1
|
Zhu Y, Chu Y, Lan Y, Wang S, Zhang Y, Liu Y, Wang X, Yu F, Ma X. Loss of Endothelial TRPC1 Induces Aortic Hypercontractility and Hypertension. Circ Res 2025; 136:508-523. [PMID: 39912234 DOI: 10.1161/circresaha.124.325574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND The increasing prevalence of obesity-related cardiovascular diseases demands a better understanding of the contribution of different cell types to vascular function for developing new treatment strategies. Previous studies have established a fundamental role of TRPC1 (transient receptor potential channel canonical family member 1) in blood vessels. However, little is known about its functional roles within different cell types. METHODS We generated endothelial-specific TRPC1-deficient and knockin mice and analyzed their changes in vascular function under physiological and pathologically obese state. Wire myography, Ca2+ image, blood pressure measurements, RNA-sequencing analysis, liquid chromatography-mass spectrometry, immunoblotting, ELISA, luciferase reporter assay, and morphometric assessments were performed to unravel phenotype and molecular changes in response to the absence or presence of endothelial TRPC1. RESULTS Loss of endothelial TRPC1 reduced endothelial-dependent relaxation and exaggerated endothelial-dependent contraction in mouse aorta. As expected, loss of endothelial TRPC1 amplified blood pressure and decreased acetylcholine-induced intracellular Ca2+ concentration rise in the aorta. In endothelial-specific TRPC1-deficient mouse arteries, the mRNA profile identified upregulation of c-Fos (Fos proto-oncogene, activator protein-1 transcription factor subunit). Blockade of c-Fos rescued the impaired vasomotor tone in the aorta of mice deficient in endothelial TRPC1. Endothelial TRPC1-regulated nitric oxide/endothelin-1 production is involved in vascular c-Fos expression. Moreover, knockin of endothelial TRPC1 ameliorated enhanced endothelial-dependent contraction and hypertension in obese mice which is related to alleviated endothelial endothelin-1/c-Fos production and smooth muscle contraction. CONCLUSIONS Our results identify endothelial TRPC1 as a previously unclear regulator of vascular changes and blood pressure in both physiological and pathologically obese state, and it is associated with nitric oxide/endothelin-1/c-Fos signaling.
Collapse
Affiliation(s)
- Yifei Zhu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
- Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y. Zhu, X.M.)
| | - Yuan Chu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Yihui Lan
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Sheng Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Yizhi Zhang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Yuan Liu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Xianfeng Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Fan Yu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
| | - Xin Ma
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Disease, Wuxi School of Medicine, Jiangnan University, China (Y. Zhu, Y.C., Y. Lan, S.W., Y. Zhang, Y. Liu, X.W. F.Y., X.M.)
- Food Nutrition and Human Health Interdisciplinary Center, School of Food Science and Technology, Wuxi School of Medicine, Jiangnan University, Wuxi, China (Y. Zhu, X.M.)
- Affiliated Hospital of Jiangnan University, Wuxi, China (X.M.)
