immunity plays a central role in clinical outcomes of Coronavirus Infectious Disease 2019 (COVID-19) and T cell-focused vaccination or cellular immunotherapy might provide enhanced protection for some immunocompromised patients. Pre-existing T cell memory recognizing SARS-CoV-2 antigens antedating COVID-19 infection or vaccination, may have developed as an imprint of prior infections with endemic non-SARS human coronaviruses (hCoVs) OC43, HKU1, 229E, NL63, pathogens of "common cold". In turn, SARS-CoV-2-primed T cells may recognize emerging variants or other hCoV viruses and modulate the course of subsequent hCoV infections. Cross-immunity between hCoVs and SARS-CoV-2 has not been well characterized. Here, we systematically investigated T cell responses against the immunodominant SARS-CoV-2 spike, nucleocapsid and membrane proteins and corresponding antigens from α- and β-hCoVs among vaccinated, convalescent, and unexposed subjects. Broad T cell immunity against all tested SARS-CoV-2 antigens emerged in COVID-19 survivors. In convalescent and in vaccinated individuals, SARS-CoV-2 spike-specific T cells reliably recognized most SARS-CoV-2 variants, however cross-reactivity against the omicron variant was reduced by approximately 47%. Responses against spike, nucleocapsid and membrane antigens from endemic hCoVs were significantly more extensive in COVID-19 survivors than in unexposed subjects and displayed cross-reactivity between α- and β-hCoVs. In some, non-SARS hCoV-specific T cells demonstrated a prominent non-reciprocal cross-reactivity with SARS-CoV-2 antigens, whereas a distinct anti-SARS-CoV-2 immunological repertoire emerged post-COVID-19, with relatively limited cross-recognition of non-SARS hCoVs. Based on this cross-reactivity pattern, we established a strategy for in-vitro expansion of universal anti-hCoV T cells for adoptive immunotherapy. Overall, these results have implications for the future design of universal vaccines and cell-based immune therapies against SARS- and non-SARS-CoVs.
Collapse
Affiliation(s)
- Mithil K. Soni
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Edoardo Migliori
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Amer Assal
- Department of Medicine, Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY, United States
- Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Hei Ton Chan
- Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Jian Pan
- Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Prabesh Khatiwada
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Rodica Ciubotariu
- Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Michael S. May
- Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Marcus R. Pereira
- Department of Medicine, Division of Infectious Disease, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Valeria De Giorgi
- Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Markus Y. Mapara
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Pawel J. Muranski
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Han S, Xu B, Feng Q, Feng Z, Zhu Y, Ai J, Deng L, Li C, Cao L, Sun Y, Fu Z, Jin R, Shang Y, Chen Z, Xu L, Xie Z, Shen K. Multicenter analysis of epidemiological and clinical features of pediatric acute lower respiratory tract infections associated with common human coronaviruses in China, 2014-2019. Virol J 2023; 20:229. [PMID: 37817170 PMCID: PMC10566024 DOI: 10.1186/s12985-023-02198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
The common human coronaviruses (HCoVs) HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 which are members of the coronavirus family are long co-existed with humans and widely distributed globally. Common HCoVs usually cause mild, self-limited upper respiratory tract infections (URTI), and also associated with lower respiratory tract infections (LRTI), especially in children. However, there are little multicentre studies have been conducted in children of several different areas in China, and the epidemic potential of common HCoVs remains unclear. Understanding of the common HCoVs is valuable for clinical and public health. Herein, we retrospectively analysed the medical records of children with acute lower respiratory tract infection admitted to 9 hospitals from different regions in China from 2014 to 2019. Of the 124 patients who tested positive for coronaviruses, OC43 was the predominant type, accounting for 36.3% (45/124) of the detections. Children aged ≤ 6 months and 12-23 months had the highest detection rate of common HCoVs, and the detection rate gradually declined after 2 years old. These four HCoVs could be detected all year round. Among the areas of our study, the overall positive rate was higher in southern China, especially in Guangzhou (29/124, 23.4%). Moreover, common HCoV-positive patients were codetected with 9 other common respiratory pathogens. 229E (11/13, 84.6%) was the most frequently associated with codetection, with EV/RhV was the most frequently codetected virus. Cough (113/124, 91.1%) and fever (73/124, 58.9%) were the most common symptoms of common HCoVs infection.
