1
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 PMCID: PMC11624876 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Liu K, Ji Y, Xie Y, Wang C, Zhou J, Wei Z, Wang X, Zheng X, Cen Y, Zhang F, Xu B. Discovery of Isobenzofuran-1(3 H)-one Derivatives as Selective TREK-1 Inhibitors with In Vitro and In Vivo Neuroprotective Effects. J Med Chem 2025; 68:5804-5823. [PMID: 40040241 DOI: 10.1021/acs.jmedchem.4c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
TREK-1 regulates neuronal excitability and neuronal cell apoptosis, and inhibition of TREK-1 is a potential strategy to prevent cell death and achieve neuroprotection in an ischemic stroke. In this work, a series of novel isobenzofuran-1(3H)-one derivatives were designed and synthesized as TREK-1 inhibitors, and extensive structure-activity relationships led to the discovery of potent and selective TREK-1 inhibitors having IC50 values of a low micromolar level. Among them, Cpd8l potently and selectively inhibited TREK-1 (IC50 = 0.81 μM, selectivity >30 fold over other K+, Na+, and TRP channels). Cpd8l remarkably reduced the neuron death in the OGD/R-induced cortical neuronal injury model, while adenovirus silencing TREK-1 reduced its neuroprotective effect. Furthermore, Cpd8l could effectively ameliorate brain injury in MCAO/R model mice. Collectively, this work demonstrates that Cpd8l may serve as a novel lead compound to develop a highly potent and selective TREK-1 inhibitor for ischemic stroke treatment.
Collapse
Affiliation(s)
- Kaiyue Liu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yunyun Ji
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Yiming Xie
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Chengyan Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ziyi Wei
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaotong Zheng
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Fan Zhang
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin 541004, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Okada M, Tran TTT. Effect of chronic administration of ostruthin on depression-like behavior in chronically stressed mice. IBRO Neurosci Rep 2024; 16:622-628. [PMID: 38832088 PMCID: PMC11144753 DOI: 10.1016/j.ibneur.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
We have previously shown that a single dose of a TREK-1 channel activator, ostruthin, exhibited antidepressant and anxiolytic effects in acute behavioral test models in mice. To assess the potential clinical application, it is essential to evaluate the effects of long-term administration of ostruthin in a chronically stressed mouse model, which is considered to be similar to the clinical condition of major depression in humans. Here, we tested the effects of a single and a 7-day administration of ostruthin on mice that were subjected to chronic unpredictable mild stress (CUMS). A single administration of ostruthin showed antidepressive effects in the tail suspension and forced swim tests of CUMS-treated mice. Unexpectedly, the 7-day administration exhibited only insignificant antidepressive and anxiolytic effects. The 7-day regimen did not affect food intake or body-weight gain, suggesting the absence of apparent cytotoxicity. The mice receiving the 7-day administration had significantly lower blood concentrations of ostruthin compared to those receiving a single dose, suggesting an upregulation of drug-metabolizing activities. These findings suggest that there is a need for stable TREK-1 channel activators that are not affected by drug metabolism.
Collapse
Affiliation(s)
- Masayoshi Okada
- Department of Medical LifeScience, College of Life Science, Kurashiki University of Science and the Arts, Kurashiki, Okayama 712-8505, Japan
| | - Thi Thu Thuy Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| |
Collapse
|
4
|
Bahi A. Serotonin transporter knockdown relieves depression-like behavior and ethanol-induced CPP in mice after chronic social defeat stress. Behav Brain Res 2024; 466:114998. [PMID: 38614210 DOI: 10.1016/j.bbr.2024.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Patients with stress-triggered major depression disorders (MDD) can often seek comfort or temporary relief through alcohol consumption, as they may turn to it as a means of self-medication or coping with overwhelming emotions. The use of alcohol as a coping mechanism for stressful events can escalate, fostering a cycle where the temporary relief it provides from depression can deepen into alcohol dependence, exacerbating both conditions. Although, the specific mechanisms involved in stress-triggered alcohol dependence and MDD comorbidities are not well understood, a large body of literature suggests that the serotonin transporter (SERT) plays a critical role in these abnormalities. To further investigate this hypothesis, we used a lentiviral-mediated knockdown approach to examine the role of hippocampal SERT knockdown in social defeat stress-elicited depression like behavior and ethanol-induced place preference (CPP). The results showed that social defeat stress-pro depressant effects were reversed following SERT knockdown demonstrated by increased sucrose preference, shorter latency to feed in the novelty suppressed feeding test, and decreased immobility time in the tail suspension and forced swim tests. Moreover, and most importantly, social stress-induced ethanol-CPP acquisition and reinstatement were significantly reduced following hippocampal SERT knockdown using short hairpin RNA shRNA-expressing lentiviral vectors. Finally, we confirmed that SERT hippocampal mRNA expression correlated with measures of depression- and ethanol-related behaviors by Pearson's correlation analysis. Taken together, our data suggest that hippocampal serotoninergic system is involved in social stress-triggered mood disorders as well as in the acquisition and retrieval of ethanol contextual memory and that blockade of this transporter can decrease ethanol rewarding properties.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Anatomy, CMHS, UAE University, Al Ain, United Arab Emirates.
