1
|
Danielli SG, Wurth J, Morice S, Kisele S, Surdez D, Delattre O, Bode PK, Wachtel M, Schäfer BW. Evaluation of the Role of AXL in Fusion-positive Pediatric Rhabdomyosarcoma Identifies the Small-molecule Inhibitor Bemcentinib (BGB324) as Potent Chemosensitizer. Mol Cancer Ther 2024; 23:864-876. [PMID: 38471796 PMCID: PMC11148551 DOI: 10.1158/1535-7163.mct-23-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/16/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Rhabdomyosarcoma (RMS) is a highly aggressive pediatric cancer with features of skeletal muscle differentiation. More than 80% of the high-risk patients ultimately fail to respond to chemotherapy treatment, leading to limited therapeutic options and dismal prognostic rates. The lack of response and subsequent tumor recurrence is driven in part by stem cell-like cells, the tumor subpopulation that is enriched after treatment, and characterized by expression of the AXL receptor tyrosine kinase (AXL). AXL mediates survival, migration, and therapy resistance in several cancer types; however, its function in RMS remains unclear. In this study, we investigated the role of AXL in RMS tumorigenesis, migration, and chemotherapy response, and whether targeting of AXL with small-molecule inhibitors could potentiate the efficacy of chemotherapy. We show that AXL is expressed in a heterogeneous manner in patient-derived xenografts (PDX), primary cultures and cell line models of RMS, consistent with its stem cell-state selectivity. By generating a CRISPR/Cas9 AXL knock-out and overexpressing models, we show that AXL contributes to the migratory phenotype of RMS, but not to chemotherapy resistance. Instead, pharmacologic blockade with the AXL inhibitors bemcentinib (BGB324), cabozantinib and NPS-1034 rapidly killed RMS cells in an AXL-independent manner and augmented the efficacy of the chemotherapeutics vincristine and cyclophosphamide. In vivo administration of the combination of bemcentinib and vincristine exerted strong antitumoral activity in a rapidly progressing PDX mouse model, significantly reducing tumor burden compared with single-agent treatment. Collectively, our data identify bemcentinib as a promising drug to improve chemotherapy efficacy in patients with RMS.
Collapse
Affiliation(s)
- Sara G. Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Jakob Wurth
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Sarah Morice
- Balgrist University Hospital, Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Samanta Kisele
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Peter K. Bode
- Department of Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Beat W. Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Wang J, Cheng Z, Dai D, Li H, Shao X, Xu M. Overexpression of TYRO3 indicates poor prognosis and induces gastric cancer progression via AKT-mTOR pathway. Mol Carcinog 2023; 62:1325-1337. [PMID: 37212497 DOI: 10.1002/mc.23566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023]
Abstract
Gastric cancer (GC) is among of the leading causes of cancer mortality worldwide. This is because many patients are diagnosed with advanced GC and postoperative radiotherapy and chemotherapy have also exhibited limited effects on GC. TYRO3 has been considered carcinogenic and a potential therapeutic target for GC. However, TYRO3 function and mechanism in GC remains elusive. The study results indicated that TYRO3 was aberrantly elevated in GC tissues and predicted poor prognosis. TYRO3 is closely associated with clinicopathological indicators in GC tissues such as lymph node metastasis, venous invasion, neural invasion, and the tumor-node-metastasis stage. In addition, TYRO3 expression levels are closely related to the AKT-mTOR pathway in GC tissues. Moreover, the oncogenic role of TYRO3 was determined through in vitro and in vivo functional assays, and knockdown of the TYRO3 expression level in GC cell lines can effectively suppress the AKT-mTOR pathway and inhibit tumor cell proliferation and migration. In conclusion, this study provides a theoretical basis for establishing the potential association and regulatory mechanism between TYRO3 and AKT-mTOR and offers a new strategy for GC-targeted therapy.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Dafei Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hao Li