| |
Collapse
|
2
|
Jehle A, Garaschuk O. The Interplay between cGMP and Calcium Signaling in Alzheimer's Disease. Int J Mol Sci 2022; 23:7048. [PMID: 35806059 PMCID: PMC9266933 DOI: 10.3390/ijms23137048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger and a key molecule in many important signaling cascades in the body and brain, including phototransduction, olfaction, vasodilation, and functional hyperemia. Additionally, cGMP is involved in long-term potentiation (LTP), a cellular correlate of learning and memory, and recent studies have identified the cGMP-increasing drug Sildenafil as a potential risk modifier in Alzheimer's disease (AD). AD development is accompanied by a net increase in the expression of nitric oxide (NO) synthases but a decreased activity of soluble guanylate cyclases, so the exact sign and extent of AD-mediated imbalance remain unclear. Moreover, human patients and mouse models of the disease present with entangled deregulation of both cGMP and Ca2+ signaling, e.g., causing changes in cGMP-mediated Ca2+ release from the intracellular stores as well as Ca2+-mediated cGMP production. Still, the mechanisms governing such interplay are poorly understood. Here, we review the recent data on mechanisms underlying the brain cGMP signaling and its interconnection with Ca2+ signaling. We also discuss the recent evidence stressing the importance of such interplay for normal brain function as well as in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
3
|
Park SY, Wooden TK, Pekas EJ, Anderson CP, Yadav SK, Slivka DR, Layec G. Effects of passive and active leg movements to interrupt sitting in mild hypercapnia on cardiovascular function in healthy adults. J Appl Physiol (1985) 2022; 132:874-887. [PMID: 35175102 PMCID: PMC8934680 DOI: 10.1152/japplphysiol.00799.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged sitting in a mild hypercapnic environment impairs peripheral vascular function. The effects of sitting interruptions using passive or active skeletal muscle contractions are still unclear. Therefore, we sought to examine the vascular effects of brief periods (2 min every half hour) of passive and active lower limb movement to interrupt prolonged sitting with mild hypercapnia in adults. Fourteen healthy adults (24 ± 2 yr) participated in three experimental visits sitting for 2.5 h in a mild hypercapnic environment (CO2 = 1,500 ppm): control (CON, no limb movement), passive lower limb movement (PASS), and active lower limb movement (ACT) during sitting. At all visits, brachial and popliteal artery flow-mediated dilation (FMD), microvascular function, plasmatic levels of nitrate/nitrite and endothelin-1, and heart rate variability were assessed before and after sitting. Brachial and popliteal artery FMDs were reduced in CON and PASS (P < 0.05) but were preserved (P > 0.05) in ACT. Microvascular function was blunted in CON (P < 0.05) but was preserved in PASS and ACT (P > 0.05). In addition, total plasma nitrate/nitrite was preserved in ACT (P > 0.05) but was reduced in CON and PASS (P < 0.05), and endothelin-1 levels were decreased in ACT (P < 0.05). Both passive and active movement induced a greater ratio between the low-frequency and high-frequency bands for heart rate variability (P < 0.05). For the first time, to our knowledge, we found that brief periods of passive leg movement can preserve microvascular function, but that an intervention that elicits larger increases in shear rate, such as low-intensity exercise, is required to fully protect both macrovascular and microvascular function and circulating vasoactive substance balance.NEW & NOTEWORTHY Passive leg movement could not preserve macrovascular endothelial function, whereas active leg movement could protect endothelial function. Attenuated microvascular function can be salvaged by passive movement and active movement. Preservation of macrovascular hemodynamics and plasma total nitrate/nitrite and endothelin-1 during prolonged sitting requires active movement. These findings dissociate the impacts induced by mechanical stress (passive movement) from the change in metabolism (active movement) on the vasculature during prolonged sitting in a mild hypercapnic environment.
Collapse
Affiliation(s)
- Song-Young Park
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - TeSean K. Wooden
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Elizabeth J. Pekas
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Cody P. Anderson
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Santosh K. Yadav
- 2Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dustin R. Slivka
- 1School of Health and Kinesiology, University of Nebraska Omaha, Omaha, Nebraska
| | - Gwenael Layec
- 3Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts,4Institute for Applied Life Sciences, Amherst, Massachusetts
| |
Collapse
|
4
|
Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion. Proc Natl Acad Sci U S A 2021; 118:2023749118. [PMID: 34155102 DOI: 10.1073/pnas.2023749118] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rises in local neural activity trigger local increases of cerebral blood flow, which is essential to match local energy demands. However, the specific location of microvascular flow control is incompletely understood. Here, we used two-photon microscopy to observe brain microvasculature in vivo. Small spatial movement of a three-dimensional (3D) vasculature makes it challenging to precisely measure vessel diameter at a single x-y plane. To overcome this problem, we carried out four-dimensional (x-y-z-t) imaging of brain microvessels during exposure to vasoactive molecules in order to constrain the impact of brain movements on the recordings. We demonstrate that rises in synaptic activity, acetylcholine, nitric oxide, cyclic guanosine monophosphate, ATP-sensitive potassium channels, and endothelin-1 exert far greater effects on brain precapillary sphincters and first-order capillaries than on penetrating arterioles or downstream capillaries, but with similar kinetics. The high level of responsiveness at precapillary sphincters and first-order capillaries was matched by a higher level of α-smooth muscle actin in pericytes as compared to penetrating arterioles and downstream capillaries. Mathematical modeling based on 3D vasculature reconstruction showed that precapillary sphincters predominantly regulate capillary blood flow and pressure as compared to penetrating arterioles and downstream capillaries. Our results confirm a key role for precapillary sphincters and pericytes on first-order capillaries as sensors and effectors of endothelium- or brain-derived vascular signals.
