1
|
Fernando A, Liyanage C, Srinivasan S, Panchadsaram J, Rothnagel JA, Clements J, Batra J. Iroquois homeobox 4 (IRX4) derived micropeptide promotes prostate cancer progression and chemoresistance through Wnt signalling dysregulation. COMMUNICATIONS MEDICINE 2024; 4:224. [PMID: 39487222 PMCID: PMC11530646 DOI: 10.1038/s43856-024-00613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/17/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a commonly diagnosed cancer. Genome-wide association studies have implicated Iroquois homeobox 4 (IRX4) in PCa susceptibility, yet its functional roles remain unclear. We discovered a 78-amino acid micropeptide (miPEP, IRX4_PEP1), encoded from the alternative start site within the IRX4 gene. The miPEPs, encoded through short open reading frames (sORFs) have emerged as regulators of diverse biological processes. However, the significance of miPEPs in prostate tumorigenesis and therapy response remains unexplored to date. Here, we demonstrated the unique role of IRX4_PEP1 in PCa. METHODS The role of IRX4_PEP1 was evaluated in PCa in vitro via functional assays and comprehensive pathway analysis. The interacting partners of IRX4_PEP1 were identified using an immunoprecipitation assay, and the impact of IRX4_PEP1 on PCa stem cells was assessed through a stem cell enrichment assay. Additionally, the expression of IRX4_PEP1 was evaluated in PCa patient samples for its potential diagnostic and prognostic significance. RESULTS Here we show IRX4_PEP1 promotes PCa cell proliferation, migration, and invasion by interacting with heterogeneous nuclear ribonucleoprotein K (HNRPK). Notably, IRX4_PEP1 dysregulates Wnt signalling by interacting with Catenin beta 1 (β catenin; CTNB1), elevating PCa stemness markers, and fostering docetaxel resistance. Clinically, IRX4_PEP1 expression is elevated in PCa tissues and correlates positively with disease aggressiveness. CTNNB1, HNRNPK levels, and ssGSEA enrichment score of WNT/CTNB1 signalling correlate positively with IRX4_PEP1 in PCa tissues. CONCLUSIONS These findings highlight IRX4_PEP1 role in PCa stemness and chemoresistance, suggesting it as a therapeutic target and potential diagnostic marker.
Collapse
Affiliation(s)
- Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Janaththani Panchadsaram
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Joseph A Rothnagel
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia Campus, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia.
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
2
|
Farhangnia P, Ghods R, Falak R, Zarnani AH, Delbandi AA. Identification of placenta-specific protein 1 (PLAC-1) expression on human PC-3 cell line-derived prostate cancer stem cells compared to the tumor parental cells. Discov Oncol 2024; 15:251. [PMID: 38943028 PMCID: PMC11213845 DOI: 10.1007/s12672-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Placenta-specific protein 1 (PLAC-1) is a gene primarily expressed in the placenta and the testis. Interestingly, it is also found to be expressed in many solid tumors, and it is involved in malignant cell features. However, no evidence has been reported regarding the relationship between PLAC-1 and cancer stem cells (CSCs). In the current research, we explored the expression of the PLAC-1 molecule in prostate cancer stem cells (PCSCs) derived from the human PC-3 cell line. The enrichment of PCSCs was achieved using a three-dimensional cell culture technique known as the sphere-formation assay. To confirm the identity of PCSCs, we examined the expression of genes associated with stemness and pluripotency, such as SOX2, OCT4, Nanog, C-Myc, and KLF-4, as well as stem cell differentiation molecules like CD44 and CD133. These evaluations were conducted in both the PCSCs and the original tumor cells (parental cells) using real-time PCR and flow cytometry. Subsequently, we assessed the expression of the PLAC-1 molecule in both enriched cells and parental tumor cells at the gene and protein levels using the same techniques. The tumor cells from the PC-3 cell line formed spheroids with CSC characteristics in a non-adherent medium. The expression of SOX2, OCT4, Nanog, and C-Myc genes (p < 0.01), and the molecules CD44 and CD133 (p < 0.05) were significantly elevated in PCSCs compared to the parental cells. The expression of the PLAC-1 molecule in PCSCs showed a significant increase compared to the parental cells at both gene (p < 0.01) and protein (p < 0.001) levels. In conclusion, it was indicated for the first time that PLAC-1 is up-regulated in PCSCs derived from human PC-3 cell line. This study may propose PLAC-1 as a potential target in targeted therapies, which should be confirmed through further studies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Güler G, Acikgoz E, Mukhtarova G, Oktem G. Biomolecular fingerprints of the effect of zoledronic acid on prostate cancer stem cells: Comparison of 2D and 3D cell culture models. Arch Biochem Biophys 2024; 753:109920. [PMID: 38307315 DOI: 10.1016/j.abb.2024.