| |
Collapse
|
5
|
Bechard E, Bride J, Le Guennec JY, Brette F, Demion M. TREK-1 in the heart: Potential physiological and pathophysiological roles. Front Physiol 2022; 13:1095102. [PMID: 36620226 PMCID: PMC9815770 DOI: 10.3389/fphys.2022.1095102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The TREK-1 channel belongs to the TREK subfamily of two-pore domains channels that are activated by stretch and polyunsaturated fatty acids and inactivated by Protein Kinase A phosphorylation. The activation of this potassium channel must induce a hyperpolarization of the resting membrane potential and a shortening of the action potential duration in neurons and cardiac cells, two phenomena being beneficial for these tissues in pathological situations like ischemia-reperfusion. Surprisingly, the physiological role of TREK-1 in cardiac function has never been thoroughly investigated, very likely because of the lack of a specific inhibitor. However, possible roles have been unraveled in pathological situations such as atrial fibrillation worsened by heart failure, right ventricular outflow tract tachycardia or pulmonary arterial hypertension. The inhomogeneous distribution of TREK-1 channel within the heart reinforces the idea that this stretch-activated potassium channel might play a role in cardiac areas where the mechanical constraints are important and need a particular protection afforded by TREK-1. Consequently, the main purpose of this mini review is to discuss the possible role played by TREK -1 in physiological and pathophysiological conditions and its potential role in mechano-electrical feedback. Improved understanding of the role of TREK-1 in the heart may help the development of promising treatments for challenging cardiac diseases.
Collapse
|
6
|
Russell T, Gangotia D, Barry G. Assessing the potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication. Biomed Pharmacother 2022; 156:113850. [DOI: 10.1016/j.biopha.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
|
7
|
Hu G, Zhang M, Wang Y, Yu M, Zhou Y. Potential of Heterogeneous Compounds as Antidepressants: A Narrative Review. Int J Mol Sci 2022; 23:ijms232213776. [PMID: 36430254 PMCID: PMC9692659 DOI: 10.3390/ijms232213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Depression is a globally widespread disorder caused by a complicated interplay of social, psychological, and biological factors. Approximately 280 million people are suffering from depression worldwide. Traditional frontline antidepressants targeting monoamine neurotransmitters show unsatisfactory effects. The development and application of novel antidepressants for dissimilar targets are on the agenda. This review characterizes the antidepressant effects of multiple endogenous compounds and/or their targets to provide new insight into the working mechanism of antidepressants. We also discuss perspectives and challenges for the generation of novel antidepressants.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ming Yu
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Correspondence:
| |
Collapse
|
8
|
Viral vector-mediated expressions of venom peptides as novel gene therapy for anxiety and depression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Zheng X, Yang J, Zhu Z, Fang Y, Tian Y, Xie M, Wang W, Liu Y. The Two-Pore Domain Potassium Channel TREK-1 Promotes Blood-Brain Barrier Breakdown and Exacerbates Neuronal Death After Focal Cerebral Ischemia in Mice. Mol Neurobiol 2022; 59:2305-2327. [PMID: 35067892 DOI: 10.1007/s12035-021-02702-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
Earlier studies have shown the neuroprotective role of TWIK-related K+ channel 1 (TREK-1) in global cerebral and spinal cord ischemia, while its function in focal cerebral ischemia has long been debated. This study used TREK-1-deficient mice to directly investigate the role of TREK-1 after focal cerebral ischemia. First, immunofluorescence assays in the mouse cerebral cortex indicated that TREK-1 expression was mostly abundant in astrocytes, neurons, and oligodendrocyte precursor cells but was low in myelinating oligodendrocytes, microglia, or endothelial cells. TREK-1 deficiency did not affect brain weight and morphology or the number of neurons, astrocytes, or microglia but did increase glial fibrillary acidic protein (GFAP) expression in astrocytes of the cerebral cortex. The anatomy of the major cerebral vasculature, number and structure of brain micro blood vessels, and blood-brain barrier integrity were unaltered. Next, mice underwent 60 min of focal cerebral ischemia and 72 h of reperfusion induced by the intraluminal suture method. TREK-1-deficient mice showed less neuronal death, smaller infarction size, milder blood-brain barrier (BBB) breakdown, reduced immune cell invasion, and better neurological function. Finally, the specific pharmacological inhibition of TREK-1 also decreased infarction size and improved neurological function. These results demonstrated that TREK-1 might play a detrimental rather than beneficial role in focal cerebral ischemia, and inhibition of TREK-1 would be a strategy to treat ischemic stroke in the clinic.
Collapse
Affiliation(s)
- Xiaolong Zheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yeye Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Neurological Diseases of Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021; 12:777607. [PMID: 34858192 PMCID: PMC8631474 DOI: 10.3389/fphar.2021.777607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Migraine and major depression are debilitating disorders with high lifetime prevalence rates. Interestingly these disorders are highly comorbid and show significant heritability, suggesting shared pathophysiological mechanisms. Non-homeostatic function of ion channels and neuroinflammation may be common mechanisms underlying both disorders: The excitation-inhibition balance of microcircuits and their modulation by monoaminergic systems, which depend on the expression and function of membrane located K+, Na+, and Ca+2 channels, have been reported to be disturbed in both depression and migraine. Ion channels and energy supply to synapses not only change excitability of neurons but can also mediate the induction and maintenance of inflammatory signaling implicated in the pathophysiology of both disorders. In this respect, Pannexin-1 and P2X7 large-pore ion channel receptors can induce inflammasome formation that triggers release of pro-inflammatory mediators from the cell. Here, the role of ion channels involved in the regulation of excitation-inhibition balance, synaptic energy homeostasis as well as inflammatory signaling in migraine and depression will be reviewed.
