1
|
Dey S, Dinakar YH, R S, Jain V, Jain R. Navigating the therapeutic landscape for breast cancer: targeting breast cancer stem cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2387-2406. [PMID: 39441235 DOI: 10.1007/s00210-024-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer is a common and deadly malignancy that affects women globally, and breast cancer stem cells (BCSCs) play an important role in tumorigenesis, development, metastasis, and recurrence. Traditional therapies often fail to eliminate BCSCs, leading to treatment resistance and relapse. This review explores the therapeutic strategies which are designed to target BCSCs, including inhibition of key signaling pathway and targeting receptor. This paper also explores the approaches to targeting BCSCs including chemotherapy, phytomedicines, and nanotechnology. Nanotechnology has gained a lot of importance in cancer therapy because of its ability to deliver therapeutic agents with more precision and minimal side effects. Various chemotherapeutic drugs, siRNAs, or gene editing tools are delivered efficiently with the use of nanocarriers which target pathways, receptors, and proteins associated with BCSCs. Over the past few years, stimuli-responsive and receptor-targeted nanocarriers have been explored for better therapeutic effects. In recent times, strategies such as chimeric antigen receptor (CAR) T-cell therapy, ablation therapy, and cell-free therapies are explored for targeting these stem cells. This review provides a recent developmental overview of strategies to attack BCSCs from conventional chemotherapeutic agents to nanotechnological platforms such as polymeric, lipidic, and metal-based nanoparticles and advanced technologies like CAR T cell therapies.
Collapse
Affiliation(s)
- Soudeep Dey
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Soundarya R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| |
Collapse
|
2
|
Verma R, Kumar K, Bhatt S, Yadav M, Kumar M, Tagde P, Rajinikanth PS, Tiwari A, Tiwari V, Nagpal D, Mittal V, Kaushik D. Untangling Breast Cancer: Trailing Towards Nanoformulations-based Drug Development. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:76-98. [PMID: 37519201 DOI: 10.2174/1872210517666230731091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127021, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Shailendra Bhatt
- Shrinathji Institute of Pharmacy, Shrinathji Society for Higher Education, Upali Oden, Nathdwara, Rajasmand, Rajasthan, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, 462026, Madhya Pradesh, India
- PRISAL Foundation, Pharmaceutical Royal International Society, New Dehli, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Amebdkar University, Lucknow, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
3
|
Jenča A, Mills DK, Ghasemi H, Saberian E, Jenča A, Karimi Forood AM, Petrášová A, Jenčová J, Jabbari Velisdeh Z, Zare-Zardini H, Ebrahimifar M. Herbal Therapies for Cancer Treatment: A Review of Phytotherapeutic Efficacy. Biologics 2024; 18:229-255. [PMID: 39281032 PMCID: PMC11401522 DOI: 10.2147/btt.s484068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/18/2024]
Abstract
Natural products have proven to be promising anti-cancer agents due to their diverse chemical structures and bioactivity. This review examines their central role in cancer treatment, focusing on their mechanisms of action and therapeutic benefits. Medicinal plants contain bioactive compounds, such as flavonoids, alkaloids, terpenoids and polyphenols, which exhibit various anticancer properties. These compounds induce apoptosis, inhibit cell proliferation and cell cycle progression, interfere with microtubule formation, act on topoisomerase targets, inhibit angiogenesis, modulate key signaling pathways, improve the tumor microenvironment, reverse drug resistance and activate immune cells. Herbal anti-cancer drugs offer therapeutic advantages, particularly selective toxicity against cancer cells, reducing the adverse side effects associated with conventional chemotherapy. Recent studies and clinical trials highlight the benefits of herbal medicines in alleviating side effects, improving tolerance to chemotherapy and the occurrence of synergistic effects with conventional treatments. For example, the herbal medicine SH003 was found to be safe and potentially effective in the treatment of solid cancers, while Fucoidan showed anti-inflammatory properties that are beneficial for patients with advanced cancer. The current research landscape on herbal anticancer agents is extensive. Numerous studies and clinical trials are investigating their efficacy, safety and mechanisms of action in various cancers such as lung, prostate, breast and hepatocellular carcinoma. Promising developments include the polypharmacological approach, combination therapies, immunomodulation and the improvement of quality of life. However, there are still challenges in the development and use of natural products as anti-cancer drugs, such as the need for further research into their mechanisms of action, possible drug interactions and optimal dosage. Standardizing herbal extracts, improving bioavailability and delivery, and overcoming regulatory and acceptance hurdles are critical issues that need to be addressed. Nonetheless, the promising anticancer effects and therapeutic benefits of natural products warrant further investigation and development. Multidisciplinary collaboration is essential to advance herbal cancer therapy and integrate these agents into mainstream cancer treatment.
Collapse
Affiliation(s)
- Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - David K Mills
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadis Ghasemi
- Department of Chemistry, College of Art and Science, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Elham Saberian
- Pavol Jozef Šafárik University, Klinika and Akadémia Košice Bacikova, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | | | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Zeinab Jabbari Velisdeh
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza
| |
Collapse
|
4
|
Tabassum F, Islam SN, Tuz-Zohora F, Hasan CM, Rahman KM, Ahsan M. Isolation of a new iso-quinoline alkaloid and cytotoxicity studies of pure compounds and crude extracts of Ravenia spectabilis engl. Heliyon 2024; 10:e34508. [PMID: 39113993 PMCID: PMC11305309 DOI: 10.1016/j.heliyon.2024.e34508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
A new 2-quinolone alkaloid, iso-oligophyline (1), and two very unusual C34 terpenoids, proposed names ravespanol (2) and ravespanone (3), along with two known compounds, β-sitosterol (4), and methyl linoleate (5), were isolated from the leaf extract of Ravenia spectabilis engl. Methyl linoleate constitutes the first report of isolation from this species. We have already reported the isolation of atanine (6), oligophyline (7), ravenoline (8), and arborinine (9) from the plant. Based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometric analysis, the structure of the isolated chemicals was determined. The crude fractions and four compounds (6,7,8 and 9) were evaluated for a cytotoxicity study on a panel of six human stomach cancer cell lines (SCL, SCL-6, SCL-37'6, SCL-9, K-3, N21) by MTT assay. Among the plant extracts and isolated compounds, petroleum ether fraction and compound 7 exhibited the highest cytotoxic activity against SCL and SCL-6 cells, where the IC50 values were 17.9 and 16.56 μM, respectively.
Collapse
Affiliation(s)
- Fatema Tabassum
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Pharmacy, Stamford University Bangladesh, 51 Siddheswari Rd, Dhaka, 1217, Bangladesh
| | - Sheikh Nazrul Islam
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fatema Tuz-Zohora
- University of Asia Pacific, Department of Pharmacy, 74/A, Green Road, Dhaka, 1205, Bangladesh
| | | | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Monira Ahsan
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
5
|
Manoharan R, Nair CS, Eissa N, Cheng H, Ge P, Ren M, Jaleel A. Therapeutic Potential of Solanum Alkaloids with Special Emphasis on Cancer: A Comprehensive Review. Drug Des Devel Ther 2024; 18:3063-3074. [PMID: 39050799 PMCID: PMC11268566 DOI: 10.2147/dddt.s470925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer has emerged as a formidable global health challenge, with treatment methods like chemotherapy and radiation often exacerbating the situation due to their associated side effects. Opting for natural sources like plants as a safer and environmentally friendly alternative seems promising. Historically, plants have served as valuable sources for treating diverse health conditions, attributable to their rich composition of therapeutic phytochemicals. Within this array of phytochemicals, alkaloids, especially those found in the Solanaceae plant family, are notably prominent. Alkaloids from Solanaceae plant family called Solanum alkaloids demonstrate noteworthy anti-tumour characteristics and exert a potent inhibitory influence on cancer cell proliferation. They trigger programmed cell death in cancerous cells through various molecular pathways, whether administered alone or combined with other medications. Solanum alkaloids act upon cancer cells via multiple mechanisms, including apoptosis induction, suppression of cell growth and migration, as well as inhibition of angiogenesis. This review provides insights into the anti-cancer attributes of Solanum alkaloids found in various Solanum plant species, along with a brief overview of their other medicinal properties.