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Revealing the potential of candidate drugs against different cancer types without disrupting normal cells depends on the drug mode of action. In the current study, the drug response of prostate cancer stem cells (PCSCs) to zoledronic acid (ZOL) grown in two-dimensional (2D) and three-dimensional (3D) culture systems was compared using Fourier transform-infrared (FT-IR) spectroscopy which is a vibrational spectroscopic technique, supporting by biochemical assays and imaging techniques. Based on our data, in 2D cell culture conditions, the ZOL treatment of PCSCs isolated according to both C133 and CD44 cell surface properties induced early/late apoptosis and suppressed migration ability. The CD133 gene expression and protein levels were altered, depending on culture systems. CD133 expression was significantly reduced in 2D cells upon ZOL treatment. FT-IR data revealed that the integrity, fluidity, and ordering/disordering states of the cell membrane and nucleic acid content were altered in both 2D and 3D cells after ZOL treatment. Regular protein structures decrease in 2D cells while glycogen and protein contents increase in 3D cells, indicating a more pronounced cytotoxic effect of ZOL for 2D cells. Untreated 3D PCSCs exhibited an even different spectral profile associated with IR signals of lipids, proteins, nucleic acids, and glycogen in comparison to untreated 2D cells. Our study revealed significant differences in the drug response and cellular constituents between 2D and 3D cells. Exploring molecular targets and/or drug-action mechanisms is significant in cancer treatment approaches; thus, FT-IR spectroscopy can be successfully applied as a novel drug-screening method in clinical research.
Collapse
Affiliation(s)
- Günnur Güler
- Biophysics Laboratory, Department of Physics, Izmir Institute of Technology, Urla, 35433, Izmir, Turkey.
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Günel Mukhtarova
- Department of Basic Oncology, Faculty of Medicine, Ege University, 35550, Izmir, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
4
|
Liu W, Xie A, Xiong J, Li S, Yang L, Liu W. WDR3 promotes stem cell-like properties in prostate cancer by inhibiting USF2-mediated transcription of RASSF1A. J Gene Med 2023; 25:e3498. [PMID: 36905106 DOI: 10.1002/jgm.3498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/01/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND WD repeat domain 3 (WDR3) is involved in tumor growth and proliferation, but its role in the pathological mechanism of prostate cancer (PCa) is still unclear. METHODS WDR3 gene expression levels were obtained by analyzing databases and our clinical specimens. The expression levels of genes and proteins were determined by a real-time polymerase chain reaction, western blotting and immunohistochemistry, respectively. Cell-counting kit-8 assays were used to measure the proliferation of PCa cells. Cell transfection was used to investigate the role of WDR3 and USF2 in PCa. Fluorescence reporter and chromatin immunoprecipitation assays were used to detect USF2 binding to the promoter region of RASSF1A. Mouse experiments were used to confirm the mechanism in vivo. RESULTS By analyzing the database and our clinical specimens, we found that WDR3 expression was significantly increased in PCa tissues. Overexpression of WDR3 enhanced PCa cell proliferation, decreased cell apoptosis rate, increased spherical cell number and increased indicators of stem cell-like properties. However, these effects were reversed by WDR3 knockdown. WDR3 was negatively correlated with USF2, which was degraded by promoting ubiquitination of USF2, and USF2 interacted with promoter region-binding elements of RASSF1A to depress PCa stemness and growth. In vivo studies showed that WDR3 knockdown reduced tumor size and weight, reduced cell proliferation and enhanced cell apoptosis. CONCLUSIONS WDR3 ubiquitinated USF2 and inhibited its stability, whereas USF2 interacted with promoter region-binding elements of RASSF1A. USF2 transcriptionally activated RASSF1A, which inhibited the carcinogenic effect of WDR3 overexpression.