Collapse
Affiliation(s)
- Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Psychiatry, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
12
|
García G, Martínez-Rojas VA, Murbartián J. TREK-1 potassium channels participate in acute and long-lasting nociceptive hypersensitivity induced by formalin in rats. Behav Brain Res 2021; 413:113446. [PMID: 34224765 DOI: 10.1016/j.bbr.2021.113446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 01/06/2023]
Abstract
TREK-1 channels are expressed in small nociceptive dorsal root ganglion (DRG) neurons where they participate in acute inflammatory and neuropathic pain. However, the role of TREK-1 in persistent pain is not well understood. The aim of this study was to investigate the local peripheral and spinal participation of TREK-1 in formalin-induced acute and long-lasting nociceptive hypersensitivity. Local peripheral or intrathecal pre-treatment with spadin, selective blocker of TREK-1, increased acute flinching behavior and secondary mechanical allodynia and hyperalgesia behavior observed 6 days after formalin injection. Local peripheral or intrathecal pre-treatment with BL-1249, selective opener of TREK-1, decreased long-lasting secondary mechanical allodynia and hyperalgesia induced by formalin. Pre-treatment with BL-1249 prevented the pro-nociceptive effect of spadin on acute nociception and long-lasting mechanical allodynia and hyperalgesia in rats. Pre-treatment with two recombinant channels that produce a high TREK-1 current, S300A and S333A (non-phosphorylated state of TREK-1), reduced formalin-induced acute pain and long-lasting mechanical allodynia and hyperalgesia. Besides, post-treatment with S300A, S333A or BL-1249 reversed long-lasting mechanical allodynia and hyperalgesia induced by formalin. Formalin increased TREK-1 expression at 1 and 6 days in DRG and dorsal spinal cord in rats, whereas that it increased c-fos expression at the DRG. Intrathecal repeated transfection of rats with S300A and S333A or injection with BL-1249 reduced formalin-induced enhanced c-fos expression. Data suggest that TREK-1 activity at peripheral and spinal sites reduces neuronal excitability in the process of acute and long-lasting nociception induced by formalin in rats.
Collapse
Affiliation(s)
- Guadalupe García
- Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico.
| | | | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico.
| |
Collapse
|
13
|
Ren K, Liu H, Guo B, Li R, Mao H, Xue Q, Yao H, Wu S, Bai Z, Wang W. Quercetin relieves D-amphetamine-induced manic-like behaviour through activating TREK-1 potassium channels in mice. Br J Pharmacol 2021; 178:3682-3695. [PMID: 33908633 DOI: 10.1111/bph.15510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Quercetin is a well-known plant flavonoid with neuroprotective properties. Earlier work suggested it may relieve psychiatric disorders, cognition deficits and memory dysfunction through anti-oxidant and/or radical scavenging mechanisms. In addition, quercetin modulated the physiological function of some ion channels. However, the detailed ionic mechanisms of the bioeffects of quercetin remain unknown. EXPERIMENTAL APPROACH Effects of quercetin on neuronal activities in the prefrontal cortex (PFC) and its ionic mechanisms were analysed by calcium imaging using mice bearing a green fluorescent protein, calmodulin, and M13 fusion protein and patch clamp in acute brain slices from C57BL/6 J mice and in HEK 293 cells. The possible ionic mechanism of action of quercetin on D-amphetamine-induced manic-like effects in mice was explored with c-fos staining and the open field behaviour test. KEY RESULTS Quercetin reduced calcium influx triggered by PFC pyramidal neuronal activity. This effect involved increasing the rheobase of neuronal firing through decreasing membrane resistance following quercetin treatment. Spadin, a blocker of TREK-1 potassium channels, also blocked the effect of quercetin on the membrane resistance and neuronal firing. Further, spadin blocked the neuroprotective effects of quercetin. The effects of quercetin on TREK-1 channels could be mimicked by GF109203X, a protein kinase C inhibitor. In vivo, injection of quercetin relieved the manic hyperlocomotion in mice, induced by D-amphetamine. This action was partly alleviated by spadin. CONCLUSION AND IMPLICATIONS TREK-1 channels are a novel target for quercetin, by inhibiting PKC. This action could contribute to both the neuroprotective and anti-manic-like effects.