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xinyu Shao
- Department of Gastroenterology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Borea F, Franczak MA, Garcia M, Perrino M, Cordua N, Smolenski RT, Peters GJ, Dziadziuszko R, Santoro A, Zucali PA, Giovannetti E. Target Therapy in Malignant Pleural Mesothelioma: Hope or Mirage? Int J Mol Sci 2023; 24:9165. [PMID: 37298116 PMCID: PMC10253134 DOI: 10.3390/ijms24119165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a rare neoplasm that is typically diagnosed in a locally advanced stage, making it not eligible for radical surgery and requiring systemic treatment. Chemotherapy with platinum compounds and pemetrexed has been the only approved standard of care for approximately 20 years, without any relevant therapeutic advance until the introduction of immune checkpoint inhibitors. Nevertheless, the prognosis remains poor, with an average survival of only 18 months. Thanks to a better understanding of the molecular mechanisms underlying tumor biology, targeted therapy has become an essential therapeutic option in several solid malignancies. Unfortunately, most of the clinical trials evaluating potentially targeted drugs for MPM have failed. This review aims to present the main findings of the most promising targeted therapies in MPM, and to explore possible reasons leading to treatments failures. The ultimate goal is to determine whether there is still a place for continued preclinical/clinical research in this area.
Collapse
Affiliation(s)
- Federica Borea
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marika A. Franczak
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Maria Garcia
- Faculty of Experimental Science, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Matteo Perrino
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nadia Cordua
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | | | - Godefridus J. Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paolo A. Zucali
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| |
Collapse
|
4
|
Zhuang WR, Wang Y, Nie W, Lei Y, Liang C, He J, Zuo L, Huang LL, Xie HY. Bacterial outer membrane vesicle based versatile nanosystem boosts the efferocytosis blockade triggered tumor-specific immunity. Nat Commun 2023; 14:1675. [PMID: 36966130 PMCID: PMC10039929 DOI: 10.1038/s41467-023-37369-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
Efferocytosis inhibition is emerging as an attractive strategy for antitumor immune therapy because of the subsequent leak of abundant immunogenic contents. However, the practical efficacy is seriously impeded by the immunosuppressive tumor microenvironments. Here, we construct a versatile nanosystem that can not only inhibit the efferocytosis but also boost the following antitumor immunity. MerTK inhibitor UNC2025 is loaded into the bacterial outer membrane vesicles (OMVs), which are then modified with maleimide (mU@OMVs). The prepared mU@OMVs effectively inhibits the efferocytosis by promoting the uptake while preventing the MerTK phosphorylation of tumor associated macrophages, and then captures the released antigens through forming universal thioether bonds. The obtained in situ vaccine effectively transfers to lymph nodes by virtue of the intrinsic features of OMVs, and then provokes intense immune responses that can efficiently prevent the growth, metastasis and recurrence of tumors in mice, providing a generalizable strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Ru Zhuang
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Yunfeng Wang
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Yao Lei
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Liping Zuo
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Li-Li Huang
- School of Medical Technology, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China.