Collapse
|
5
|
Effect of Anthocyanin-Rich Extract of Sour Cherry for Hyperglycemia-Induced Inflammatory Response and Impaired Endothelium-Dependent Vasodilation. Nutrients 2020; 12:nu12113373. [PMID: 33147748 PMCID: PMC7692386 DOI: 10.3390/nu12113373] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/24/2020] [Accepted: 10/27/2020] [Indexed: 01/24/2023] Open
Abstract
Diabetes mellitus (DM)-related morbidity and mortality are steadily rising worldwide, affecting about half a billion people worldwide. A significant proportion of diabetic cases are in the elderly, which is concerning given the increasing aging population. Proper nutrition is an important component in the effective management of diabetes in the elderly. A plethora of active substances of plant origin exhibit potency to target the pathogenesis of diabetes mellitus. The nutraceutical and pharmaceutical effects of anthocyanins have been extensively studied. In this study, the effect of Hungarian sour cherry, which is rich in anthocyanins, on hyperglycemia-induced endothelial dysfunction was tested using human umbilical cord vein endothelial cells (HUVECs). HUVECs were maintained under both normoglycemic (5 mM) and hyperglycemic (30 mM) conditions with or without two concentrations (1.50 ng/µL) of anthocyanin-rich sour cherry extract. Hyperglycemia-induced oxidative stress and inflammatory response and damaged vasorelaxation processes were investigated by evaluating the level of reactive oxygen species (ROS) and gene expression of four proinflammatory cytokines, namely, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1α (IL-1α), as well as the gene expression of nitric oxide synthase (NOS) endothelin-1 (ET-1) and endothelin-converting enzyme-1 (ECE-1). It was found that hyperglycemia-induced oxidative stress was significantly suppressed by anthocyanin-rich sour cherry extract in a concentration-dependent manner. The gene expression of the tested proinflammatory cytokines increased under hyperglycemic conditions but was significantly reduced by both 1 and 50 ng/µL anthocyanin-rich sour cherry extract. Further, although increased ET-1 and ECE-1 expression due to hyperglycemia was reduced by anthocyanin-rich sour cherry extract, NOS expression was increased by the extract. Collectively, these data suggest that anthocyanin-rich sour cherry extract could alleviate hyperglycemia-induced endothelial dysfunction due to its antioxidant, anti-inflammatory, and vasorelaxant effects.
Collapse
|
6
|
Phenylethanol Glycosides Protect Myocardial Hypertrophy Induced by Abdominal Aortic Constriction via ECE-1 Demethylation Inhibition and PI3K/PKB/eNOS Pathway Enhancement. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2957094. [DOI: 10.1155/2020/2957094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022]
Abstract
Phenylethanol glycosides (CPhGs) are the core material basis of pharmacological activity in Cistanche tubulosa and have a variety of pharmacological effects. However, it is unclear whether CPhGs have an ameliorative effect on pressure overload-induced myocardial hypertrophy. In this study, male SD rats weighing (200 ± 20) g were established cardiac hypertrophy models by abdominal aortic coarctation (AAC). After operation, the rats were gavaged with corresponding medicine for 6 weeks (CPhGs 125, 250, and 500 mg/kg/d and valsartan 8.3 mg/kg/d). Echocardiography, heart weight index (HWI), cross-sectional area of cardiomyocytes (CSCA), fibrosis area, plasma endothelin 1(ET-1), and proinflammatory factors levels were detected. Our results showed that different CPhGs dosage decreased left ventricular posterior wall thickness (LVPWT), left ventricular end-diastolic diameter (LVED), HWI, CSCA, fibrosis area, ET-1, proinflammatory factors, arterial natriuretic peptide (ANP), brain natriuretic peptide (BNP), endothelin converting enzyme 1(ECE-1) mRNA levels, cyclooxygenase 2 (COX-2), high mobility group box 1 (HMGB-1) protein levels, and ECE-1 demethylation level while increasing left ventricular ejection fractions (LVEF), left ventricular fractional shortening (LVFS), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), phosphorylated protein kinase B (p-PKB), and phosphorylated endothelial nitric oxide synthetase (p-eNOS). The indexes of CPhGs 250 and 500 mg/kg group were significantly different from AAC group; compared with valsartan group (AV), the indexes of CPhGs 500 mg/kg group were not significantly different. In conclusion, CPhGs ameliorated myocardial hypertrophy rats by AAC, which may be related to ECE-1 demethylation inhibition and PI3K/PKB/eNOS enhancement.