Collapse
Affiliation(s)
- Weijing Liu
- Department of Reproductive Medicine, Hexian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - An Xie
- Jiangxi Institute of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weipeng Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Ramesh S, Selvakumar P, Ameer MY, Lian S, Abdullah Alzarooni AIM, Ojha S, Mishra A, Tiwari A, Kaushik A, Jung YD, Chouaib S, Lakshmanan VK. State-of-the-art therapeutic strategies for targeting cancer stem cells in prostate cancer. Front Oncol 2023; 13:1059441. [PMID: 36969009 PMCID: PMC10035756 DOI: 10.3389/fonc.2023.1059441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
The development of new therapeutic strategies is on the increase for prostate cancer stem cells, owing to current standardized therapies for prostate cancer, including chemotherapy, androgen deprivation therapy (ADT), radiotherapy, and surgery, often failing because of tumor relapse ability. Ultimately, tumor relapse develops into advanced castration-resistant prostate cancer (CRPC), which becomes an irreversible and systemic disease. Hence, early identification of the intracellular components and molecular networks that promote prostate cancer is crucial for disease management and therapeutic intervention. One of the potential therapeutic methods for aggressive prostate cancer is to target prostate cancer stem cells (PCSCs), which appear to be a primary focal point of cancer metastasis and recurrence and are resistant to standardized therapies. PCSCs have also been documented to play a major role in regulating tumorigenesis, sphere formation, and the metastasis ability of prostate cancer with their stemness features. Therefore, the current review highlights the origin and identification of PCSCs and their role in anti-androgen resistance, as well as stemness-related signaling pathways. In addition, the review focuses on the current advanced therapeutic strategies for targeting PCSCs that are helping to prevent prostate cancer initiation and progression, such as microRNAs (miRNAs), nanotechnology, chemotherapy, immunotherapy, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing system, and photothermal ablation (PTA) therapy.
Collapse
Affiliation(s)
- Saravanan Ramesh
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Preethi Selvakumar
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Mohamed Yazeer Ameer
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anshuman Mishra
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
| | - Ashutosh Tiwari
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, United States
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par la Ligue Contre le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Vinoth-Kumar Lakshmanan
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
- *Correspondence: Vinoth-Kumar Lakshmanan,
| |
Collapse
|
6
|
Belkahla S, Nahvi I, Biswas S, Nahvi I, Ben Amor N. Advances and development of prostate cancer, treatment, and strategies: A systemic review. Front Cell Dev Biol 2022; 10:991330. [PMID: 36158198 PMCID: PMC9501970 DOI: 10.3389/fcell.2022.991330] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
The most common type of cancer in the present-day world affecting modern-day men after lung cancer is prostate cancer. Prostate cancer remains on the list of top three cancer types claiming the highest number of male lives. An estimated 1.4 million new cases were reported worldwide in 2020. The incidence of prostate cancer is found predominantly in the regions having a high human development index. Despite the fact that considerable success has been achieved in the treatment and management of prostate cancer, it remains a challenge for scientists and clinicians to curve the speedy advancement of the said cancer type. The most common risk factor of prostate cancer is age; men tend to become more vulnerable to prostate cancer as they grow older. Commonly men in the age group of 66 years and above are the most vulnerable population to develop prostate cancer. The gulf countries are not far behind when it came to accounting for the number of individuals falling prey to the deadly cancer type in recent times. There has been a consistent increase in the incidence of prostate cancer in the gulf countries in the past decade. The present review aims at discussing the development, diagnostics via machine learning, and implementation of treatment of prostate cancer with a special focus on nanotherapeutics, in the gulf countries.
Collapse
Affiliation(s)
- Sana Belkahla
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Hofuf, Saudi Arabia
- *Correspondence: Sana Belkahla, ; Insha Nahvi,
| | - Insha Nahvi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Hofuf, Saudi Arabia
- *Correspondence: Sana Belkahla, ; Insha Nahvi,
| | - Supratim Biswas
- University of Cape Town, Department of Human Biology, Cape Town, South Africa
| | - Irum Nahvi
- College of Computer Engineering and Science, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
| | - Nidhal Ben Amor
- Public Health Department, Veterinary College, King Faisal University, Al Hofuf, Saudi Arabia
| |
Collapse
|
7
|
Wolf I, Gratzke C, Wolf P. Prostate Cancer Stem Cells: Clinical Aspects and Targeted Therapies. Front Oncol 2022; 12:935715. [PMID: 35875084 PMCID: PMC9304860 DOI: 10.3389/fonc.2022.935715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research and successful improvements in diagnosis and therapy, prostate cancer (PC) remains a major challenge. In recent years, it has become clear that PC stem cells (PCSCs) are the driving force in tumorigenesis, relapse, metastasis, and therapeutic resistance of PC. In this minireview, we discuss the impact of PCSCs in the clinical practice. Moreover, new therapeutic approaches to combat PCSCs are presented with the aim to achieve an improved outcome for patients with PC.