| |
Collapse
|
5
|
Wei YT, Wang XR, Yan C, Huang F, Zhang Y, Liu X, Wen ZF, Sun XT, Zhang Y, Chen YQ, Gao R, Pan N, Wang LX. Thymosin α-1 reverses M2 polarization of tumor-associated macrophages during efferocytosis. Cancer Res 2022; 82:1991-2002. [PMID: 35364609 DOI: 10.1158/0008-5472.can-21-4260] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
The immunological effects of chemotherapy-induced tumor cell death are not completely understood. Accumulating evidence suggests that phagocytic clearance of apoptotic tumor cells, also known as efferocytosis, is an immunologically silent process, thus maintaining an immunosuppressive tumor microenvironment (TME). Here we report that, in the breast tumor microenvironment, thymosin α-1 (Tα-1) significantly reverses M2 polarization of IL-10-producing tumor-associated macrophages (TAM) during efferocytosis induced by apoptotic cells. Mechanistically, Tα-1, which bound to phosphatidylserine on the surface of apoptotic tumor cells and was internalized by macrophages, triggered the activation of SH2-containing inositol 5'-phosphatase 1 (SHIP1) through the lysosomal toll-like receptor 7 (TLR7)/MyD88 pathway, subsequently resulting in dephosphorylation of efferocytosis-activated TBK1 and reduction of efferocytosis-induced IL-10. Tα-1 combined with epirubicin chemotherapy markedly suppressed tumor growth in an in vivo breast cancer model by reducing macrophage-derived IL-10 and enhancing the number and function of tumor-infiltrating CD4+ and CD8+ T cells. In conclusion, Tα-1 improved the curative effect of chemotherapy by reversing M2 polarization of efferocytosis-activated macrophages, suggesting that Tα-1 injection immediately after chemotherapy may contribute to highly synergistic anti-tumor effects in breast cancer patients.
Collapse
Affiliation(s)
- Yi-Ting Wei
- Medical School of Southeast University, Nanjing, China
| | - Xu-Ru Wang
- Medical School of Southeast University, Nanjing, China
| | - Chunguang Yan
- Medical School of Southeast University, Nanjing, China
| | - Fang Huang
- Medical School of Southeast University, Nanjing, China
| | | | - Xueming Liu
- Medical School of Southeast University, Nanjing, China
| | - Zhi-Fa Wen
- Medical School of Southeast University, Nanjing, China
| | - Xiao-Tong Sun
- Medical School of Southeast University, Nanjing, China
| | - Yue Zhang
- Medical School of Southeast University, Nanjing, China
| | | | - Rong Gao
- Medical School of Southeast University, Nanjing, China
| | - Ning Pan
- Medical School of Southeast University, Nanjing, China
| | - Li-Xin Wang
- Medical School of Southeast University, Nanjing, China
| |
Collapse
|
6
|
Lee W, Kim DK, Synn CB, Lee HK, Park S, Jung DS, Choi Y, Kim JH, Byeon Y, Kim YS, Lee S, Lee S, Joo Y, Lee EJ, Yun MR, Heo SG, Yang W, Jung JE, Kim EK, Park J, Park JD, Lee DJ, Kim HW, Lim SM, Hong MH, Ahn BC, Lee JB, Pyo KH. Incorporation of SKI-G-801, a Novel AXL Inhibitor, With Anti-PD-1 Plus Chemotherapy Improves Anti-Tumor Activity and Survival by Enhancing T Cell Immunity. Front Oncol 2022; 12:821391. [PMID: 35356198 PMCID: PMC8959645 DOI: 10.3389/fonc.2022.821391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
A recently developed treatment strategy for lung cancer that combines immune checkpoint inhibitors with chemotherapy has been applied as a standard treatment for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), and it has improved the outcomes of chemotherapy. Maintenance treatment with anti-PD-1 antibody (aPD-1) enhances the effect of immunochemical combination therapy and improves therapeutic efficacy, which contributes toward a significant improvement in patient survival rates. The AXL receptor tyrosine kinase (AXL), which is expressed in tumor cells, plays an essential role in the resistance of cancers to chemotherapy and immunotherapy, and stimulates signaling associated with epithelial-mesenchymal transition (EMT) in metastatic cancer. AXL is thus an attractive target for controlling resistance to anti-tumor therapies. In this study, we examined the effect of AXL inhibitors on immune activation and tumor growth in TC1 and C3PQ mouse tumor models, in the context of clinical immunotherapy/chemotherapy and maintenance treatment, using an aPD-1 with/without pemetrexed. To determine the optimal timing for administration of SKI-G-801, an AXL inhibitor, we investigated its anti-tumor effects based on inclusion at the immunochemotherapy and maintenance therapy stages. We also performed flow cytometry-based immune profiling of myeloid cells and lymphoid cells at different points in the treatment schedule, to investigate the immune activation and anti-tumor effects of the AXL inhibitor. The addition of SKI-G-801 to the immune checkpoint inhibitor and chemotherapy stage, as well as the maintenance therapy stage, produced the best anti-tumor results, and significant tumor growth inhibition was observed in both the TC1 and C3PQ models. Both models also exhibited increased proportion of effector memory helper T cells and increased expression of CD86+ macrophages. Especially, regulatory T cells were significantly reduced in the TC1 tumor model and there was an increase in central memory cytotoxic T cell infiltration and an increased proportion of macrophages with high CD80 expression in the C3PQ tumor model. These results suggest increased infiltration of T cells, consistent with previous studies using AXL inhibitors. It is expected that the results from this study will serve as a stepping stone for clinical research to improve the existing standard of care.