Collapse
Affiliation(s)
- Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China.,College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Han Yao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhantao Bai
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Natale AM, Deal PE, Minor DL. Structural Insights into the Mechanisms and Pharmacology of K 2P Potassium Channels. J Mol Biol 2021; 433:166995. [PMID: 33887333 PMCID: PMC8436263 DOI: 10.1016/j.jmb.2021.166995] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023]
Abstract
Leak currents, defined as voltage and time independent flows of ions across cell membranes, are central to cellular electrical excitability control. The K2P (KCNK) potassium channel class comprises an ion channel family that produces potassium leak currents that oppose excitation and stabilize the resting membrane potential in cells in the brain, cardiovascular system, immune system, and sensory organs. Due to their widespread tissue distribution, K2Ps contribute to many physiological and pathophysiological processes including anesthesia, pain, arrythmias, ischemia, hypertension, migraine, intraocular pressure regulation, and lung injury responses. Structural studies of six homomeric K2Ps have established the basic architecture of this channel family, revealed key moving parts involved in K2P function, uncovered the importance of asymmetric pinching and dilation motions in the K2P selectivity filter (SF) C-type gate, and defined two K2P structural classes based on the absence or presence of an intracellular gate. Further, a series of structures characterizing K2P:modulator interactions have revealed a striking polysite pharmacology housed within a relatively modestly sized (~70 kDa) channel. Binding sites for small molecules or lipids that control channel function are found at every layer of the channel structure, starting from its extracellular side through the portion that interacts with the membrane bilayer inner leaflet. This framework provides the basis for understanding how gating cues sensed by different channel parts control function and how small molecules and lipids modulate K2P activity. Such knowledge should catalyze development of new K2P modulators to probe function and treat a wide range of disorders.
Collapse
Affiliation(s)
- Andrew M Natale
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Parker E Deal
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience University of California, San Francisco, CA 94158, USA; Molecular Biophysics and Integrated Bio-imaging Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
15
|
Daziano G, Blondeau N, Béraud-Dufour S, Abderrahmani A, Rovère C, Heurteaux C, Mazella J, Lebrun P, Coppola T. Sortilin-derived peptides promote pancreatic beta-cell survival through CREB signaling pathway. Pharmacol Res 2021; 167:105539. [PMID: 33737242 DOI: 10.1016/j.phrs.2021.105539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Deterioration of insulin secretion and pancreatic beta-cell mass by inflammatory attacks is one of the main pathophysiological features of type 2 diabetes (T2D). Therefore, preserving beta-cell mass and stimulating insulin secretion only in response to glucose for avoiding the hypoglycemia risks, are the most state-of-the-art option for the treatment of T2D. In this study we tested two correlated hypothesis that 1/ the endogenous peptide released from sortilin, known as PE, that stimulates insulin secretion only in response to glucose, protects beta-cells against death induced by cytokines, and 2/ Spadin and Mini-Spadin, two synthetic peptides derived from PE, that mimic the effects of PE in insulin secretion, also provide beneficial effect on beta-cells survival. We show that PE and its derivatives by inducing a rise of intracellular calcium concentration by depolarizing the membrane protect beta-cells against death induced by Interleukin-1β. Using biochemical, confocal imaging and cell biology techniques, we reveal that the protective effects of PE and its derivatives rely on the activation of the CaM-Kinase pathway, and on the phosphorylation and activation of the transcription factor CREB. In addition, Mini-Spadin promotes beta-cell proliferation, suggesting its possible regenerative effect. This study highlights new possible roles of PE in pancreatic beta-cell survival and its derivatives as pharmacological tools against diabetes.
Collapse
Affiliation(s)
- Guillaume Daziano
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Nicolas Blondeau
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France
| | | | - Amar Abderrahmani
- Université Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France
| | - Carole Rovère
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France
| | | | - Jean Mazella
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Patricia Lebrun
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France.
| | - Thierry Coppola
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, F-06560, France.
| |
Collapse
|
16
|
Giannoni-Guzmán MA, Kamitakahara A, Magalong V, Levitt P, McMahon DG. Circadian photoperiod alters TREK-1 channel function and expression in dorsal raphe serotonergic neurons via melatonin receptor 1 signaling. J Pineal Res 2021; 70:e12705. [PMID: 33210730 PMCID: PMC8496951 DOI: 10.1111/jpi.12705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Seasonal day length has been linked to the prevalence of mood disorders, and however, the mechanisms underlying this relationship remain unknown. Previous work in our laboratory has shown that developmental exposure to seasonal photoperiods has enduring effects on the activity of mouse dorsal raphe serotonergic neurons, their intrinsic electrical properties, as well as on depression and anxiety-related behaviors. Here we focus on the possible ionic mechanisms that underlie the observed programming of the electrophysiological properties of serotonin neurons, focusing on the twin-pore K + channels TREK-1 and TASK-1 that set resting membrane potential and regulate excitability. Pharmacological inhibition of TREK-1 significantly increased spike frequency in Short and Equinox photoperiods, but did not further elevate the firing rate in slices from Long photoperiod mice, suggesting that TREK-1 function is reduced in Long photoperiods. In contrast, inhibition of TASK-1 resulted in increases in firing rates across all photoperiods, suggesting that it contributes to setting excitability, but is not regulated by photoperiod. We then quantified Kcnk2 mRNA levels specifically in dorsal raphe 5-HT neurons using triple-label RNAscope. We found that Long photoperiod significantly reduced levels of Kcnk2 in serotonin neurons co-expressing Tph2, and Pet-1. Photoperiodic effects on the function and expression of TREK-1 were blocked in melatonin 1 receptor knockout (MT-1KO) mice, consistent with previous findings that MT-1 signaling is necessary for photoperiodic programming of dorsal raphe 5-HT neurons. Taken together these results indicate that photoperiodic regulation of TREK-1 expression and function plays a key role in photoperiodic programming the excitability of dorsal raphe 5-HT neurons.