Collapse
Affiliation(s)
- Isis Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Philipp Wolf,
| |
Collapse
|
8
|
Lai X, Guo Y, Chen M, Wei Y, Yi W, Shi Y, Xiong L. Caveolin1: its roles in normal and cancer stem cells. J Cancer Res Clin Oncol 2021; 147:3459-3475. [PMID: 34498146 DOI: 10.1007/s00432-021-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Stem cells are characterized by the capability of self-renewal and multi-differentiation. Normal stem cells, which are important for tissue repair and tissue regeneration, can be divided into embryonic stem cells (ESCs) and somatic stem cells (SSCs) depending on their origin. As a subpopulation of cells within cancer, cancer stem cells (CSCs) are at the root of therapeutic resistance. Tumor-initiating cells (TICs) are necessary for tumor initiation. Caveolin1 (Cav1), a membrane protein located at the caveolae, participates in cell lipid transport, cell migration, cell proliferation, and cell signal transduction. The purpose of this review was to explore the relationship between Cav1 and stem cells. RESULTS In ESCs, Cav1 is beneficial for self-renewal, proliferation, and migration. In SSCs, Cav1 exhibits positive or/and negative effects on stem cell self-renewal, differentiation, proliferation, migration, and angiogenic capacity. Cav1 deficiency impairs normal stem cell-based tissue repair. In CSCs, Cav1 inhibits or/and promotes CSC self-renewal, differentiation, invasion, migration, tumorigenicity ability, and CSC formation. And suppressing Cav1 promotes chemo-sensitivity in CSCs and TICs. CONCLUSION Cav1 shows dual roles in stem cell biology. Targeting the Cav1-stem cell axis would be a new way for tissue repair and cancer drug resistance.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiling Guo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Miaomiao Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Wanting Yi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yubo Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China. .,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
9
|
Liu Q, Gu J, Zhang E, He L, Yuan ZX. Targeted Delivery of Therapeutics to Urological Cancer Stem Cells. Curr Pharm Des 2020; 26:2038-2056. [PMID: 32250210 DOI: 10.2174/1381612826666200403131514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Urological cancer refers to cancer in organs of the urinary system and the male reproductive system. It mainly includes prostate cancer, bladder cancer, renal cancer, etc., seriously threatening patients' survival. Although there are many advances in the treatment of urological cancer, approved targeted therapies often result in tumor recurrence and therapy failure. An increasing amount of evidence indicated that cancer stem cells (CSCs) with tumor-initiating ability were the source of treatment failure in urological cancer. The development of CSCstargeted strategy can provide a possibility for the complete elimination of urological cancer. This review is based on a search of PubMed, Google scholar and NIH database (http://ClinicalTrials.gov/) for English language articles containing the terms: "biomarkers", "cancer stem cells", "targeting/targeted therapy", "prostate cancer", bladder cancer" and "kidney cancer". We summarized the biomarkers and stem cell features of the prostate, bladder and renal CSCs, outlined the targeted strategies for urological CSCs from signaling pathways, cytokines, angiogenesis, surface markers, elimination therapy, differentiation therapy, immunotherapy, microRNA, nanomedicine, etc., and highlighted the prospects and future challenges in this research field.
Collapse
Affiliation(s)
- Qiang Liu
- Yaopharma Co., Ltd. Chongqing, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - E Zhang
- Officers college of PAP, Chengdu, Sichuan, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells 2020; 9:E1896. [PMID: 32823711 PMCID: PMC7464860 DOI: 10.3390/cells9081896] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Despite great strides being achieved in improving cancer patients' outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
- Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| |
Collapse
|
11
|
Lombardi APG, Vicente CM, Porto CS. Estrogen Receptors Promote Migration, Invasion and Colony Formation of the Androgen-Independent Prostate Cancer Cells PC-3 Through β-Catenin Pathway. Front Endocrinol (Lausanne) 2020; 11:184. [PMID: 32328032 PMCID: PMC7160699 DOI: 10.3389/fendo.2020.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is initially dependent on the androgen, gradually evolves into an androgen-independent form of the disease, also known as castration-resistant prostate cancer (CRPC). At this stage, current therapies scantily improve survival of the patient. Androgens and estrogens are involved in normal prostate and prostate cancer development. The mechanisms by which estrogens/estrogen receptors (ERs) induce prostate cancer and promote prostate cancer progression have not yet been fully identified. Our laboratory has shown that androgen-independent prostate cancer cells PC-3 express both ERα and ERβ. The activation of ERβ increases the expression of β-catenin and proliferation of PC-3 cells. We now report that the activation of ERβ promotes the increase of migration, invasion and anchorage-independent growth of PC-3 cells. Furthermore, the activation of ERα also plays a role in invasion and anchorage-independent growth of PC-3 cells. These effects are blocked by pretreatment with PKF 118-310, compound that disrupts the complex β-catenin/TCF/LEF, suggesting that ERs/β-catenin are involved in all cellular characteristics of tumor development in vitro. Furthermore, PKF 118-310 also inhibited the upregulation of vascular endothelial growth factor A (VEGFA) induced by activation of ERs. VEGF also is involved on invasion of PC-3 cells. In conclusion, this study provides novel insights into the signatures and molecular mechanisms of ERβ in androgen-independent prostate cancer cells PC-3. ERα also plays a role on invasion and colony formation of PC-3 cells.