Collapse
Affiliation(s)
- Wongeun Lee
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-si, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong Kwon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Chun-Bong Synn
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Kyu Lee
- Department of Discovery Biology, Oscotec Inc., Seongnam, South Korea
| | - Sungho Park
- Department of Discovery Biology, Oscotec Inc., Seongnam, South Korea
| | - Dong-Sik Jung
- Department of Discovery Biology, Oscotec Inc., Seongnam, South Korea
| | - Yewon Choi
- Department of Discovery Biology, Oscotec Inc., Seongnam, South Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngseon Byeon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Seob Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Soyeon Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Yunjoo Joo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Ji Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Ran Yun
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-si, South Korea
| | - Seong Gu Heo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Wookyeom Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Jung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Kyung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jooyeon Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - June Dong Park
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Doo Jae Lee
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Hyeon-Woo Kim
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Hee Hong
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Beung-Chul Ahn
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Center for Lung Cancer, National Cancer Center, Goyang-si, South Korea
| | - Jii Bum Lee
- Division of Hemato-oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.,Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
AXL inhibition improves BRAF-targeted treatment in melanoma. Sci Rep 2022; 12:5076. [PMID: 35332208 PMCID: PMC8948193 DOI: 10.1038/s41598-022-09078-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/14/2022] [Indexed: 01/18/2023] Open
Abstract
More than half of metastatic melanoma patients receiving standard therapy fail to achieve a long-term survival due to primary and/or acquired resistance. Tumor cell ability to switch from epithelial to a more aggressive mesenchymal phenotype, attributed with AXLhigh molecular profile in melanoma, has been recently linked to such event, limiting treatment efficacy. In the current study, we investigated the therapeutic potential of the AXL inhibitor (AXLi) BGB324 alone or in combination with the clinically relevant BRAF inhibitor (BRAFi) vemurafenib. Firstly, AXL was shown to be expressed in majority of melanoma lymph node metastases. When treated ex vivo, the largest reduction in cell viability was observed when the two drugs were combined. In addition, a therapeutic benefit of adding AXLi to the BRAF-targeted therapy was observed in pre-clinical AXLhigh melanoma models in vitro and in vivo. When searching for mechanistic insights, AXLi was found to potentiate BRAFi-induced apoptosis, stimulate ferroptosis and inhibit autophagy. Altogether, our findings propose AXLi as a promising treatment in combination with standard therapy to improve therapeutic outcome in metastatic melanoma.