Collapse
Affiliation(s)
- Ramya Manoharan
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chythra Somanathan Nair
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hao Cheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, People’s Republic of China
| | - Pengliang Ge
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, People’s Republic of China
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Ali K, Nabeel M, Mohsin F, Iqtedar M, Islam M, Rasool MF, Hashmi FK, Hussain SA, Saeed H. Recent developments in targeting breast cancer stem cells (BCSCs): a descriptive review of therapeutic strategies and emerging therapies. Med Oncol 2024; 41:112. [PMID: 38592510 DOI: 10.1007/s12032-024-02347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Despite recent advancements in the diagnosis and treatment of breast cancer (BC), patient outcomes in terms of survival, recurrence, and disease progression remain suboptimal. A significant factor contributing to these challenges is the cellular heterogeneity within BC, particularly the presence of breast cancer stem cells (BCSCs). These cells are thought to serve as the clonogenic nexus for new tumor growth, owing to their hierarchical organization within the tumor. This descriptive review focuses on the evolving strategies to target BCSCs, which have become a pivotal aspect of therapeutic development. We explore a variety of approaches, including targeting specific tumor surface markers (CD133 and CD44), transporters, heat shock proteins, and critical signaling pathways like Notch, Akt, Hedgehog, KLF4, and Wnt/β-catenin. Additionally, we discuss the modulation of the tumor microenvironment through the CXCR-12/CXCR4 axis, manipulation of pH levels, and targeting hypoxia-inducible factors, vascular endothelial growth factor, and CXCR1/2 receptors. Further, this review focuses on the roles of microRNA expression, strategies to induce apoptosis and differentiation in BCSCs, dietary interventions, dendritic cell vaccination, oncolytic viruses, nanotechnology, immunotherapy, and gene therapy. We particularly focused on studies reporting identification of BCSCs, their unique properties and the efficacy of various therapeutic modalities in targeting these cells. By dissecting these approaches, we aim to provide insights into the complex landscape of BC treatment and the potential pathways for improving patient outcomes through targeted BCSC therapies.
Collapse
Affiliation(s)
- Khubaib Ali
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Nabeel
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Fatima Mohsin
- Department of Biological Sciences, KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Mehwish Iqtedar
- Department of Bio-Technology, Lahore College for Women University, Jail Road, Lahore, Pakistan
| | - Muhammad Islam
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Furqan K Hashmi
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Hamid Saeed
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
| |
Collapse
|
7
|
Ahmad J, Ahamad J, Algahtani MS, Garg A, Shahzad N, Ahmad MZ, Imam SS. Nanotechnology-mediated delivery of resveratrol as promising strategy to improve therapeutic efficacy in triple negative breast cancer (TNBC): progress and promises. Expert Opin Drug Deliv 2024; 21:229-244. [PMID: 38344809 DOI: 10.1080/17425247.2024.2317194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) presents unique challenges in diagnosis and treatment. Resveratrol exhibits potential as a therapeutic intervention against TNBC by regulating various pathways such as the PI3K/AKT, RAS/RAF/ERK, PKCδ, and AMPK, leading to apoptosis through ROS-mediated CHOP activationand the expression of DR4 and DR5. However, the clinical efficacy of resveratrol is limited due to its poor biopharmaceutical characteristics and low bioavailability at the tumor site. Nanotechnology offers a promising approach to improving the biopharmaceutical characteristics of resveratrol to achieve clinical efficacy in different cancers. The small dimension (<200 nm) of nanotechnology-mediated drug delivery system is helpful to improve the bioavailability, internalization into the TNBC cell, ligand-specific targeted delivery of loaded resveratrol to tumor site including reversal of MDR (multi-drug resistance) condition. AREAS COVERED This manuscript provides a comprehensive discussion on the structure-activity relationship (SAR), underlying anticancer mechanism, evidence of anticancer activity in in-vitro/in-vivo investigations, and the significance of nanotechnology-mediated delivery of resveratrol in TNBC. EXPERT OPINION Advanced nano-formulations of resveratrol such as oxidized mesoporous carbon nanoparticles, macrophage-derived vesicular system, functionalized gold nanoparticles, etc. have increased the accumulation of loaded therapeutics at the tumor-site, and avoid off-target drug release. In conclusion, nano-resveratrol as a strategy may provide improved tumor-specific image-guided treatment options for TNBC utilizing theranostic approach.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Tishk International University, Erbil, Iraq
| | - Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Anuj Garg
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Liu L, Jiang D, Bai S, Zhang X, Kang Y. Research progress of exosomes in drug resistance of breast cancer. Front Bioeng Biotechnol 2024; 11:1214648. [PMID: 38239920 PMCID: PMC10794616 DOI: 10.3389/fbioe.2023.1214648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/24/2023] [Indexed: 01/22/2024] Open
Abstract
Since breast cancer is a heterogeneous disease, there are currently a variety of treatment methods available, including chemotherapy, endocrine therapy, molecular targeted therapy, immunotherapy, radiation therapy, etc. Breast cancer recurrence and metastasis, despite many treatment modalities, constitute a considerable threat to patients' survival time and pose a clinical challenge that is difficult to tackle precisely. Exosomes have a very special and crucial role in the treatment of drug resistance in breast cancer as a carrier of intercellular communication in the tumor microenvironment. Exosomes and breast cancer treatment resistance have been linked in a growing number of clinical investigations in recent years. This paper covers the status of research on exosomes in the treatment of breast cancer drug resistance and offers theoretical guidance for investigating new strategies to treat breast cancer drug resistance.
Collapse
Affiliation(s)
- Lihui Liu
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Daqing Jiang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Shi Bai
- School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China
| | - Xinfeng Zhang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Kang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Zaarour RF, Ribeiro M, Azzarone B, Kapoor S, Chouaib S. Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance. Front Oncol 2023; 13:1222575. [PMID: 37886168 PMCID: PMC10598765 DOI: 10.3389/fonc.2023.1222575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The role of tumor interaction with stromal components during carcinogenesis is crucial for the design of efficient cancer treatment approaches. It is widely admitted that tumor hypoxic stress is associated with tumor aggressiveness and thus impacts susceptibility and resistance to different types of treatments. Notable biological processes that hypoxia functions in include its regulation of tumor heterogeneity and plasticity. While hypoxia has been reported as a major player in tumor survival and dissemination regulation, the significance of hypoxia inducible factors in cancer stem cell development remains poorly understood. Several reports indicate that the emergence of cancer stem cells in addition to their phenotype and function within a hypoxic tumor microenvironment impacts cancer progression. In this respect, evidence showed that cancer stem cells are key elements of intratumoral heterogeneity and more importantly are responsible for tumor relapse and escape to treatments. This paper briefly reviews our current knowledge of the interaction between tumor hypoxic stress and its role in stemness acquisition and maintenance. Our review extensively covers the influence of hypoxia on the formation and maintenance of cancer stem cells and discusses the potential of targeting hypoxia-induced alterations in the expression and function of the so far known stem cell markers in cancer therapy approaches. We believe that a better and integrated understanding of the effect of hypoxia on stemness during carcinogenesis might lead to new strategies for exploiting hypoxia-associated pathways and their targeting in the clinical setting in order to overcome resistance mechanisms. More importantly, at the present time, efforts are oriented towards the design of innovative therapeutical approaches that specifically target cancer stem cells.
Collapse
Affiliation(s)
- RF. Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - M. Ribeiro
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - B. Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - S. Kapoor
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - S. Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
10
|
Ansari JA, Malik JA, Ahmed S, Bhat FA, Khanam A, Mir SA, Abouzied AS, Ahemad N, Anwar S. Targeting Breast Cancer Signaling via Phytomedicine and Nanomedicine. Pharmacology 2023; 108:504-520. [PMID: 37748454 DOI: 10.1159/000531802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.
Collapse
Affiliation(s)
- Jeba Ajgar Ansari
- Department of Pharmaceutics, Government College of Pharmacy, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sakeel Ahmed
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | | | - Afreen Khanam
- Department of Pharmacology, Jamia Hamdard, New Delhi, India
| | - Suhail Ahmad Mir
- Department of Pharmacy, University of Kashmir, Jammu and Kashmir, India
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Nafees Ahemad
- School of Pharmacy, MONASH University Malaysia, Bandar Sunway, Malaysia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
11
|
Li J, Mahdavi B, Baghayeri M, Rivandi B, Lotfi M, Mahdi Zangeneh M, Zangeneh A, Tayebee R. A new formulation of Ni/Zn bi-metallic nanocomposite and evaluation of its applications for pollution removal, photocatalytic, electrochemical sensing, and anti-breast cancer. ENVIRONMENTAL RESEARCH 2023; 233:116462. [PMID: 37352956 DOI: 10.1016/j.envres.2023.116462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Nanocomposites have gained attention due to their variety of applications in different fields. In this research, we have reported a green synthesis of a bi-metallic nanocomposite of nickel and zinc using an aqueous extract of Citrus sinensis in the presence of chitosan (Ni/Zn@orange/chitosan). The nanocomposite was characterized using different techniques. We have examined various applications for Ni/Zn@orange/chitosan. The NPs were manufactured in spherical morphology with a particle range size of 17.34-90.51 nm. Ni/Zn@orange/chitosan showed an acceptable ability to remove dyes of Congo red and methyl orange from an aqueous solution after 80 min furthermore, it uptaking the drug mefenamic acid from a solution. Ni/Zn@orange/chitosan also exhibited great photocatalytic activity in synthesizing benzimidazole using benzyl alcohol and o-phenylenediamine. Ni/Zn@orange/chitosan was found as a potent electrochemical sensor to determine glucose. In the molecular and cellular section of the current research, the cells with composite nanoparticles were studied by MTT way about the anti-breast adenocarcinoma potentials malignant cell lines. The IC50 of composite nanoparticles were 320, 460, 328, 500, 325, 379, 350, and 396 μg/mL concering RBA, NMU, SK-BR-3, CAMA-1, MCF7, AU565, MDA-MB-468, and Hs 281.T breast adenocarcinoma cell lines, respectively. The results revealed the newly synthesized nanocomposite is a potent photocatalyst, dye pollution removal agent, and an acceptable new drug to treat breast cancer.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, China.
| | - Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Behnaz Rivandi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Maryam Lotfi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mohammad Mahdi Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Akram Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Tayebee
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
12
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
13
|
Passalacqua MI, Rizzo G, Santarpia M, Curigliano G. 'Why is survival with triple negative breast cancer so low? insights and talking points from preclinical and clinical research'. Expert Opin Investig Drugs 2022; 31:1291-1310. [PMID: 36522800 DOI: 10.1080/13543784.2022.2159805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Triple negative breast cancer is typically related to poor prognosis, early metastasis, and high recurrence rate. Intrinsic and extrinsic biological features of TNBC and resistance mechanisms to conventional therapies can support its aggressive behavior, characterizing TNBC how extremely heterogeneous. Novel combination strategies are under investigation, including immunotherapeutic agents, anti-drug conjugates, PARP inhibitors, and various targeting agents, exploring, in the meanwhile, possible predictive biomarkers to correctly select patients for the optimal treatment for their specific subtype. AREAS COVERED This article examines the main malignity characteristics across different subtype, both histological and molecular, and the resistance mechanisms, both primary and acquired, to different drugs explored in the landscape of TNBC treatment, that lead TNBC to still has high mortality rate. EXPERT OPINION The complexity of TNBC is not only the main reason of its aggressivity, but its heterogeneity should be exploited in terms of therapeutics opportunities, combining agents with different mechanism of action, after a correct selection by biologic or molecular biomarkers. The main goal is to understand what TNBC really is and to act selectively on its characteristics, with a personalized anticancer treatment.
Collapse
Affiliation(s)
- Maria Ilenia Passalacqua
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Graziella Rizzo
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| |
Collapse
|
14
|
Tian S, Su R, Wu K, Zhou X, Vadgama JV, Wu Y. Diaporine Potentiates the Anticancer Effects of Oxaliplatin and Doxorubicin on Liver Cancer Cells. J Pers Med 2022; 12:1318. [PMID: 36013267 PMCID: PMC9410505 DOI: 10.3390/jpm12081318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
Recent studies have shown that diaporine, a novel fungal metabolic product, has a strong in vitro and in vivo anticancer effect on human non-small-cell lung and breast cancers. In this study, three human hepatocarcinoma cell lines (HepG2, Hep3B, and Huh7) were used to evaluate the efficacy of diaporine alone and in combination with the standard cytotoxic drugs oxaliplatin and doxorubicin for the treatment of liver cancer. We demonstrated that diaporine, oxaliplatin, and doxorubicin triggered a concentration- and time-dependent decrease in the number of HepG2 cells. Diaporine at a concentration of 2.5 μM showed almost 100% inhibition of cell counts at 72 h. Similar effects were observed only with much higher concentrations (100 μM) of oxaliplatin or doxorubicin. Decreases in cell numbers after 48 h treatment with diaporine, oxaliplatin, and doxorubicin were also demonstrated in two additional hepatoma cell lines, Hep3B and Huh7. The combination of these drugs at low concentration for 48 h in vitro noticeably showed that diaporine improved the inhibitory effect on the number of cancer cells induced by oxaliplatin or doxorubicin. Additionally, this combination effectively inhibited colony growth in vitro. We found that inhibition of phosphorylation of ERK1/2 significantly increased when diaporine was used in combination with other agents. In addition, we also found that when diaporine was used in combination with doxorubicin or oxaliplatin, their proapoptotic effect greatly increased. We further revealed that the induction of apoptosis in hepatoma cells after treatment is due, at least in part, to the inhibition of phosphorylation of AKT, leading to the activation of caspase-3, inactivation of poly (ADP-ribose) polymerase (PARP), and subsequently to DNA damage, as indicated by the increased level of H2AX. Based on these findings, we suggest that diaporine in combination with the standard cytotoxic drugs oxaliplatin and doxorubicin may play a role in the treatment of liver cancer.
Collapse
Affiliation(s)
- Shiliu Tian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
- Fujian Sports Vocational Education and Technical College, Fuzhou 350001, China
| | - Rui Su
- College of Engineering, University of California, Berkeley, CA 94720, USA
| | - Ke Wu
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA 90095, USA
| | - Xuhan Zhou
- Fulgent Life Inc., Irvine, CA 92620, USA
| | - Jaydutt V. Vadgama
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA 90095, USA
| | - Yong Wu
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Pan Y, Zhou S, Liu C, Ma X, Xing J, Parshad B, Li W, Wu A, Haag R. Dendritic Polyglycerol-Conjugated Gold Nanostars for Metabolism Inhibition and Targeted Photothermal Therapy in Breast Cancer Stem Cells. Adv Healthc Mater 2022; 11:e2102272. [PMID: 34990518 PMCID: PMC11468648 DOI: 10.1002/adhm.202102272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer stem cells (CSCs) are believed to be responsible for tumor initiation, invasion, metastasis, and recurrence, which lead to treatment failure. Thus, developing effective CSC-targeted therapeutic strategies is crucial for enhancing therapeutic efficacy. In this work, GNSs-dPG-3BP, TPP, and HA nanocomposite particles are developed by simultaneously conjugating hexokinase 2 (HK2) inhibitor 3-bromopyruvate (3BP), mitochondrial targeting molecule triphenyl phosphonium (TPP), and CSCs targeting agent hyaluronic acid (HA) onto gold nanostars-dendritic polyglycerol (GNSs-dPG) nanoplatforms for efficient eradication of CSCs. The nanocomposite particles possess good biocompatibility and exhibit superior mitochondrial-bound HK2 binding ability via 3BP to inhibit metabolism, and further induce cellular apoptosis by releasing the cytochrome c. Therefore, it enhanced the therapeutic efficacy of CSCs-specific targeted photothermal therapy (PTT), and achieved a synergistic effect for the eradication of breast CSCs. After administration of the synergistic treatment, the self-renewal of breast CSCs and the stemness gene expression are suppressed, CSC-driven mammosphere formation is diminished, the in vivo tumor growth is effectively inhibited, and CSCs are eradicated. Altogether, GNSs-dPG-3BP, TPP, and HA nanocomposite particles have been developed, which will provide a novel strategy for precise and highly efficient targeted eradication of CSCs.
Collapse
Affiliation(s)
- Yuanwei Pan
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 3Berlin14195Germany
| | - Suqiong Zhou
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 3Berlin14195Germany
| | - Chuang Liu
- Cixi Institute of Biomedical EngineeringCAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang ProvinceNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Xuehua Ma
- Cixi Institute of Biomedical EngineeringCAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang ProvinceNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Jie Xing
- Cixi Institute of Biomedical EngineeringCAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang ProvinceNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Badri Parshad
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 3Berlin14195Germany
| | - Wenzhong Li
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 3Berlin14195Germany
| | - Aiguo Wu
- Cixi Institute of Biomedical EngineeringCAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang ProvinceNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 3Berlin14195Germany
| |
Collapse
|
16
|
Grover M, Behl T, Sehgal A, Singh S, Sharma N, Virmani T, Rachamalla M, Farasani A, Chigurupati S, Alsubayiel AM, Felemban SG, Sanduja M, Bungau S. In Vitro Phytochemical Screening, Cytotoxicity Studies of Curcuma longa Extracts with Isolation and Characterisation of Their Isolated Compounds. Molecules 2021; 26:7509. [PMID: 34946592 PMCID: PMC8705887 DOI: 10.3390/molecules26247509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022] Open
Abstract
The Curcuma longa plant is endowed with multiple traditional and therapeutic utilities and is here explored for its phytochemical constituents and cytotoxic potential. Turmeric rhizomes were extracted from three different solvents and screened for the presence of different phytochemical constituents, observation of which indicated that the polar solvents favoured extraction of greater versatile phytochemical constituents. These extracts were investigated for their cytotoxic potential by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on three different of cell lines including SCC-29B (oral cancer cell line), DU-145 (prostate cancer cell line) and the Vero cell line (healthy cell line/non-cancerous cell line). This assay was performed by taking three extracts from isolated curcuminoids and a pure bioactive compound bisdemethoxycurcumin (BD). Bisdemethoxycurcumin was isolated from curcuminoids and purified by column and thin-layer chromatography, and its structural characterisation was performed with different spectroscopic techniques such as FTIR, NMR (1H Proton and 13C Carbon-NMR) and LC-MS. Amongst the extracts, the ethanolic extracts exhibited stronger cytotoxic potential against the oral cancer cell line (SCC-29B) with an IC50value of 11.27 μg/mL, and that this was too low of a cytotoxicity against the Vero cell line. Although, curcuminoids have also shown a comparable cytotoxic potential against SCC-29B (IC50 value 16.79 μg/mL), it was not as potent against the ethanolic extract, and it was even found to be cytotoxic against healthy cell lines at a very low dose. While considering the isolated compound, bisdemethoxycurcumin, it also possessed a cytotoxic potential against the prostate cancer cell line (DU-145) (IC50 value of 93.28 μg/mL), but was quite safe for the healthy cell line in comparison to doxorubicin.