Collapse
|
12
|
Nana ABA, Marimuthu T, Kondiah PPD, Choonara YE, Du Toit LC, Pillay V. Multifunctional Magnetic Nanowires: Design, Fabrication, and Future Prospects as Cancer Therapeutics. Cancers (Basel) 2019; 11:E1956. [PMID: 31817598 PMCID: PMC6966456 DOI: 10.3390/cancers11121956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022] Open
Abstract
Traditional cancer therapeutics are limited by factors such as multi-drug resistance and a plethora of adverse effect. These limitations need to be overcome for the progression of cancer treatment. In order to overcome these limitations, multifunctional nanosystems have recently been introduced into the market. The employment of multifunctional nanosystems provide for the enhancement of treatment efficacy and therapeutic effect as well as a decrease in drug toxicity. However, in addition to these effects, magnetic nanowires bring specific advantages over traditional nanoparticles in multifunctional systems in terms of the formulation and application into a therapeutic system. The most significant of which is its larger surface area, larger net magnetic moment compared to nanoparticles, and interaction under a magnetic field. This results in magnetic nanowires producing a greater drug delivery and therapeutic platform with specific regard to magnetic drug targeting, magnetic hyperthermia, and magnetic actuation. This, in turn, increases the potential of magnetic nanowires for decreasing adverse effects and improving patient therapeutic outcomes. This review focuses on the design, fabrication, and future potential of multifunctional magnetic nanowire systems with the emphasis on improving patient chemotherapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (A.B.A.N.); (T.M.); (P.P.D.K.); (Y.E.C.); (L.C.D.T.)
| |
Collapse
|
13
|
Li W, Yang CJ, Wang LQ, Wu J, Dai C, Yuan YM, Li GQ, Yao MC. A tannin compound from Sanguisorba officinalis blocks Wnt/β-catenin signaling pathway and induces apoptosis of colorectal cancer cells. Chin Med 2019; 14:22. [PMID: 31164916 PMCID: PMC6544925 DOI: 10.1186/s13020-019-0244-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sanguisorba officinalis, a popular Chinese herb, called DiYu, has been shown to inhibit the growth of many human cancer cell lines, including colorectal cancer cells. The aims of this study were to discover the active compound and molecular mechanism of S. officinalis against Wnt/β-catenin signaling pathway and develop Wnt inhibitors from natural products as anti-colorectal cancer agents. METHODS 1,4,6-Tri-O-galloyl-β-d-glucopyranose (TGG) was obtained by the preparative HPLC. The effect of DiYu on proliferation of NIH3T3 and HT29 was detected by MTT assay. Luciferase reporter assay was applied to investigate the activity of Wnt/β-catenin signaling in NIH3T3. The expression levels of mRNA and protein were detected by RT-PCR and western blot. Immunofluorescence assay was used to measure the level of β-catenin in cytoplasm and nucleus. Transcriptomic profiling study was performed to investigate the molecular mechanism of DiYu on the Wnt/β-catenin signaling pathway. RESULTS TGG significantly inhibited the Wnt/β-catenin signaling pathway, down-regulated the expression of β-catenin and Wnt target genes (Dkk1, c-Myc, FGF20, NKD1, Survivin), up-regulated the levels of cleaved caspase3, cleaved PARP and ratio of Bax/Bcl-2, which may explain the apoptosis of HT29. CONCLUSIONS Our study enhanced the discovery of the materials and elucidation of mechanisms that account for the anti-Wnt activity of natural inhibitor (DiYu) and identified the potential of TGG to be developed as anti-colorectal cancer drugs.