Collapse
|
7
|
Sirtuin-1 and Its Relevance in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21051593. [PMID: 32111067 PMCID: PMC7084838 DOI: 10.3390/ijms21051593] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
Vascular calcification (VC) is highly associated with cardiovascular disease and all-cause mortality in patients with chronic kidney disease. Dysregulation of endothelial cells and vascular smooth muscle cells (VSMCs) is related to VC. Sirtuin-1 (Sirt1) deacetylase encompasses a broad range of transcription factors that are linked to an extended lifespan. Sirt1 enhances endothelial NO synthase and upregulates FoxOs to activate its antioxidant properties and delay cell senescence. Sirt1 reverses osteogenic phenotypic transdifferentiation by influencing RUNX2 expression in VSMCs. Low Sirt1 hardly prevents acetylation by p300 and phosphorylation of β-catenin that, following the facilitation of β-catenin translocation, drives osteogenic phenotypic transdifferentiation. Hyperphosphatemia induces VC by osteogenic conversion, apoptosis, and senescence of VSMCs through the Pit-1 cotransporter, which can be retarded by the sirt1 activator resveratrol. Proinflammatory adipocytokines released from dysfunctional perivascular adipose tissue (PVAT) mediate medial calcification and arterial stiffness. Sirt1 ameliorates release of PVAT adipokines and increases adiponectin secretion, which interact with FoxO 1 against oxidative stress and inflammatory arterial insult. Conclusively, Sirt1 decelerates VC by means of influencing endothelial NO bioavailability, senescence of ECs and VSMCs, osteogenic phenotypic transdifferentiation, apoptosis of VSMCs, ECM deposition, and the inflammatory response of PVAT. Factors that aggravate VC include vitamin D deficiency-related macrophage recruitment and further inflammation responses. Supplementation with vitamin D to adequate levels is beneficial in improving PVAT macrophage infiltration and local inflammation, which further prevents VC.
Collapse
|
8
|
Mahdi A, Kövamees O, Pernow J. Improvement in endothelial function in cardiovascular disease - Is arginase the target? Int J Cardiol 2019; 301:207-214. [PMID: 31785959 DOI: 10.1016/j.ijcard.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023]
Abstract
Endothelial dysfunction represents an early change in the vascular wall in areas prone to atherosclerotic plaque formation and is present in association with several risk factors for cardiovascular disease. The underlying mechanisms behind endothelial dysfunction are multifactorial and complex. Arginase has emerged as a key player in the regulation of endothelial integrity by the ability of reciprocally inhibits nitric oxide formation and promoting oxidative stress. A chain of evidence suggest that arginase is implicated in the pathogenesis underlying endothelial dysfunction induced by several cardiovascular risk factors and established cardiovascular disease including diabetes, hypercholesteremia, ischemia/reperfusion, atherosclerosis, obesity, ageing and hypertension. Recent data has unveiled a key role of arginase as one of the key mechanisms underlying endothelial dysfunction in diabetes and may serve as a potential therapeutic target in previously overlooked compartments including red blood cells. The current review is devoted to discuss arginase as a key mediator in endothelial dysfunction and the potential for therapeutic possibilities to target this enzyme in various diseases, especially type 2 diabetes, atherosclerosis and ischemia/reperfusion with focus on translational and clinical aspects. Moreover, approaches of how and in which patient group(s) arginase may be targeted in future clinical trials are discussed.