Collapse
Affiliation(s)
- Madhuri Grover
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada;
| | - Abdullah Farasani
- Biomedical Research Unit, Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Amal M. Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Mohit Sanduja
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
17
|
Zaghary WA, Elansary MM, Shouman DN, Abdelrahim AA, Abu-Zied KM, Sakr TM. Can nanotechnology overcome challenges facing stem cell therapy? A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Pan Y, Ma X, Liu C, Xing J, Zhou S, Parshad B, Schwerdtle T, Li W, Wu A, Haag R. Retinoic Acid-Loaded Dendritic Polyglycerol-Conjugated Gold Nanostars for Targeted Photothermal Therapy in Breast Cancer Stem Cells. ACS NANO 2021; 15:15069-15084. [PMID: 34420298 DOI: 10.1021/acsnano.1c05452] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The existence of cancer stem cells (CSCs) poses a major obstacle for the success of current cancer therapies, especially the fact that non-CSCs can spontaneously turn into CSCs, which lead to the failure of the treatment and tumor relapse. Therefore, it is very important to develop effective strategies for the eradication of the CSCs. In this work, we have developed a CSCs-specific targeted, retinoic acid (RA)-loaded gold nanostars-dendritic polyglycerol (GNSs-dPG) nanoplatform for the efficient eradication of CSCs. The nanocomposites possess good biocompatibility and exhibit effective CSCs-specific multivalent targeted capability due to hyaluronic acid (HA) decorated on the multiple attachment sites of the bioinert dendritic polyglycerol (dPG). With the help of CSCs differentiation induced by RA, the self-renewal of breast CSCs and tumor growth were suppressed by the high therapeutic efficacy of photothermal therapy (PTT) in a synergistic inhibitory manner. Moreover, the stemness gene expression and CSC-driven tumorsphere formation were significantly diminished. In addition, the in vivo tumor growth and CSCs were also effectively eliminated, which indicated superior anticancer activity, effective CSCs suppression, and prevention of relapse. Taken together, we developed a CSCs-specific targeted, RA-loaded GNSs-dPG nanoplatform for the targeted eradication of CSCs and for preventing the relapse.
Collapse
Affiliation(s)
- Yuanwei Pan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Suqiong Zhou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Badri Parshad
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam, Nuthetal 14558, Germany
| | - Wenzhong Li
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
19
|
Askar MA, El Shawi OE, Abou Zaid OAR, Mansour NA, Hanafy AM. Breast cancer suppression by curcumin-naringenin-magnetic-nano-particles: In vitro and in vivo studies. Tumour Biol 2021; 43:225-247. [PMID: 34542050 DOI: 10.3233/tub-211506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The limitations of surgery, radiotherapy, and chemotherapy in cancer treatment and the increase in the application of nanomaterials in the field of biomedicine have promoted the use of nanomaterials in combination with radiotherapy for cancer treatment. OBJECTIVE To improve the efficiency of cancer treatment, curcumin-naringenin loaded dextran-coated magnetic nanoparticles (CUR-NAR-D-MNPs) were used as chemotherapy and in combination with radiotherapy to verify their effectiveness in treating tumors. METHODS CUR-NAR-D-MNPs were prepared and studied by several characterization methods. Median inhibitory concentration (IC50) and cellular toxicity were evaluated by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell death and radiosensitization were studied by acridine orange/ethidium bromide dual staining of MCF-7 human breast cancer cells. RESULTS CUR-NAR-D-MNPs induce apoptosis and inhibited cell proliferation through reactive oxygen species (ROS) generation. CUR-NAR-D-MNPs used alone had a certain therapeutic effect on tumors. CUR-NAR-D-MNPs plus radiotherapy significantly reduced the tumor volume and led to cell cycle arrest and induction of apoptosis through modulation of P53high, P21high, TNF-αlow, CD44low, and ROShigh signalingCONCLUSIONS:CUR-NAR-D-MNPs are effective in the treatment of tumors when combined with radiotherapy, and show radiosensitization effects against cancer proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- Mostafa A Askar
- Department of Radiation Biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Omama E El Shawi
- Department of Health and Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Omayma A R Abou Zaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Benha, Egypt
| | - Nahla A Mansour
- Department of Petrochemicals, Petroleum Research Institute, Cairo, Egypt
| | - Amal M Hanafy
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Benha, Egypt
| |
Collapse
|
20
|
Patel A, Vanecha R, Patel J, Patel D, Shah U, Bambharoliya T. Development of Natural Bioactive Alkaloids: Anticancer perspective. Mini Rev Med Chem 2021; 22:200-212. [PMID: 34254913 DOI: 10.2174/1389557521666210712111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/11/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a frightful disease that still poses a 'nightmare' worldwide, causing millions of casualties annually due to one of the human race's most significant healthcare challenges that requires a pragmatic treatment strategy. However, plants and plant-derived products revolutionize the field as they are quick, cleaner, eco-friendly, low-cost, effective, and less toxic than conventional treatment methods. Plants are repositories for new chemical entities and have a promising cancer research path, supplying 60% of the anticancer agents currently used. Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery and development. However, some alkaloids derived from natural herbs display anti-proliferation and antimetastatic activity on different forms of cancer, both in vitro and in vivo. Alkaloids have also been widely formulated as anticancer medications, such as camptothecin and vinblastine. Still, more research and clinical trials are required before final recommendations can be made on specific alkaloids. This review focuses on the naturally-derived bioactive alkaloids with prospective anticancer properties based on the information in the literature.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Ravi Vanecha
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Jay Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Divy Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | | |
Collapse
|
21
|
Theranostics for Breast Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1187:267-281. [PMID: 33983583 DOI: 10.1007/978-981-32-9620-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effectively targeting and treating breast cancer stem cells (BCSCs), which have been linked to tumor development and metastasis, and recurrence still remains a challenging issue in preclinic and clinic. Screening and identifying characteristic BCSC biomarkers is important for distinguishing BCSCs from differentiated tumor cells within the tumor mass. Molecular imaging and nanotechnology are evolving as new fields that have a potentially high research and clinical impact. Developing the biocompatible contrast agents conjugated with high-affinity biomarker to selectively target BCSCs and is one of the key prerequisites for image-guided diagnosis and monitoring therapy of BCSCs. Very recently, we documented the extra domain-B fibronectin (EDB-FN), which is considered as a new putative biomarker for BCSCs (NDY-1 cell) derived from human breast carcinosarcoma. We here review BCSC-targeted theranostics in vitro and in vivo by delivering siRNA or drug using the nanoparticles conjugated with a small peptide specific to EDB-FN.
Collapse
|
22
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Development of a New Nanocarrier for Dietary Garcinol: Characterization and In Vitro Efficacy Evaluation Using Breast Cancer Stem Cells Grown in Hypoxia. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6654211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Garcinol (GA), a polyisoprenylated benzophenone derivative, is one of the major phytochemicals found in a number of fruits of Garcinia. This study aimed to develop a new nanodelivery system comprising GA, hyaluronic acid (HA), and poly(lactic-co-glycolic acid) (PLGA) to actively target breast cancer stem cells (bCSCs) grown under hypoxic conditions. HA has been reported to show higher affinity for the cluster-determinant 44 receptor (CD44), while PLGA is an FDA-approved biodegradable polymer used in clinical applications. Nanoparticles (NPs) were prepared by emulsion solvent diffusion technique using DMAB as the emulsifier. Following preparation, particle size, surface charge, and polydispersity index of NPs were characterized. Antiproliferative effects of NPs were assessed by the WST-1 cell proliferation assay. Apoptotic effects of NPs were evaluated by the caspase-3/7 assay. Effects of prepared NPs on the expression of genes related to hypoxia-inducing factors (HIF-1α and HIF-2α) and notch ligands (DLL1 and Jagged1) were evaluated using real-time PCR. HA-coated garcinol-loaded NPs (HA-GA-NPs) showed greater antiproliferative effects in bCSCs grown under hypoxia. Moreover, HA-GA-NPs showed an improved cellular uptake via receptor-mediated endocytosis compared to non-HA-coated GA-NPs. Exposure to GA-HA-NPs resulted in a significant downregulation in hypoxia-inducing factors and notch pathway-related genes. Activation of caspase-3/7 confirmed the HA-GA-NPs can induce apoptosis in bCSCs. Overall findings of the study confirm that HA-GA-NPs can be considered as an effective nanodelivery system to target bCSCs grown under the hypoxic microenvironment.