Collapse
Affiliation(s)
- Wa Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| | - Chun-juan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Li-qian Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081 Heilongjiang China
| | - Juan Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cong Dai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| | - Yue-mei Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| | - George Q. Li
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| | - Mei-cun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People’s Republic of China
| |
Collapse
|
14
|
Salem O, Hansen CG. The Hippo Pathway in Prostate Cancer. Cells 2019; 8:E370. [PMID: 31018586 PMCID: PMC6523349 DOI: 10.3390/cells8040370] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent efforts, prostate cancer (PCa) remains one of the most common cancers in men. Currently, there is no effective treatment for castration-resistant prostate cancer (CRPC). There is, therefore, an urgent need to identify new therapeutic targets. The Hippo pathway and its downstream effectors-the transcriptional co-activators, Yes-associated protein (YAP) and its paralog, transcriptional co-activator with PDZ-binding motif (TAZ)-are foremost regulators of stem cells and cancer biology. Defective Hippo pathway signaling and YAP/TAZ hyperactivation are common across various cancers. Here, we draw on insights learned from other types of cancers and review the latest advances linking the Hippo pathway and YAP/TAZ to PCa onset and progression. We examine the regulatory interaction between Hippo-YAP/TAZ and the androgen receptor (AR), as main regulators of PCa development, and how uncontrolled expression of YAP/TAZ drives castration resistance by inducing cellular stemness. Finally, we survey the potential therapeutic targeting of the Hippo pathway and YAP/TAZ to overcome PCa.
Collapse
Affiliation(s)
- Omar Salem
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Carsten G Hansen
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
15
|
Panda PK, Saraf S, Tiwari A, Verma A, Raikwar S, Jain A, Jain SK. Novel Strategies for Targeting Prostate Cancer. Curr Drug Deliv 2019; 16:712-727. [PMID: 31433757 DOI: 10.2174/1567201816666190821143805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/24/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer (PCa) is a worldwide issue, with a rapid increase in its occurrence and mortality. Over the years, various strategies have been implemented to overcome the hurdles that exist in the treatment of PCa. Consistently, there is a change in opinion about the methodologies in clinical trial that have engrossed towards the treatment of PCa. Currently, there is a need to resolve these newly recognized challenges by developing newer rational targeting systems. The ongoing clinical protocol for the therapy using different targeting systems is undertaken followed by local targeting to cancer site. A number of new drug targeting systems like liposomes, nanoemulsions, magnetic nanoparticles (MNPs), solid lipid nanoparticles, drug-peptide conjugate systems, drug-antibody conjugate systems, epigenetic and gene therapy approaches, and therapeutic aptamers are being developed to suit this protocol. Recent advancements in the treatment of PCa with various nanocarriers have been reported with respect to newly identified biological barriers and intended to solve the contexts. This review encompasses the input of nanotechnology in particular targeting of PCa which might escape the lifethreatening side effects and potentially contribute to bring fruitful clinical outcomes.
Collapse
Affiliation(s)
- Pritish Kumar Panda
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Sarjana Raikwar
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Ankit Jain
- Institute of Pharmaceutical Research, GLA University, NH-2, Mathura-Delhi Road, Mathura (U.P.), 281 406, India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| |
Collapse
|
16
|
Rejinold NS, Yoo J, Jon S, Kim YC. Curcumin as a Novel Nanocarrier System for Doxorubicin Delivery to MDR Cancer Cells: In Vitro and In Vivo Evaluation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28458-28470. [PMID: 30064206 DOI: 10.1021/acsami.8b10426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Curcumin (CRC) has been widely used as a therapeutic agent for various drug delivery applications. In this work, we focused on the applicability of CRC as a nanodrug delivery agent for doxorubicin hydrochloride (DOX) (commercially known as Adriamycin) coated with poly(ethylene glycol) (PEG) as an effective therapeutic strategy against multidrug-resistant cancer cells. The developed PEG-coated CRC/DOX nanoparticles (NPs) (PEG-CRC/DOX NPs) were well localized within the resistant cancer cells inducing apoptosis confirmed by flow cytometry and DNA fragmentation assays. The PEG-CRC/DOX NPs suppressed the major efflux proteins in DOX-resistant cancer cells. The in vivo biodistribution studies on HCT-8/DOX-resistant tumor xenograft showed improved bioavailability of the PEG-CRC/DOX NPs, and thereby suppressed tumor growth significantly compared to the other samples. This study clearly shows that curcumin nanoparticles could deliver DOX efficiently into the multidrug-resistant cancer cells to have potential therapeutic benefits.
Collapse
|