Collapse
Affiliation(s)
- Ali Mahdi
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden
| | - Oskar Kövamees
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Division of Cardiology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
9
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
10
|
Altered foetoplacental vascular endothelial signalling to insulin in diabesity. Mol Aspects Med 2019; 66:40-48. [DOI: 10.1016/j.mam.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022]
|
11
|
Ashley Z, Mugloo S, McDonald FJ, Fronius M. Epithelial Na + channel differentially contributes to shear stress-mediated vascular responsiveness in carotid and mesenteric arteries from mice. Am J Physiol Heart Circ Physiol 2018; 314:H1022-H1032. [PMID: 29373035 DOI: 10.1152/ajpheart.00506.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A potential "new player" in arteries for mediating shear stress responses is the epithelial Na+ channel (ENaC). The contribution of ENaC as shear sensor in intact arteries, and particularly different types of arteries (conduit and resistance), is unknown. We investigated the role of ENaC in both conduit (carotid) and resistance (third-order mesenteric) arteries isolated from C57Bl/6J mice. Vessel characteristics were determined at baseline (60 mmHg, no flow) and in response to increased intraluminal pressure and shear stress using a pressure myograph. These protocols were performed in the absence and presence of the ENaC inhibitor amiloride (10 µM) and after inhibition of endothelial nitric oxide synthase (eNOS) by Nω-nitro-l-arginine methyl ester (l-NAME; 100 µM). Under no-flow conditions, amiloride increased internal and external diameters of carotid (13 ± 2%, P < 0.05) but not mesenteric (0.5 ± 0.9%, P > 0.05) arteries. In response to increased intraluminal pressure, amiloride had no effect on the internal diameter of either type of artery. However, amiloride affected the stress-strain curves of mesenteric arteries. With increased shear stress, ENaC-dependent effects were observed in both arteries. In carotid arteries, amiloride augmented flow-mediated dilation (9.2 ± 5.3%) compared with control (no amiloride, 6.2 ± 3.3%, P < 0.05). In mesenteric arteries, amiloride induced a flow-mediated constriction (-11.5 ± 6.6%) compared with control (-2.2 ± 4.5%, P < 0.05). l-NAME mimicked the effect of ENaC inhibition and prevented further amiloride effects in both types of arteries. These observations indicate that ENaC contributes to shear sensing in conduit and resistance arteries. ENaC-mediated effects were associated with NO production but may involve different (artery-dependent) downstream signaling pathways. NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) contributes to shear sensing in conduit and resistance arteries. In conduit arteries ENaC has a role as a vasoconstrictor, whereas in resistance arteries ENaC contributes to vasodilation. Interaction of ENaC with endothelial nitric oxide synthase/nitric oxide signaling to mediate the effects is supported; however, cross talk with other shear stress-dependent signaling pathways cannot be excluded.
Collapse
Affiliation(s)
- Zoe Ashley
- Department of Physiology, University of Otago , Dunedin , New Zealand.,HeartOtago, University of Otago , Dunedin , New Zealand
| | - Sama Mugloo
- Department of Physiology, University of Otago , Dunedin , New Zealand.,HeartOtago, University of Otago , Dunedin , New Zealand
| | - Fiona J McDonald
- Department of Physiology, University of Otago , Dunedin , New Zealand
| | - Martin Fronius
- Department of Physiology, University of Otago , Dunedin , New Zealand.,HeartOtago, University of Otago , Dunedin , New Zealand
| |
Collapse
|
12
|
Rapoport RM, Merkus D. Endothelin-1 Regulation of Exercise-Induced Changes in Flow: Dynamic Regulation of Vascular Tone. Front Pharmacol 2017; 8:517. [PMID: 29114220 PMCID: PMC5660699 DOI: 10.3389/fphar.2017.00517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Although endothelin (ET)-1 is a highly potent vasoconstrictor with considerable efficacy in numerous vascular beds, the role of endogenous ET-1 in the regulation of vascular tone remains unclear. The perspective that ET-1 plays little role in the on-going regulation of vascular tone at least under physiologic conditions is supported by findings that potential ET-1 constriction is minimized by the release of the vasodilator and ET-1 synthesis inhibitor, nitric oxide (NO). Indeed, ET-1 release and constriction is self-limited by ET-1-induced, endothelial ETB receptor-mediated release of NO. Moreover, even if the balance between ET-1 and NO were reversed as the result of lowered NO activity, as occurs in a number of pathophysiologies associated with endothelial dysfunction, the well-known resistance of ET-1 constriction to reversal (as determined with exogenous ET-1) precludes ET-1 in the dynamic, i.e., moment-to-moment, regulation of vascular tone. On the other hand, and as presently reviewed, findings of ET-1-dependent modulation of organ blood flow with exercise under physiologic conditions demonstrate the dynamic regulation of vascular tone by ET-1. We speculate that this regulation is mediated at least in part through changes in ET-1 synthesis/release caused by pulsatile flow-induced shear stress and NO.