Collapse
|
24
|
Ansari MA, Thiruvengadam M, Farooqui Z, Rajakumar G, Sajid Jamal QM, Alzohairy MA, Almatroudi A, Alomary MN, Chung IM, Al-Suhaimi EA. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin Cancer Biol 2021; 69:109-128. [PMID: 31891780 DOI: 10.1016/j.semcancer.2019.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX, 77204, United States
| | - Govindaswamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al-Bukayriyah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad N Alomary
- National Center of Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ebtesam Abdullah Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia; Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
25
|
Chowdhury S, Ghosh S. Nanoparticles and Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Repurposing of Fluvastatin as an Anticancer Agent against Breast Cancer Stem Cells via Encapsulation in a Hyaluronan-Conjugated Liposome. Pharmaceutics 2020; 12:pharmaceutics12121133. [PMID: 33255298 PMCID: PMC7760927 DOI: 10.3390/pharmaceutics12121133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fluvastatin (FLUVA), which is a common anti-hypercholesterolemia drug, exhibits potential anticancer activity as it suppresses the proliferation, angiogenesis, and metastasis of breast cancer cells via inhibiting 3-hydroxy-methyl glutaryl-coenzyme A (HMG-CoA) reductase. In this study, hyaluronan-conjugated FLUVA-encapsulating liposomes (HA-L-FLUVA) were evaluated for their anticancer efficacy in vitro and in vivo. The particle size, zeta potential, and encapsulation efficiency of HA-L-FLUVA were 158.36 ± 1.78 nm, −24.85 ± 6.26 mV, and 35%, respectively. Growth inhibition of breast cancer stem cells (BCSCs) by HA-L-FLUVA was more effective than that by free FLUVA. The half maximal inhibitory concentration (IC50) values of FLUVA, L-FLVUA, and HA-L-FLUVA were 0.16, 0.17, and 0.09 μM, respectively. The in vivo anticancer effect of HA-L-FLUVA in combination with doxorubicin (DOX) was more effective than that of free FLUVA, free DOX, and HA-L-FLUVA. The longest survival of mice was achieved by treatment with FLUVA (15 mg/kg) and HA-L-FLUVA (15 mg/kg) + DOX (3 mg/kg), followed by HA-L-FLUVA (15 mg/kg), Dulbecco’s phosphate buffered saline, and DOX (3 mg/kg). No more than 10% body weight loss was observed in the mice injected with FLUVA, indicating that the drug was not toxic. Taken together, these results indicate that HA-L-FLUVA could serve as an effective anticancer drug by inhibiting the growth of both breast cancer cells and cancer stem cells.
Collapse
|
27
|
He L, Yu A, Deng L, Zhang H. Eradicating the Roots: Advanced Therapeutic Approaches Targeting Breast Cancer Stem Cells. Curr Pharm Des 2020; 26:2009-2021. [PMID: 32183663 DOI: 10.2174/1381612826666200317132949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/08/2020] [Indexed: 12/30/2022]
Abstract
Accumulating evidences have demonstrated that the existence of breast cancer-initiating cells, which drives the original tumorigenicity, local invasion and migration propensity of breast cancer. These cells, termed as breast cancer stem cells (BCSCs), possess properties including self-renewal, multidirectional differentiation and proliferative potential, and are believed to play important roles in the intrinsic drug resistance of breast cancer. One of the reasons why BCBCs cause difficulties in breast cancer treating is that BCBCs can control both genetic and non-genetic elements to keep their niches safe and sound, which allows BCSCs for constant self-renewal and differentiation. Therapeutic strategies designed to target BCSCs may ultimately result in effective interventions for the treatment of breast cancer. Novel strategies including nanomedicine, oncolytic virus therapy, immunotherapy and induced differentiation therapy are emerging and proved to be efficient in anti-BCSCs therapy. In this review, we summarized breast tumor biology and the current challenges of breast cancer therapies, focused on breast cancer stem cells, and introduced promising therapeutic strategies targeting BCSCs.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Anran Yu
- The State University of New York, Buffalo, NY 12246, United States
| | - Li Deng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hongwei Zhang
- School of Pharmacy, MCPHS University, Boston, MA 02115, United States
| |
Collapse
|
28
|
Wei QY, Xu YM, Lau ATY. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers (Basel) 2020; 12:E2783. [PMID: 32998391 PMCID: PMC7600685 DOI: 10.3390/cancers12102783] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
Conventional chemotherapy is still an important option of cancer treatment, but it has poor cell selectivity, severe side effects, and drug resistance. Utilizing nanoparticles (NPs) to improve the therapeutic effect of chemotherapeutic drugs has been highlighted in recent years. Nanotechnology dramatically changed the face of oncology by high loading capacity, less toxicity, targeted delivery of drugs, increased uptake to target sites, and optimized pharmacokinetic patterns of traditional drugs. At present, research is being envisaged in the field of novel nano-pharmaceutical design, such as liposome, polymer NPs, bio-NPs, and inorganic NPs, so as to make chemotherapy effective and long-lasting. Till now, a number of studies have been conducted using a wide range of nanocarriers for the treatment of solid tumors including lung, breast, pancreas, brain, and liver. To provide a reference for the further application of chemodrug-loaded nanoformulations, this review gives an overview of the recent development of nanocarriers, and the updated status of their use in the treatment of several solid tumors.
Collapse
Affiliation(s)
| | | | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China; (Q.-Y.W.); (Y.-M.X.)
| |
Collapse
|
29
|
Jain V, Kumar H, Anod HV, Chand P, Gupta NV, Dey S, Kesharwani SS. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release 2020; 326:628-647. [PMID: 32653502 DOI: 10.1016/j.jconrel.2020.07.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is one of the most prevalent cancers in women. Triple-negative breast cancer (TNBC) in which the three major receptors i.e. estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), are absent is known to express the most aggressive phenotype and increased metastasis which results in the development of resistance to chemotherapy. It offers various therapeutic advantages in treating BC and TNBC. Nanotechnology offers various unique characteristics such as small size (nanometric), active and passive targeting, and the ability to attach multiple targeting moieties, controlled release, and site-specific targeting. This review focuses on conventional drug therapies, recent treatment strategies, and unique therapeutic approaches available for BC and TNBC. The role of breast cancer stem cells in the recurrence of BC and TNBC has also been highlighted. Several chemotherapeutic agents delivered using nanocarriers such as polymeric nanoparticles/micelles, metallic/inorganic NPs, and lipid-based NPs (Liposome, solid-lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs)), etc. with excellent responses in the treatment of BC/TNBC along with breast cancer stem cells have been discussed in details. Moreover, the application of nanomedicine including CRISPR nanoparticle, exosomes for the treatment of BC/TNBC and other molecular targets available such as poly (ADP-ribose) polymerase (PARP), epidermal growth factor receptor (EGFR), Vascular endothelial growth factor (VEGF), etc. for further exploration have also been discussed.
Collapse
Affiliation(s)
- Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Haritha V Anod
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Pallavi Chand
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Surajit Dey
- College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| | | |
Collapse
|
30
|
Heidari R, Gholamian Dehkordi N, Mohseni R, Safaei M. Engineering mesenchymal stem cells: a novel therapeutic approach in breast cancer. J Drug Target 2020; 28:732-741. [PMID: 32463709 DOI: 10.1080/1061186x.2020.1775842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Breast cancer is one of the most prevalent and deadliest cancers among women in the world because of its aggressive behaviour and inadequate response to conventional therapies. Cellular and gene therapies based on mesenchymal stem cells (MSCs) represent promising treatment strategies for multiple diseases, such as cancers. MSCs are multipotent adult stem cells with important features for cell therapy, such as tissue homing to injured sites, their differentiation potential, their capacity of secreting plenty of trophic factors, and low immunogenicity. The quite easy isolation of these cells from various types of tissues are associated with no ethical concern when dealing with foetal or embryonic stem cells. The MSCs exhibit both pro and anti-oncogenic properties. However, genetic engineering of MSCs and nanoparticles is being employed as a means to solve some of these problems and improve the antitumor properties of these cells. The tumour-homing ability of MSCs and their exosomes to tumour niches have made them as a promising vector for targeted delivery of therapeutic agents to tumours site. The present study investigated MSCs specifications, pro- and anti-oncogenic properties of MSCs in breast cancer, and reviewed targeted breast cancer therapy via engineered MSCs, likely as potent cellular vehicles.