Collapse
Affiliation(s)
- Shuaibing Han
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China
| | - Baoping Xu
- Department of Respiratory Diseases I, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Qianyu Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China
| | - Junhong Ai
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China
| | - Li Deng
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Changchong Li
- The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ling Cao
- Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yun Sun
- Yinchuan Maternal and Child Health Hospital, Yinchuan, 750000, China
| | - Zhou Fu
- Children's Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Rong Jin
- Guiyang Women and Children Healthcare Hospital, Guiyang, 550003, China
| | - Yunxiao Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhiming Chen
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310005, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China.
| | - Kunling Shen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
6
|
Sol IS, Lee E, Yang HJ, Lee YJ, Yum HY, Lee MH, Chu MA, Moon HJ, Kim HB, Seo JH, Shim JY, Ahn JY, Jang YY, Chung HL, Chung EH, Kim K, Kim BS, Kim CH, Park Y, Shin M, Lee KS, Han MY, Hong SJ, Kang EK, Kim CK. Clinical characteristics of pediatric patients infected with SARS-CoV-2 versus common human coronaviruses: a national multicenter study. Clin Exp Pediatr 2023; 66:134-141. [PMID: 36550772 PMCID: PMC9989725 DOI: 10.3345/cep.2022.00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human coronaviruses (HCoV) cause mild upper respiratory infections; however, in 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged, causing an acute respiratory disease pandemic. Coronaviruses exhibit marked epidemiological and clinical differences. PURPOSE This study compared the clinical, laboratory, and radiographic findings of children infected with SARS-CoV-2 versus HCoV. METHODS SARS-CoV-2 data were obtained from the Korea Disease Control and Prevention Agency (KDCA) registry and 4 dedicated coronavirus disease 2019 (COVID-19) hospitals. Medical records of children admitted with a single HCoV infection from January 2015 to March 2020 were collected from 10 secondary/tertiary hospitals. Clinical data included age, sex, underlying disease, symptoms, test results, imaging findings, treatment, and length of hospital stay. RESULTS We compared the clinical characteristics of children infected with HCoV (n=475) to those of children infected with SARS-CoV-2 (272 from KDCA, 218 from COVID-19 hospitals). HCoV patients were younger than KDCA patients (older than 9 years:3.6% vs. 75.7%; P<0.001) and patients at COVID-19 hospitals (2.0±2.9 vs 11.3±5.3; P<0.001). Patients with SARS-CoV-2 infection had a lower rate of fever (26.6% vs. 66.7%; P<0.001) and fewer respiratory symptoms than those with HCoV infection. Clinical severity, as determined by oxygen therapy and medication usage, was worse in children with HCoV infection. Children and adolescents with SARS-CoV-2 had less severe symptoms. CONCLUSION Children and adolescents with COVID-19 had a milder clinical course and less severe disease than those with HCoV in terms of symptoms at admission, examination findings, and laboratory and radiology results.