Collapse
Affiliation(s)
- Robert M Rapoport
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus University Medical School Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
13
|
Cardiovascular risk and the effect of nitric oxide synthase inhibition in female rats: The role of estrogen. Exp Gerontol 2017; 97:38-48. [DOI: 10.1016/j.exger.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022]
|
14
|
Endothelin-1: Biosynthesis, Signaling and Vasoreactivity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:143-75. [PMID: 27451097 DOI: 10.1016/bs.apha.2016.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endothelin-1 (ET-1) is an extremely potent vasoconstrictor peptide originally isolated from endothelial cells. Its synthesis, mainly regulated at the gene transcription level, involves processing of a precursor by a furin-type proprotein convertase to an inactive intermediate, big ET-1. The latter peptide can then be cleaved directly by an endothelin-converting enzyme (ECE) into ET-1 or reach the active metabolite through a two-step process involving chymase hydrolyzing big ET-1 to ET-1 (1-31), itself needing conversion to ET-1 by neprilysin (NEP) to exert physiological activity. ET-1 signals through two G protein-coupled receptors, endothelin receptor A (ETA) and endothelin receptor B (ETB). Both receptors induce an increase in intracellular Ca(2+), mainly from the extracellular space through voltage-independent mechanisms, the receptor-operated channels and store-operated channels. ET-1 also induces signaling through epidermal growth factor receptor transactivation, oxidative stress induction, rho-kinase, and the activation (ETA) or inhibition (ETB) of the adenylate cyclase/cyclic adenosine monophosphate pathway. Arterial vasoconstriction is mediated mainly by the ETA receptor. ET-1, via endothelium-located ETB, relaxes arteries or constricts vessels following activation of the same receptor type on the smooth muscle, where it can interact with ETA. In addition, ETB-dependent vasoconstriction seems more prominent in the venous vasculature. A better understanding of how ET-1 is synthesized and how ETA and ETB receptors interact could help design better pharmacological agents in the treatment of cardiovascular diseases where targeting the ET-1 system is indicated.
Collapse
|
15
|
Aguirre JA, Lucchinetti E, Clanachan AS, Plane F, Zaugg M. Unraveling Interactions Between Anesthetics and the Endothelium. Anesth Analg 2016; 122:330-48. [DOI: 10.1213/ane.0000000000001053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Yoon S, Zuccarello M, Rapoport RM. Acute negative coupling of endothelial nitric oxide to endothelin-1 release: Support from nitric oxide synthase inhibitors? Int J Cardiol 2016; 202:646-8. [DOI: 10.1016/j.ijcard.2015.09.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
|
17
|
Abstract
The amiloride-sensitive epithelial Na(+) channel (ENaC) is a key player in the regulation of Na(+) homeostasis. Its functional activity is under continuous control by a variety of signaling molecules, including bioactive peptides of endothelin family. Since ENaC dysfunction is causative for disturbances in total body Na(+) levels associated with the abnormal regulation of blood volume, blood pressure, and lung fluid balance, uncovering the molecular mechanisms of inhibitory modulation or inappropriate activation of ENaC is crucial for the successful treatment of a variety of human diseases including hypertension. The precise regulation of ENaC is particularly important for normal Na(+) and fluid homeostasis in organs where endothelins are known to act: the kidneys, lung, and colon. Inhibition of ENaC by endothelin-1 (ET-1) has been established in renal cells, and several molecular mechanisms of inhibition of ENaC by ET-1 are proposed and will be reviewed in this chapter.