Collapse
Affiliation(s)
- Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Neda Gholamian Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roohollah Mohseni
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
31
|
Beg S, Alharbi KS, Alruwaili NK, Alotaibi NH, Almalki WH, Alenezi SK, Altowayan WM, Alshammari MS, Rahman M. Nanotherapeutic systems for delivering cancer vaccines: recent advances. Nanomedicine (Lond) 2020; 15:1527-1537. [PMID: 32410483 DOI: 10.2217/nnm-2020-0046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With an increase in the global burden of cancer-related deaths, the quest for developing new therapeutic solutions has taken momentum. In this regard, the idea of using cancer vaccines came to existence approximately 30 years ago, where gene therapy interventions have shown significant improvement in the therapeutic outcomes against several types of cancers. Cancer vaccines usually encounter a number of challenges with limited targeting ability to the tumors. Nanocarriers have been studied as a technological innovation for tumor targeting of gene therapeutics. This article provides a critical insight into the recent progress made in nanotherapeutic strategies for genetic vaccine delivery for treatment against various types of cancers. Moreover, the article intends to provide a summary of the research work being done on this topic.
Collapse
Affiliation(s)
- Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology & Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sattam K Alenezi
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Waleed M Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Mohammed S Alshammari
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Faculty of Health Science, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| |
Collapse
|
32
|
Tang R, Zheleznyak A, Mixdorf M, Ghai A, Prior J, Black KCL, Shokeen M, Reed N, Biswas P, Achilefu S. Osteotropic Radiolabeled Nanophotosensitizer for Imaging and Treating Multiple Myeloma. ACS NANO 2020; 14:4255-4264. [PMID: 32223222 PMCID: PMC7295119 DOI: 10.1021/acsnano.9b09618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid liver and spleen opsonization of systemically administered nanoparticles (NPs) for in vivo applications remains the Achilles' heel of nanomedicine, allowing only a small fraction of the materials to reach the intended target tissue. Although focusing on diseases that reside in the natural disposal organs for nanoparticles is a viable option, it limits the plurality of lesions that could benefit from nanomedical interventions. Here we designed a theranostic nanoplatform consisting of reactive oxygen (ROS)-generating titanium dioxide (TiO2) NPs, coated with a tumor-targeting agent, transferrin (Tf), and radiolabeled with a radionuclide (89Zr) for targeting bone marrow, imaging the distribution of the NPs, and stimulating ROS generation for cell killing. Radiolabeling of TiO2 NPs with 89Zr afforded thermodynamically and kinetically stable chelate-free 89Zr-TiO2-Tf NPs without altering the NP morphology. Treatment of multiple myeloma (MM) cells, a disease of plasma cells originating in the bone marrow, with 89Zr-TiO2-Tf generated cytotoxic ROS to induce cancer cell killing via the apoptosis pathway. Positron emission tomography/X-ray computed tomography (PET/CT) imaging and tissue biodistribution studies revealed that in vivo administration of 89Zr-TiO2-Tf in mice leveraged the osteotropic effect of 89Zr to selectively localize about 70% of the injected radioactivity in mouse bone tissue. A combination of small-animal PET/CT imaging of NP distribution and bioluminescence imaging of cancer progression showed that a single-dose 89Zr-TiO2-Tf treatment in a disseminated MM mouse model completely inhibited cancer growth at euthanasia of untreated mice and at least doubled the survival of treated mice. Treatment of the mice with cold Zr-TiO2-Tf, 89Zr-oxalate, or 89Zr-Tf had no therapeutic benefit compared to untreated controls. This study reveals an effective radionuclide sensitizing nanophototherapy paradigm for the treatment of MM and possibly other bone-associated malignancies.
Collapse
Affiliation(s)
- Rui Tang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alexander Zheleznyak
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew Mixdorf
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anchal Ghai
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Julie Prior
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kvar C. L. Black
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Nathan Reed
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63112, USA
| | - Pratim Biswas
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63112, USA
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
- Departments of Medicine and Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
33
|
Li M, Liu G, Wang K, Wang L, Fu X, Lim LY, Chen W, Mo J. Metal ion-responsive nanocarrier derived from phosphonated calix[4]arenes for delivering dauricine specifically to sites of brain injury in a mouse model of intracerebral hemorrhage. J Nanobiotechnology 2020; 18:61. [PMID: 32306970 PMCID: PMC7168846 DOI: 10.1186/s12951-020-00616-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
Primary intracerebral hemorrhage (ICH) is a leading cause of long-term disability and death worldwide. Drug delivery vehicles to treat ICH are less than satisfactory because of their short circulation lives, lack of specific targeting to the hemorrhagic site, and poor control of drug release. To exploit the fact that metal ions such as Fe2+ are more abundant in peri-hematomal tissue than in healthy tissue because of red blood cell lysis, we developed a metal ion-responsive nanocarrier based on a phosphonated calix[4]arene derivative in order to deliver the neuroprotective agent dauricine (DRC) specifically to sites of primary and secondary brain injury. The potential of the dauricine-loaded nanocarriers for ICH therapy was systematically evaluated in vitro and in mouse models of autologous whole blood double infusion. The nanocarriers significantly reduced brain water content, restored blood-brain barrier integrity and attenuated neurological deficits by inhibiting the activation of glial cells, infiltration by neutrophils as well as production of pro-inflammatory factors (IL-1β, IL-6, TNF-α) and matrix-metalloprotease-9. These results suggest that our dauricine-loaded nanocarriers can improve neurological outcomes in an animal model of ICH by reducing inflammatory injury and inhibiting apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Mingxin Li
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Guohao Liu
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,Department of Radiology, Affiliated Hospital of Jilin Medical University, Jilin, 132013, China
| | - Kaixuan Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Lingfeng Wang
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.,School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Xiang Fu
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, WA, 6009, Australia
| | - Wei Chen
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China. .,School of Pharmacy, Guilin Medical University, Guilin, 541001, China.
| | - Jingxin Mo
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China. .,School of Chemistry, University of New South Wales Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
34
|
Ibiyeye KM, Zuki ABZ. Cockle Shell-Derived Aragonite CaCO 3 Nanoparticles for Co-Delivery of Doxorubicin and Thymoquinone Eliminates Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21051900. [PMID: 32164352 PMCID: PMC7084823 DOI: 10.3390/ijms21051900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/12/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells CSCs (tumour-initiating cells) are responsible for cancer metastasis and recurrence associated with resistance to conventional chemotherapy. This study generated MBA MD231 3D cancer stem cells enriched spheroids in serum-free conditions and evaluated the influence of combined doxorubicin/thymoquinone-loaded cockle-shell-derived aragonite calcium carbonate nanoparticles. Single loaded drugs and free drugs were also evaluated. WST assay, sphere forming assay, ALDH activity analysis, Surface marker of CD44 and CD24 expression, apoptosis with Annexin V-PI kit, cell cycle analysis, morphological changes using a phase contrast light microscope, scanning electron microscopy, invasion assay and migration assay were carried out; The combination therapy showed enhanced apoptosis, reduction in ALDH activity and expression of CD44 and CD24 surface maker, reduction in cellular migration and invasion, inhibition of 3D sphere formation when compared to the free drugs and the single drug-loaded nanoparticle. Scanning electron microscopy showed poor spheroid formation, cell membrane blebbing, presence of cell shrinkage, distortion in the spheroid architecture; and the results from this study showed that combined drug-loaded cockle-shell-derived aragonite calcium carbonate nanoparticles can efficiently destroy the breast CSCs compared to single drug-loaded nanoparticle and a simple mixture of doxorubicin and thymoquinone.
Collapse
Affiliation(s)
- Kehinde Muibat Ibiyeye
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Abu Bakar Zakaria Zuki
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia;
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Correspondence: ; Tel.: +60196046659
| |
Collapse
|
35
|
Tuasha N, Petros B. Heterogeneity of Tumors in Breast Cancer: Implications and Prospects for Prognosis and Therapeutics. SCIENTIFICA 2020; 2020:4736091. [PMID: 33133722 PMCID: PMC7568790 DOI: 10.1155/2020/4736091] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 09/28/2020] [Indexed: 05/16/2023]
Abstract
Breast cancer is the most commonly diagnosed form of cancer in women comprising 16% of all female cancers. The disease shows high intertumoral and intratumoral heterogeneity posing diagnostic and therapeutic challenges with unpredictable clinical outcome and response to existing therapy. Mounting evidence is ascertaining that breast cancer stem cells (CSCs) are responsible for tumor initiation, progression, recurrence, evolution, metastasis, and drug resistance. Therapeutics selectively targeting the CSCs based on distinct surface molecular markers and enhanced intracellular activities of these cells continue to evolve and hold significant promise. Having plethora of heterogeneity accompanied with failure of existing conventional therapeutics and poor prognosis, the present review focuses on elucidating the main signaling pathways in breast CSCs as major therapeutic targets. The role of developments in nanomedicine and miRNA as targeted delivery of therapeutic anticancer agents is also highlighted.