Collapse
Affiliation(s)
- In Suk Sol
- Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Hyeon-Jong Yang
- Department of Pediatrics, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Yong Ju Lee
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hye Yung Yum
- Department of Pediatrics, Seoul Medical Center, Seoul, Korea
| | - Mi-Hee Lee
- Department of Pediatrics, Incheon Medical Center, Incheon Medical Center COVID-19 Medical Response Team, Incheon, Korea
| | - Mi Ae Chu
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Hui Jeong Moon
- SCH Biomedical Informatics Research Unit, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Ju Hee Seo
- Department of Pediatrics, Dankook University Hospital, Cheonan, Korea
| | - Jung Yeon Shim
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Young Ahn
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| | - Yoon Young Jang
- Department of Pediatrics, Daegu Catholic University Medical Center, Catholic University of Daegu, Daegu, Korea
| | - Hai Lee Chung
- Department of Pediatrics, Daegu Catholic University Medical Center, Catholic University of Daegu, Daegu, Korea
| | - Eun Hee Chung
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea
| | - Kyunghoon Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Bundang, Korea
| | - Bong-Seong Kim
- Department of Pediatrics, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Cheol Hong Kim
- Department of Pediatrics, Samsung Changwon Hospital, Changwon, Korea
| | - Yang Park
- Department of Pediatrics, Wonkwang University School of Medicine, Iksan, Korea
| | - Meeyong Shin
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Kyung Suk Lee
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA University CHA Bundang Medical Center, Seongnam, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyeong Kang
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Chang Keun Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | | |
Collapse
|
7
|
Sonmezer MC, Sahin TK, Erul E, Dizman GT, Inkaya AC, Alp A, Alp S, Unal S. Prevalence of Common Human Coronaviruses (NL63, 229E, and OC43) in Adults before the COVID-19 Pandemic: a Single-Center Study from Turkey, 2015-2020. Jpn J Infect Dis 2023; 76:27-33. [PMID: 36047175 DOI: 10.7883/yoken.jjid.2022.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Common Human Coronaviruses (HCoVs), such as NL63, HKU1, 229E, and OC43, induce respiratory tract infections worldwide. Epidemiological studies of HCoVs are of paramount importance because the disease burden and trajectory (in years) have not been well addressed in adults. Here, we aimed to describe the burden of HCoVs in a hospital setting over five years before the coronavirus disease 2019 pandemic. This was a retrospective study of patients (>18 years) between January 1, 2015, and January 1, 2020, whose respiratory specimens were tested by multiplex real-time polymerase chain reaction. In total, 7,861 respiratory samples (4,540 patients) were included, 38% of which tested positive for any respiratory virus. Of these, 212 (12.2%) samples were positive for HCoVs, and their co-infection with other respiratory viruses was 30.6%. Rhinovirus (27.6%) was the most common co-infection among all three HCoVs. The overall prevalence of HCoVs tended to be the highest in the winter (40.9%). Patients aged ≥60 years had the highest prevalence of overall HCoVs (39.7%). Given the duration and large sample size, this study from Turkey is one of the largest to date among adults in the literature. These epidemiological data and molecular surveillance of HCoVs have important implications for the control and prevention of respiratory infections.
Collapse
Affiliation(s)
- Meliha Cagla Sonmezer
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine, Turkey
| | - Taha Koray Sahin
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Turkey
| | - Enes Erul
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Turkey
| | - Gulcin Telli Dizman
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine, Turkey
| | - Ahmet Cagkan Inkaya
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine, Turkey
| | - Alparslan Alp
- Department of Microbiology and Clinical Microbiology, Hacettepe University Faculty of Medicine, Turkey
| | - Sehnaz Alp
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine, Turkey
| | - Serhat Unal
- Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Faculty of Medicine, Turkey
| |
Collapse
|
8
|
Soni M, Migliori E, Fu J, Assal A, Chan HT, Pan J, Khatiwada P, Ciubotariu R, May MS, Pereira M, De Giorgi V, Sykes M, Mapara MY, Muranski P. The prospect of universal coronavirus immunity: a characterization of reciprocal and non-reciprocal T cell responses against SARS-CoV2 and common human coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.519511. [PMID: 36711835 PMCID: PMC9881858 DOI: 10.1101/2023.01.03.519511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