Collapse
Affiliation(s)
| | - Anna Kamitakahara
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, Keck School of Medicine, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Valerie Magalong
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, Keck School of Medicine, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, Keck School of Medicine, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Douglas G. McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
FOXP1 negatively regulates intrinsic excitability in D2 striatal projection neurons by promoting inwardly rectifying and leak potassium currents. Mol Psychiatry 2021; 26:1761-1774. [PMID: 33402705 PMCID: PMC8255328 DOI: 10.1038/s41380-020-00995-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/18/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023]
Abstract
Heterozygous loss-of-function mutations in the transcription factor FOXP1 are strongly associated with autism. Dopamine receptor 2 expressing (D2) striatal projection neurons (SPNs) in heterozygous Foxp1 (Foxp1+/-) mice have higher intrinsic excitability. To understand the mechanisms underlying this alteration, we examined SPNs with cell-type specific homozygous Foxp1 deletion to study cell-autonomous regulation by Foxp1. As in Foxp1+/- mice, D2 SPNs had increased intrinsic excitability with homozygous Foxp1 deletion. This effect involved postnatal mechanisms. The hyperexcitability was mainly due to down-regulation of two classes of potassium currents: inwardly rectifying (KIR) and leak (KLeak). Single-cell RNA sequencing data from D2 SPNs with Foxp1 deletion indicated the down-regulation of transcripts of candidate ion channels that may underlie these currents: Kcnj2 and Kcnj4 for KIR and Kcnk2 for KLeak. This Foxp1-dependent regulation was neuron-type specific since these same currents and transcripts were either unchanged, or very little changed, in D1 SPNs with cell-specific Foxp1 deletion. Our data are consistent with a model where FOXP1 negatively regulates the excitability of D2 SPNs through KIR and KLeak by transcriptionally activating their corresponding transcripts. This, in turn, provides a novel example of how a transcription factor may regulate multiple genes to impact neuronal electrophysiological function that depends on the integration of multiple current types - and do this in a cell-specific fashion. Our findings provide initial clues to altered neuronal function and possible therapeutic strategies not only for FOXP1-associated autism but also for other autism forms associated with transcription factor dysfunction.
Collapse
|
18
|
Okada M, Kozaki I, Honda H. Antidepressive effect of an inward rectifier K+ channel blocker peptide, tertiapin-RQ. PLoS One 2020; 15:e0233815. [PMID: 33186384 PMCID: PMC7665585 DOI: 10.1371/journal.pone.0233815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
Renal outer medullary K+ channel, ROMK (Kir1.1, kcnj1) is expressed in the kidney and brain, but its role in the central nervous system remains unknown. Recent studies suggested an involvement of the ROMK channel in mental diseases. Tertiapin (TPN) is a European honey bee venom peptide and is reported to selectively block the ROMK channel. Here, we have chemically synthesized a series of mutated TPN peptides, including TPN-I8R and -M13Q (TPN-RQ), reported previously, and examined their blocking activity on the ROMK channel. Among 71 peptides tested, TPN-RQ was found to block the ROMK channel most effectively. Whole-cell patch-clamp recordings showed the essential roles of two disulfide bonds and the circular structure for the blockade activity. To examine the central role, we injected TPN-RQ intracerebroventricularly and examined the effects on depression- and anxiety-like behaviors in mice. TPN-RQ showed an antidepressive effect in tail-suspension and forced swim tests. The injection of TPN-RQ also enhanced the anxiety-like behavior in the elevated plus-maze and light/dark box tests and impaired spontaneous motor activities in balance beam and wheel running tests. Administration of TPM-RQ suppressed the anti-c-Fos immunoreactivity in the lateral septum, without affecting immunoreactivity in antidepressant-related nuclei, e.g. the dorsal raphe nucleus and locus coeruleus. TPN-RQ may exert its antidepressive effects through a different mechanism from current drugs.
Collapse
Affiliation(s)
- Masayoshi Okada
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, Kurashiki, Okayama, Japan
- * E-mail:
| | - Ikkou Kozaki
- Department of Biomolecular Engineering, Graduate Schoosl of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate Schoosl of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Busserolles J, Ben Soussia I, Pouchol L, Marie N, Meleine M, Devilliers M, Judon C, Schopp J, Clémenceau L, Poupon L, Chapuy E, Richard S, Noble F, Lesage F, Ducki S, Eschalier A, Lolignier S. TREK1 channel activation as a new analgesic strategy devoid of opioid adverse effects. Br J Pharmacol 2020; 177:4782-4795. [PMID: 32851651 DOI: 10.1111/bph.15243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Opioids are effective painkillers. However, their risk-benefit ratio is dampened by numerous adverse effects and opioid misuse has led to a public health crisis. Safer alternatives are required, but isolating the antinociceptive effect of opioids from their adverse effects is a pharmacological challenge because activation of the μ opioid receptor triggers both the antinociceptive and adverse effects of opioids. EXPERIMENTAL APPROACH The TREK1 potassium channel is activated downstream of μ receptor and involved in the antinociceptive activity of morphine but not in its adverse effects. Bypassing the μ opioid receptor to directly activate TREK1 could therefore be a safer analgesic strategy. KEY RESULTS We developed a selective TREK1 activator, RNE28, with antinociceptive activity in naive rodents and in models of inflammatory and neuropathic pain. This activity was lost in TREK1 knockout mice or wild-type mice treated with the TREK1 blocker spadin, showing that TREK1 is required for the antinociceptive activity of RNE28. RNE28 did not induce respiratory depression, constipation, rewarding effects, or sedation at the analgesic doses tested. CONCLUSION AND IMPLICATIONS This proof-of-concept study shows that TREK1 activators could constitute a novel class of painkillers, inspired by the mechanism of action of opioids but devoid of their adverse effects.