Collapse
Affiliation(s)
- Nigatu Tuasha
- Addis Ababa University, College of Natural Science, Department of Microbial, Cellular and Molecular Biology, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Beyene Petros
- Addis Ababa University, College of Natural Science, Department of Microbial, Cellular and Molecular Biology, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
36
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019; 9:1003. [PMID: 31681564 PMCID: PMC6805781 DOI: 10.3389/fonc.2019.01003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | | | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J. Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
37
|
Nanomedicinal strategies as efficient therapeutic interventions for delivery of cancer vaccines. Semin Cancer Biol 2019; 69:43-51. [PMID: 31618687 DOI: 10.1016/j.semcancer.2019.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
The applications of gene therapy-based treatment of cancers were started almost two decades back as a boon over the chemotherapeutic treatment strategies. Gene therapy helps in correcting the genetic sequences for treatment of cancers, thus also acts like a vaccine to induce the cellular and humoral immunity. However, the cancer vaccines typically suffer from a series of biopharmaceutical challenges due to poor solubility, low systemic availability and lack of targeting ability. Owing to these challenges, the physicians and pharmaceutical scientists have explored the applications of nanocarriers as quite promising systems for effective treatment against the tumors. A series of nanotherapeutic systems are available to date for diverse drug therapy applications. Systematic understanding on the preparation, evaluation and application of nanomedicines as a carrier system for delivering the cancer vaccines is highly important. The present review article provides an in-depth understanding on the challenges associated with cancer vaccine delivery and current opportunities with diverse nanomedicinal carriers being available for treatment of cancers.
Collapse
|
38
|
Reda A, Hosseiny S, El-Sherbiny IM. Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine (Lond) 2019; 14:2487-2514. [PMID: 31490100 DOI: 10.2217/nnm-2018-0443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is depicted as the most aggressive malignancy and is one the major causes of death worldwide. It originates from immortal tumor-initiating cells called 'cancer stem cells' (CSCs). This devastating subpopulation exhibit potent self-renewal, proliferation and differentiation characteristics. Dynamic DNA repair mechanisms can sustain the immortality phenotype of cancer to evade all treatment strategies. To date, current conventional chemo- and radio-therapeutic strategies adopted against cancer fail in tackling CSCs. However, new advances in nanotechnology have paved the way for creating next-generation nanotheranostics as multifunctional smart 'all-in-one' nanoparticles. These particles integrate diagnostic, therapeutic and targeting agents into one single biocompatible and biodegradable carrier, opening up new avenues for breakthroughs in early detection, diagnosis and treatment of cancer through efficient targeting of CSCs.
Collapse
Affiliation(s)
- Asmaa Reda
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt.,Molecular & Cellular Biology division, Zoology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Salma Hosseiny
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt
| |
Collapse
|
39
|
Nedeljković M, Damjanović A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells 2019; 8:E957. [PMID: 31443516 PMCID: PMC6770896 DOI: 10.3390/cells8090957] [Citation(s) in RCA: 509] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative (TNBC) is the most lethal subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. Chemotherapy remains the standard of care for TNBC treatment, but unfortunately, patients frequently develop resistance. Accordingly, in recent years, tremendous effort has been made into elucidating the mechanisms of TNBC chemoresistance with the goal of identifying new molecular targets. It has become evident that the development of TNBC chemoresistance is multifaceted and based on the elaborate interplay of the tumor microenvironment, drug efflux, cancer stem cells, and bulk tumor cells. Alterations of multiple signaling pathways govern these interactions. Moreover, TNBC's high heterogeneity, highlighted in the existence of several molecular signatures, presents a significant obstacle to successful treatment. In the present, in-depth review, we explore the contribution of key mechanisms to TNBC chemoresistance as well as emerging strategies to overcome them. We discuss novel anti-tumor agents that target the components of these mechanisms and pay special attention to their current clinical development while emphasizing the challenges still ahead of successful TNBC management. The evidence presented in this review outlines the role of crucial pathways in TNBC survival following chemotherapy treatment and highlights the importance of using combinatorial drug strategies and incorporating biomarkers in clinical studies.
Collapse
Affiliation(s)
- Milica Nedeljković
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| | - Ana Damjanović
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
40
|
Asghari F, Khademi R, Esmaeili Ranjbar F, Veisi Malekshahi Z, Faridi Majidi R. Application of Nanotechnology in Targeting of Cancer Stem Cells: A Review. Int J Stem Cells 2019; 12:227-239. [PMID: 31242721 PMCID: PMC6657943 DOI: 10.15283/ijsc19006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/15/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is increasingly apparent as a systems-level, network happening. The central tendency of malignant alteration can be described as a two-phase procedure, where an initial increase of network plasticity is followed by reducing plasticity at late stages of tumor improvement. Cancer stem cells (CSCs) are cancer cells that take characteristics associated with normal stem cells. Cancer therapy has been based on the concept that most of the cancer cells have a similar ability to separate metastasise and kill the host. In this review, we addressed the use of nanotechnology in the treatment of cancer stem cells.
Collapse
Affiliation(s)
- Fatemeh Asghari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahele Khademi
- International affairs, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Esmaeili Ranjbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Pindiprolu SH, Pindiprolu SKSS. CD133 receptor mediated delivery of STAT3 inhibitor for simultaneous elimination of cancer cells and cancer stem cells in oral squamous cell carcinoma. Med Hypotheses 2019; 129:109241. [PMID: 31371076 DOI: 10.1016/j.mehy.2019.109241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/19/2019] [Indexed: 02/01/2023]
Abstract
Oral Squamous Cell Carcinoma (OSCC) is one of the major causes of cancer related deaths worldwide. Presence of chemoresistant cancer stem cells is the major reason behind metastasis, tumor relapse and treatment resistance in OSCC. STAT 3 signalling plays a key role in survival of cancer stem cells (CSC's), Epithelial Mesenchymal Transition (EMT) mediated metastasis in OSCC. CD 133 is the surface marker for identification of cancer stem cells. In the present study we hypothesise the selective targeting of CSC's using CD 133 mediated delivery of STAT 3 inhibitor, Niclosamide to specifically target CSC's and Non CSC's.
Collapse
Affiliation(s)
| | - Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy, Ootacamund, JSS Academy of Higher Education and Research, India
| |
Collapse
|
42
|
Tang Y, Dai Y, Huang X, Li L, Han B, Cao Y, Zhao J. Self-Assembling Peptide-Based Multifunctional Nanofibers for Electrochemical Identification of Breast Cancer Stem-like Cells. Anal Chem 2019; 91:7531-7537. [PMID: 31018636 DOI: 10.1021/acs.analchem.8b05359] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem-like cells are closely related with the development and metastasis of tumors. Herein, an electrochemical method is proposed to identify stem-like cells in breast tumor. The core concept of the method is the use of multifunctional nanofibers (MNFs), which are synthesized through facile self-assembly of peptide probes. MNFs can perform three functions, specifically targeting surface biomarker to identify stem-like cells, recruiting silver nanoparticles (AgNPs) to generate electrochemical signals, and providing large amounts of reaction sites to amplify signals. Specially, breast cancer stem cells (BCSCs) are first captured by nucleolin aptamer immobilized on the electrode surface and then selectively recognized by MNFs through the binding with CD44, thereby offering a large number of azide groups for signal labeling. By tracing electrochemical signals from MNF-recruited AgNPs, the method demonstrates to detect target cells as low as 6 cells/mL within a wide linear range from 10 to 5 × 105 cells/mL. Moreover, the method can not only recognize BCSCs with high selectivity in complex environment but also monitor drug-induced stemness changes with high sensitivity, providing promising prospective clinic applications in the future.