Collapse
Affiliation(s)
- Andrey Sorokin
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
18
|
|
19
|
Towiwat P, Phattanarudee S, Maher TJ, Ally A. Modulation of inducible nitric oxide synthase (iNOS) expression and cardiovascular responses during static exercise following iNOS antagonism within the ventrolateral medulla. Mol Cell Biochem 2014; 398:185-94. [PMID: 25234194 DOI: 10.1007/s11010-014-2218-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Previous reports indicate that inducible nitric oxide synthase (iNOS) blockade within the rostral ventrolateral medulla (RVLM) and caudal ventrolateral medulla (CVLM) differentially modulated cardiovascular responses, medullary glutamate, and GABA concentrations during static skeletal muscle contraction. In the current study, we determined the role of iNOS antagonism within the RVLM and CVLM on cardiovascular responses and iNOS protein expression during the exercise pressor reflex in anesthetized rats. Following 120 min of bilateral microdialysis of a selective iNOS antagonist, aminoguanidine (AGN; 10 µM), into the RVLM, the pressor responses were attenuated by 72 % and changes in heart rate were reduced by 38 % during a static muscle contraction. Furthermore, western blot analysis of iNOS protein abundance within the RVLM revealed a significant attenuation when compared to control animals. In contrast, bilateral administration of AGN (10 µM) into the CVLM augmented the increases in mean arterial pressure by 60 % and potentiated changes in heart rate by 61 % during muscle contractions, but did not alter expression of the iNOS protein within the CVLM. These results demonstrate that iNOS protein expression within the ventrolateral medulla is differentially regulated by iNOS blockade that may, in part, contribute to the modulation of cardiovascular responses during static exercise.
Collapse
Affiliation(s)
- Pasarapa Towiwat
- Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | |
Collapse
|
20
|
Wang F, Guo X, Shen X, Kream RM, Mantione KJ, Stefano GB. Vascular dysfunction associated with type 2 diabetes and Alzheimer's disease: a potential etiological linkage. Med Sci Monit Basic Res 2014; 20:118-29. [PMID: 25082505 PMCID: PMC4138067 DOI: 10.12659/msmbr.891278] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endothelium performs a crucial role in maintaining vascular integrity leading to whole organ metabolic homeostasis. Endothelial dysfunction represents a key etiological factor leading to moderate to severe vasculopathies observed in both Type 2 diabetic and Alzheimer’s Disease (AD) patients. Accordingly, evidence-based epidemiological factors support a compelling hypothesis stating that metabolic rundown encountered in Type 2 diabetes engenders severe cerebral vascular insufficiencies that are causally linked to long term neural degenerative processes in AD. Of mechanistic importance, Type 2 diabetes engenders an immunologically mediated chronic pro-inflammatory state involving interactive deleterious effects of leukocyte-derived cytokines and endothelial-derived chemotactic agents leading to vascular and whole organ dysfunction. The long term negative consequences of vascular pro-inflammatory processes on the integrity of CNS basal forebrain neuronal populations mediating complex cognitive functions establish a striking temporal comorbidity of AD with Type 2 diabetes. Extensive biomedical evidence supports the pivotal multi-functional role of constitutive nitric oxide (NO) production and release as a critical vasodilatory, anti-inflammatory, and anti-oxidant, mechanism within the vascular endothelium. Within this context, we currently review the functional contributions of dysregulated endothelial NO expression to the etiology and persistence of Type 2 diabetes-related and co morbid AD-related vasculopathies. Additionally, we provide up-to-date perspectives on critical areas of AD research with special reference to common NO-related etiological factors linking Type 2 diabetes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternit and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xirong Guo
- Institutes of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xiaofeng Shen
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| |
Collapse
|