Collapse
Affiliation(s)
- Jérôme Busserolles
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Ismail Ben Soussia
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Université Côte d'Azur, INSERM, Valbonne, France
| | - Laetitia Pouchol
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Nicolas Marie
- Neuroplasticité et thérapie des addictions, Université Paris Descartes, CNRS, Inserm, Paris, France
| | - Mathieu Meleine
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Maïly Devilliers
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Céline Judon
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Julien Schopp
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Loïc Clémenceau
- Neuroplasticité et thérapie des addictions, Université Paris Descartes, CNRS, Inserm, Paris, France
| | - Laura Poupon
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Eric Chapuy
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Serge Richard
- Centre de Recherches Biologiques, CERB, Baugy, France
| | - Florence Noble
- Neuroplasticité et thérapie des addictions, Université Paris Descartes, CNRS, Inserm, Paris, France
| | - Florian Lesage
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Université Côte d'Azur, INSERM, Valbonne, France
| | - Sylvie Ducki
- ICCF, SIGMA Clermont, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.,Faculté de Médecine, Institut Analgesia, Clermont-Ferrand, France
| |
Collapse
|
20
|
Pietri M, Djillani A, Mazella J, Borsotto M, Heurteaux C. First evidence of protective effects on stroke recovery and post-stroke depression induced by sortilin-derived peptides. Neuropharmacology 2019; 158:107715. [PMID: 31325429 DOI: 10.1016/j.neuropharm.2019.107715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023]
Abstract
Post-stroke depression (PSD) is the most common mood disorder following stroke with high relevance for outcome and survival of patients. The TREK-1 channel represents a crucial target in the pathogenesis of stroke and depression. Spadin and its short analog mini-spadin were reported to display potent antidepressant properties. We investigated the therapeutic effects of mini-spadin in a mouse model of focal ischemia and PSD. To activate TREK-1 and induce neuroprotection a single low dose of mini-spadin (0.03 μg/kg) was intraperitoneally injected 30 min after the onset of ischemia, once a day during 7 days post-ischemia. Then, to inhibit TREK-1 and induce antidepressant effect, the peptide was injected at higher concentration (3 μg/kg) once a day for 4 days/week until the sacrifice of animals. Electrophysiological studies showed that mini-spadin had a biphasic action on TREK-1. At low doses, the channel activity was increased whereas at higher doses it was inhibited. Mini-spadin prevented the loss of body weight and the delayed dopaminergic degeneration in substantia nigra and improved the motor and cognitive ischemia-induced deficits. Moreover, mini-spadin prevented PSD analyzed in the Forced Swim (FST) and Novelty Suppressed Feeding (NSF) tests. Finally, enhanced neurogenesis and synaptogenesis contributed to the beneficial effects of mini-spadin against stroke and PSD. This work reveals the first evidence that the modulation of TREK-1 channels in the early and chronic phases of stroke as well as the stimulation of brain plasticity by mini-spadin could play a key role in its brain protective effects against stroke and its deleterious consequences such as PSD.
Collapse
Affiliation(s)
- Mariel Pietri
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | - Alaeddine Djillani
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | - Jean Mazella
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | - Marc Borsotto
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | - Catherine Heurteaux
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, 06560, Valbonne, France.
| |
Collapse
|
21
|
Djillani A, Mazella J, Heurteaux C, Borsotto M. Role of TREK-1 in Health and Disease, Focus on the Central Nervous System. Front Pharmacol 2019; 10:379. [PMID: 31031627 PMCID: PMC6470294 DOI: 10.3389/fphar.2019.00379] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023] Open
Abstract
TREK-1 is the most studied background K2P channel. Its main role is to control cell excitability and maintain the membrane potential below the threshold of depolarization. TREK-1 is multi-regulated by a variety of physical and chemical stimuli which makes it a very promising and challenging target in the treatment of several pathologies. It is mainly expressed in the brain but also in heart, smooth muscle cells, endocrine pancreas, and prostate. In the nervous system, TREK-1 is involved in many physiological and pathological processes such as depression, neuroprotection, pain, and anesthesia. These properties explain why many laboratories and pharmaceutical companies have been focusing their research on screening and developing highly efficient modulators of TREK-1 channels. In this review, we summarize the different roles of TREK-1 that have been investigated so far in attempt to characterize pharmacological tools and new molecules to modulate cellular functions controlled by TREK-1.