Collapse
Affiliation(s)
- Yingying Tang
- Center for Molecular Recognition and Biosensing, School of Life Sciences , Shanghai University , Shanghai 200444 , P. R. China
| | - Yuhao Dai
- Center for Molecular Recognition and Biosensing, School of Life Sciences , Shanghai University , Shanghai 200444 , P. R. China
| | - Xiang Huang
- Department of Oncology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , P. R. China
| | - Lingling Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences , Shanghai University , Shanghai 200444 , P. R. China
| | - Bing Han
- Center for Molecular Recognition and Biosensing, School of Life Sciences , Shanghai University , Shanghai 200444 , P. R. China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences , Shanghai University , Shanghai 200444 , P. R. China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences , Shanghai University , Shanghai 200444 , P. R. China
| |
Collapse
|
43
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019. [PMID: 31681564 DOI: 10.3389/fonc.2019.01003.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Augustus M C Tilley
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
44
|
Hermawan A, Putri H. Current report of natural product development against breast cancer stem cells. Int J Biochem Cell Biol 2018; 104:114-132. [DOI: 10.1016/j.biocel.2018.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
|
45
|
Shah CP, Kharkar PS. Discovery of novel human inosine 5'-monophosphate dehydrogenase 2 (hIMPDH2) inhibitors as potential anticancer agents. Eur J Med Chem 2018; 158:286-301. [PMID: 30223117 DOI: 10.1016/j.ejmech.2018.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023]
Abstract
The enzyme inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes an essential step in the de novo biosynthesis of guanine nucleotides, and thus regulates the guanine nucleotide pool required for cell proliferation. Of the two isoforms, human IMPDH type 2 (hIMPDH2) is a validated molecular target for potential immunosuppressive, antiviral and anticancer chemotherapy. In search of newer hIMPDH2 inhibitors as potential anticancer agents, three novel series (A: 5-aminoisobenzofuran-1(3H)-one, B: 3,4-dimethoxyaniline and C: benzo[d]-[1,3]dioxol-5-ylmethanamine) were synthesized and evaluated for in vitro and cell-based activities. A total of 37 molecules (29-65) were screened for their in vitro hIMPDH2 inhibition, with particular emphasis on establishing their structure-activity relationship (SAR) trends. Eight compounds (hits, 30, 31, 33-35, 37, 41 and 43) demonstrated significant enzyme inhibition (>70% @ 10 μM); especially the A series molecules were more potent than B series (<70% inhibition @ 10 μM), while C series members were found to be inactive. The hIMPDH2 IC50 values for the hits ranged from 0.36 to 7.38 μM. The hits displaying >80% hIMPDH2 inhibition (30, 33, 35, 41 and 43) were further assessed for their cytotoxic activity against cancer cell lines such as MDA-MB-231 (breast adenocarcinoma), DU145 (prostate carcinoma), U87 MG (glioblastoma astrocytoma) and a normal cell line, NIH-3T3 (mouse embryonic fibroblast) using MTT assay. Most of the compounds exhibited higher cellular potency against cancer cell lines and notably lower toxicity towards NIH-3T3 cells compared to mycophenolic acid (MPA), a prototypical hIMPDH2 inhibitor. Two of the series A hits (30 and 35) were evaluated in human peripheral blood mononuclear cells (hPBMC) assay and found to be better tolerated than MPA. The calculated/predicted molecular and physicochemical properties were satisfactory with reference to drug-likeness. The molecular docking studies clearly demonstrated crucial interactions of the hits with the cofactor-binding site of hIMPDH2, further providing critical information for refining the design strategy. The present study reports the design and discovery of structurally novel hIMPDH2 inhibitors as potential anticancer agents and provides a guide for further research on the development of safe and effective anticancer agents, especially against glioblastoma.
Collapse
Affiliation(s)
- Chetan P Shah
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai, 400 056, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai, 400 056, India.
| |
Collapse
|
46
|
Allahverdiyev AM, Parlar E, Dinparvar S, Bagirova M, Abamor EŞ. Current aspects in treatment of breast cancer based of nanodrug delivery systems and future prospects. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S755-S762. [PMID: 30260234 DOI: 10.1080/21691401.2018.1511573] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Breast cancer is one of the most common diseases worldwide. The risk of getting this disease in female is 30% and the mortality rate is 14%. The breast cancer treatment is based on surgery, chemotherapy and radiotherapy. However, an effective treatment method has not been developed. The main cause of failure in the treatment is cancer stem cells metastasis and chemo-resistance. The use of nanocarrier systems against breast cancer stem cells has great importance. Not only advantages of polymeric drug delivery systems are increasing the stability and reduce the side effects of drugs, but also they have disadvantages such as biocompatibility and long-term potential safety. However, in recent years, studies on exosomes provide several advantages. Exosomes usage as nanocarrier do not cause immunological reactions also the drug effectively transport into the cytosol of targeted cell and have more stability characteristics. Although there are studies about various nanocarrier systems in literature against breast cancer but in general, we have not found any review that brings them together and develops a systematic approach to solving the problem. This review mentions prospective new strategies based on various nanocarrier systems and emphasize the importance of exosome based on drug delivery systems in the treatment of breast cancer.
Collapse
Affiliation(s)
- Adil M Allahverdiyev
- a Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering , Yildiz Technical University , Istanbul , Turkey
| | - Etkin Parlar
- a Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering , Yildiz Technical University , Istanbul , Turkey
| | - Sahar Dinparvar
- a Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering , Yildiz Technical University , Istanbul , Turkey
| | - Melahat Bagirova
- a Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering , Yildiz Technical University , Istanbul , Turkey
| | - Emrah Şefik Abamor
- a Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering , Yildiz Technical University , Istanbul , Turkey
| |
Collapse
|
47
|
Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol 2018; 53:59-74. [PMID: 30059727 DOI: 10.1016/j.semcancer.2018.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The current view is that breast cancer is a stem cell disease characterized by the existence of cancer cells with stem-like features and tumor-initiating potential. These cells are made responsible for tumor dissemination and metastasis. Common therapies by chemotherapeutic drugs fail to eradicate these cells and rather increase the pool of cancer stem cells in tumors, an effect that may increase the likelyhood of recurrence. Fifteen years after the first evidence for a small stem-like subpopulation playing a major role in breast cancer initiation has been published a large body of knowledge has been accumulated regarding the signaling cascades and proteins involved in maintaining stemness in breast cancer. Differences in the stem cell pool size and in mechanisms regulating stemness in the different breast cancer subtypes have emerged. Overall, this knowledge offers new approaches to intervene with breast cancer stem cell activity. New options are particularly needed for the treatment of triple-negative breast cancer subtype, which is particularly rich in cancer stem cells and is also the subtype for which specific therapies are still not available.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
48
|
Colombo S, Beck-Broichsitter M, Bøtker JP, Malmsten M, Rantanen J, Bohr A. Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. Adv Drug Deliv Rev 2018; 128:115-131. [PMID: 29626549 DOI: 10.1016/j.addr.2018.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 01/31/2023]
Abstract
Nanopharmaceuticals aim at translating the unique features of nano-scale materials into therapeutic products and consequently their development relies critically on the progression in manufacturing technology to allow scalable processes complying with process economy and quality assurance. The relatively high failure rate in translational nanopharmaceutical research and development, with respect to new products on the market, is at least partly due to immature bottom-up manufacturing development and resulting sub-optimal control of quality attributes in nanopharmaceuticals. Recently, quality-oriented manufacturing of pharmaceuticals has undergone an unprecedented change toward process and product development interaction. In this context, Quality by Design (QbD) aims to integrate product and process development resulting in an increased number of product applications to regulatory agencies and stronger proprietary defense strategies of process-based products. Although QbD can be applied to essentially any production approach, microfluidic production offers particular opportunities for QbD-based manufacturing of nanopharmaceuticals. Microfluidics provides unique design flexibility, process control and parameter predictability, and also offers ample opportunities for modular production setups, allowing process feedback for continuously operating production and process control. The present review aims at outlining emerging opportunities in the synergistic implementation of QbD strategies and microfluidic production in contemporary development and manufacturing of nanopharmaceuticals. In doing so, aspects of design and development, but also technology management, are reviewed, as is the strategic role of these tools for aligning nanopharmaceutical innovation, development, and advanced industrialization in the broader pharmaceutical field.
Collapse
Affiliation(s)
- Stefano Colombo
- University of Copenhagen, Department of Pharmacy, Copenhagen, Denmark
| | | | | | - Martin Malmsten
- University of Copenhagen, Department of Pharmacy, Copenhagen, Denmark; Uppsala University, Department of Pharmacy, Uppsala, Sweden
| | - Jukka Rantanen
- University of Copenhagen, Department of Pharmacy, Copenhagen, Denmark
| | - Adam Bohr
- University of Copenhagen, Department of Pharmacy, Copenhagen, Denmark.
| |
Collapse
|
49
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK. Pharmacological targets of breast cancer stem cells: a review. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:463-479. [PMID: 29476201 DOI: 10.1007/s00210-018-1479-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India.
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| |
Collapse
|
50
|
Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT. Plant-derived anticancer agents: A green anticancer approach. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.10.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|