T cell immunity plays a central role in clinical outcomes of Coronavirus Infectious Disease 2019 (COVID-19). Therefore, T cell-focused vaccination or cellular immunotherapy might provide enhanced protection for immunocompromised patients. Pre-existing T cell memory recognizing SARS-CoV2 antigens antedating COVID-19 infection or vaccination, may have developed as an imprint of prior infections with endemic non-SARS human coronaviruses (hCoVs) OC43, HKU1, 229E, NL63, pathogens of "common cold". In turn, SARS-CoV2-primed T cells may recognize emerging variants or other hCoV viruses and modulate the course of subsequent hCoV infections. Cross-immunity between hCoVs and SARS-CoV2 has not been well characterized. Here, we systematically investigated T cell responses against the immunodominant SARS-CoV2 spike, nucleocapsid and membrane proteins and corresponding antigens from α- and β-hCoVs among vaccinated, convalescent, and unexposed subjects. Broad T cell immunity against all tested SARS-CoV2 antigens emerged in COVID-19 survivors. In convalescent and in vaccinated individuals, SARS-CoV2 spike-specific T cells reliably recognized most SARS-CoV2 variants, however cross-reactivity against the omicron variant was reduced by approximately 50%. Responses against spike, nucleocapsid and membrane antigens from endemic hCoVs were more extensive in COVID-19 survivors than in unexposed subjects and displayed cross-reactivity between α- and β-hCoVs. In some, non-SARS hCoVspecific T cells demonstrated a prominent non-reciprocal cross-reactivity with SARS-CoV2 antigens, whereas a distinct anti-SARS-CoV2 immunological repertoire emerged post-COVID-19, with relatively limited cross-recognition of non-SARS hCoVs. Based on this cross-reactivity pattern, we established a strategy for in-vitro expansion of universal anti-hCoV T cells for adoptive immunotherapy. Overall, these results have implications for the future design of universal vaccines and cell-based immune therapies against SARS- and non-SARS-CoVs.
Collapse
Affiliation(s)
- Mithil Soni
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, United States
| | - Edoardo Migliori
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, United States
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, United States
| | - Amer Assal
- Department of Medicine, Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, New York, USA
- Columbia University Medical Center/Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Hei Ton Chan
- Columbia University Medical Center/Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Jian Pan
- Columbia University Medical Center/Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Prabesh Khatiwada
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, United States
| | - Rodica Ciubotariu
- Columbia University Medical Center/Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Michael S May
- Columbia University Medical Center/Herbert Irving Comprehensive Cancer Center, New York, New York, USA
| | - Marcus Pereira
- Department of Medicine, Division of Infectious Disease, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Valeria De Giorgi
- Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, United States
- Department of Microbiology and Immunology and Department of Surgery, Columbia University, New York, NY, USA
| | - Markus Y Mapara
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, United States
| | - Pawel Muranski
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, New York, United States
| |
Collapse
|
9
|
Biondo C, Midiri A, Gerace E, Zummo S, Mancuso G. SARS-CoV-2 Infection in Patients with Cystic Fibrosis: What We Know So Far. Life (Basel) 2022; 12:2087. [PMID: 36556452 PMCID: PMC9786139 DOI: 10.3390/life12122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Respiratory infections are the most common and most frequent diseases, especially in children and the elderly, characterized by a clear seasonality and with an incidence that usually tends to decrease with increasing age. These infections often resolve spontaneously, usually without the need for antibiotic treatment and/or with the possible use of symptomatic treatments aimed at reducing overproduction of mucus and decreasing coughing. However, when these infections occur in patients with weakened immune systems and/or underlying health conditions, their impact can become dramatic and in some cases life threatening. The rapid worldwide spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has caused concern for everyone, becoming especially important for individuals with underlying lung diseases, such as CF patients, who have always paid close attention to implementing protective strategies to avoid infection. However, adult and pediatric CF patients contract coronavirus infection like everyone else. In addition, although numerous studies were published during the first wave of the pandemic on the risk for patients with cystic fibrosis (CF) to develop severe manifestations when infected with SARS-CoV-2, to date, a high risk has been found only for patients with poorer lung function and post-transplant status. In terms of preventive measures, vaccination remains key. The best protection for these patients is to strengthen preventive measures, such as social distancing and the use of masks. In this review, we aim to summarize and discuss recent advances in understanding the susceptibility of CF individuals to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|