Collapse
Affiliation(s)
- Alaeddine Djillani
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
22
|
Canella R, Martini M, Cavicchio C, Cervellati F, Benedusi M, Valacchi G. Involvement of the TREK-1 channel in human alveolar cell membrane potential and its regulation by inhibitors of the chloride current. J Cell Physiol 2019; 234:17704-17713. [PMID: 30805940 DOI: 10.1002/jcp.28396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
K+ channels of the alveolar epithelium control the driving force acting on the ionic and solvent flow through the cell membrane contributing to the maintenance of cell volume and the constitution of epithelial lining fluid. In the present work, we analyze the effect of the Cl- channel inhibitors: (4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-inden-5-yl)oxy] butanoic acid (DCPIB) and 9-anthracenecarboxylic acid (9-AC) on the total current in a type II pneumocytes (A549 cell line) model by patch clamp, immunocytochemical, and gene knockdown techniques. We noted that DCPIB and 9-AC promote the activation of K conductance. In fact, they significantly increase the intensity of the current and shift its reversal potential to values more negative than the control. By silencing outward rectifier channel in its anoctamin 6 portion, we excluded a direct involvement of Cl- ions in modulation of IK and, by means of functional tests with its specific inhibitor spadin, we identified the TREK-1 channel as the presumable target of both drugs. As the activity of TREK-1 has a key role for the correct functioning of the alveolar epithelium, the identification of DCPIB and 9-AC molecules as its activators suggests their possible use to build new pharmacological tools for the modulation of this channel.
Collapse
Affiliation(s)
- Rita Canella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Martini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carlotta Cavicchio
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| |
Collapse
|
23
|
Mazella J, Borsotto M, Heurteaux C. The Involvement of Sortilin/NTSR3 in Depression as the Progenitor of Spadin and Its Role in the Membrane Expression of TREK-1. Front Pharmacol 2019; 9:1541. [PMID: 30670975 PMCID: PMC6331531 DOI: 10.3389/fphar.2018.01541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022] Open
Abstract
The molecular identification of sortilin, also called neurotensin receptor-3, from three different biochemical approaches already predicted the involvement of the protein in numerous biological and cellular functions. The first important observation was that sortilin is synthesized as a precursor that is converted to a mature protein after cleavage by the protein convertase furin in late Golgi compartments. This maturation leads to the formation of a 44 amino acid peptide, the propeptide (PE). The release of this peptide when matured sortilin reached the plasma membrane remained to be demonstrated. Sortilin has been also shown to be shedded by matrix metalloproteases releasing a large extracellular fragment identified as soluble sortilin. Therefore, sortilin has been shown to interact with several proteins and receptors confirming its role in the sorting of cellular components to the plasma membrane and/or to the lysosomal pathway. Interestingly, sortilin physically interacts with the two pore domain potassium channel TREK-1 and the PE as well as its synthetic analog spadin is able to block the activation of TREK-1 highlighting their role in the depression pathology. The present review describes the advance of research that led to these results and how both the soluble form of sortilin and the sortilin-derived PE have been detected in human serum and whose levels are affected in patients with major depressive disorder (MDD). The use of spadin as an antidepressant and the further role of soluble sortilin and of sortilin-derived PE as potential biomarkers during depression statement and/or remission of the pathology are considered and discussed in this review.
Collapse
Affiliation(s)
- Jean Mazella
- CNRS, UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Marc Borsotto
- CNRS, UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Catherine Heurteaux
- CNRS, UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
24
|
Lamas JA, Fernández-Fernández D. Tandem pore TWIK-related potassium channels and neuroprotection. Neural Regen Res 2019; 14:1293-1308. [PMID: 30964046 PMCID: PMC6524494 DOI: 10.4103/1673-5374.253506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TWIK-related potassium channels (TREK) belong to a subfamily of the two-pore domain potassium channels family with three members, TREK1, TREK2 and TWIK-related arachidonic acid-activated potassium channels. The two-pore domain potassium channels is the last big family of channels being discovered, therefore it is not surprising that most of the information we know about TREK channels predominantly comes from the study of heterologously expressed channels. Notwithstanding, in this review we pay special attention to the limited amount of information available on native TREK-like channels and real neurons in relation to neuroprotection. Mainly we focus on the role of free fatty acids, lysophospholipids and other neuroprotective agents like riluzole in the modulation of TREK channels, emphasizing on how important this modulation may be for the development of new therapies against neuropathic pain, depression, schizophrenia, epilepsy, ischemia and cardiac complications.
Collapse
Affiliation(s)
- J Antonio Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| | - Diego Fernández-Fernández
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| |
Collapse
|
25
|
Bahi A, Dreyer JL. Dopamine transporter (DAT) knockdown in the nucleus accumbens improves anxiety- and depression-related behaviors in adult mice. Behav Brain Res 2018; 359:104-115. [PMID: 30367968 DOI: 10.1016/j.bbr.2018.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022]
Abstract
Many epidemiological and clinical studies have demonstrated a strong comorbidity between anxiety and depression, and a number of experimental studies indicates that the dopamine transporter (DAT) is involved in the pathophysiology of anxiety and depression. However, studies using laboratory animals have yielded inconclusive results. The aim of the present study was to examine the effects of DAT manipulation on anxiety- and depression-like behaviors in mice. For this purpose, animals were stereotaxically injected with DAT siRNA-expressing lentiviral vectors (siDAT) in the caudate putamen (CPu) or in the nucleus accumbens (Nacc) and the behavioral outcomes were assessed using the open-field (OF), elevated-plus maze (EPM), light-dark box (LDB), sucrose preference (SPT), novelty suppressed feeding (NSF), and forced-swim (FST) tests. The results showed that in the Nacc, but not in the CPu, siDAT increased the time spent at the center of the arena and decreased the number of fecal boli in the OF test. In the EPM and LDB tests, Nacc siDAT injection increased the entries and time spent on open arms, and increased the time spent in the light side of the box, respectively, suggesting an anxiolytic-like activity. In addition, siDAT, in the Nacc, induced significant antidepressant-like effects, evidenced by increased sucrose preference, shorter latency to feed in the NSF test, and decreased immobility time in the FST. Most importantly, Pearson's test clearly showed significant correlations between DAT mRNA in the Nacc with anxiety and depression parameters. Overall, these results suggest that low DAT levels, in the Nacc, might act as protective factors against anxiety and depression. Therefore, targeting DAT activity might be a very attractive approach to tackle affective disorders.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, Tawam Medical Campus, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
26
|
Djillani A, Pietri M, Mazella J, Heurteaux C, Borsotto M. Fighting against depression with TREK-1 blockers: Past and future. A focus on spadin. Pharmacol Ther 2018; 194:185-198. [PMID: 30291907 DOI: 10.1016/j.pharmthera.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Depression is a devastating mood disorder and a leading cause of disability worldwide. Depression affects approximately one in five individuals in the world and represents heavy economic and social burdens. The neurobiological mechanisms of depression are not fully understood, but evidence highlights the role of monoamine neurotransmitter balance. Several antidepressants (ADs) are marketed to treat depression and related mood disorders. However, despite their efficacy, they remain nonspecific and unsafe because they trigger serious adverse effects. Therefore, developing new molecules for new targets in depression has become a real necessity. Eight years ago, spadin was described as a natural peptide with AD properties. This 17-amino acid peptide blocks TREK-1 channels, an original target in depression. Compared to the classical AD drugs such as fluoxetine, which requires 3-4 weeks for the AD effect to manifest, spadin acts rapidly within only 4 days of treatment. The AD properties are associated with increased neurogenesis and synaptogenesis in the brain. Despite the advantages of this fast-acting AD, the in vivo stability is weak and does not last for >7 h. The present review summarizes different strategies such as retro-inverso strategy, cyclization, and shortening the spadin sequence that has led to the development and optimization of spadin as an AD. Shortened spadin analogs present increased inhibition potency for TREK-1, an improved AD activity, and prolonged in vivo bioavailability. Finally, we also discuss about other inhibitors of TREK-1 channels with a proven efficacy in treating depression in the clinic, such as fluoxetine.
Collapse
Affiliation(s)
- Alaeddine Djillani
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Mariel Pietri
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France.
| |
Collapse
|
27
|
Fernández-Fernández D, Cadaveira-Mosquera A, Rueda-Ruzafa L, Herrera-Pérez S, Veale EL, Reboreda A, Mathie A, Lamas JA. Activation of TREK currents by riluzole in three subgroups of cultured mouse nodose ganglion neurons. PLoS One 2018; 13:e0199282. [PMID: 29928032 PMCID: PMC6013220 DOI: 10.1371/journal.pone.0199282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/05/2018] [Indexed: 01/12/2023] Open
Abstract
Two-pore domain potassium channels (K2P) constitute major candidates for the regulation of background potassium currents in mammalian cells. Channels of the TREK subfamily are also well positioned to play an important role in sensory transduction due to their sensitivity to a large number of physiological and physical stimuli (pH, mechanical, temperature). Following our previous report describing the molecular expression of different K2P channels in the vagal sensory system, here we confirm that TREK channels are functionally expressed in neurons from the mouse nodose ganglion (mNG). Neurons were subdivided into three groups (A, Ah and C) based on their response to tetrodotoxin and capsaicin. Application of the TREK subfamily activator riluzole to isolated mNG neurons evoked a concentration-dependent outward current in the majority of cells from all the three subtypes studied. Riluzole increased membrane conductance and hyperpolarized the membrane potential by approximately 10 mV when applied to resting neurons. The resting potential was similar in all three groups, but C cells were clearly less excitable and showed smaller hyperpolarization-activated currents at -100 mV and smaller sustained currents at -30 mV. Our results indicate that the TREK subfamily of K2P channels might play an important role in the maintenance of the resting membrane potential in sensory neurons of the autonomic nervous system, suggesting its participation in the modulation of vagal reflexes.
Collapse
Affiliation(s)
- Diego Fernández-Fernández
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
- * E-mail: (DFF); (JAL)
| | - Alba Cadaveira-Mosquera
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
| | - Lola Rueda-Ruzafa
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
| | - Salvador Herrera-Pérez
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
| | - Emma L. Veale
- Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Antonio Reboreda
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - J. Antonio Lamas
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
- * E-mail: (DFF); (JAL)
| |
Collapse
|