Collapse
|
8
|
AXL Receptor Tyrosine Kinase as a Promising Therapeutic Target Directing Multiple Aspects of Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14030466. [PMID: 35158733 PMCID: PMC8833413 DOI: 10.3390/cancers14030466] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Metastasis is a complex process that requires the acquisition of certain traits by cancer cells as well as the cooperation of several non-neoplastic cells that populate the stroma. Cancer-related deaths are predominantly associated with complications arising from metastases. Limiting metastasis therefore represents an important clinical challenge. The receptor tyrosine kinase AXL is required at many steps of the metastatic cascade and contributes to tumor microenvironment deregulation. In this review, we describe how AXL contributes to metastatic progression by governing various biological processes in cancer cells and in stromal cells, highlighting the potential of its inhibition. Abstract The receptor tyrosine kinase AXL is emerging as a key player in tumor progression and metastasis and its expression correlates with poor survival in a plethora of cancers. While studies have shown the benefits of AXL inhibition for the treatment of metastatic cancers, additional roles for AXL in cancer progression are still being explored. This review discusses recent advances in understanding AXL’s functions in different tumor compartments including cancer, vascular, and immune cells. AXL is required at multiple steps of the metastatic cascade where its activation in cancer cells leads to EMT, invasion, survival, proliferation and therapy resistance. AXL activation in cancer cells and various stromal cells also results in tumor microenvironment deregulation, leading to modulation of angiogenesis, fibrosis, immune response and hypoxia. A better understanding of AXL’s role in these processes could lead to new therapeutic approaches that would benefit patients suffering from metastatic diseases.
Collapse
|
9
|
Santos GC, Martins LM, Bregadiolli BA, Moreno VF, Silva‐Filho LC, Silva BHST. Heterocyclic compounds as antiviral drugs: Synthesis, structure–activity relationship and traditional applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vitor Fernandes Moreno
- School of Sciences, Department of Chemistry São Paulo State University (UNESP) Bauru Brazil
| | | | | |
Collapse
|
10
|
Oien DB, Sarkar Bhattacharya S, Chien J, Molina J, Shridhar V. Quinacrine Has Preferential Anticancer Effects on Mesothelioma Cells With Inactivating NF2 Mutations. Front Pharmacol 2021; 12:750352. [PMID: 34621176 PMCID: PMC8490927 DOI: 10.3389/fphar.2021.750352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Mesothelioma is a rare cancer with disproportionately higher death rates for shipping and mining populations. These patients have few treatment options, which can be partially attributed to limited chemotherapy responses for tumors. We initially hypothesized that quinacrine could be combined with cisplatin or pemetrexed to synergistically eliminate mesothelioma cells. The combination with cisplatin resulted in synergistic cell death and the combination with pemetrexed was not synergistic, although novel artificially-generated pemetrexed-resistant cells were more sensitive to quinacrine. Unexpectedly, we discovered cells with NF2 mutations were very sensitive to quinacrine. This change of quinacrine sensitivity was confirmed by NF2 ectopic expression and knockdown in NF2 mutant and wildtype cell lines, respectively. There are few common mutations in mesothelioma and inactivating NF2 mutations are present in up to 60% of these tumors. We found quinacrine alters the expression of over 3000 genes in NF2-mutated cells that were significantly different than quinacrine-induced changes in NF2 wildtype cells. Changes to NF2/hippo pathway biomarkers were validated at the mRNA and protein levels. Additionally, quinacrine induces a G1 phase cell cycle arrest in NF2-mutated cells versus the S phase arrest in NF2-wildtype cells. This study suggests quinacrine may have repurposing potential for a large subset of mesothelioma patients.
Collapse
Affiliation(s)
- Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California, Davis Health, Sacramento, CA, United States
| | - Julian Molina
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Chang H, An R, Li X, Lang X, Feng J, Lv M. Anti-Axl monoclonal antibodies attenuate the migration of MDA-MB-231 breast cancer cells. Oncol Lett 2021; 22:749. [PMID: 34539853 PMCID: PMC8436363 DOI: 10.3892/ol.2021.13010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022] Open
Abstract
The receptor tyrosine kinase, anexelekto (Axl) is involved in tumor cell growth, migration and invasion, and has been associated with chemotherapy resistance, which makes it an attractive target for cancer therapy. In total, six Axl-targeted monoclonal antibodies (mAbs) and two antibody-drug conjugates have been reported in the last 10 years, which have been shown to have bioactivity in inhibiting tumor cell proliferation and migration. The Axl external cell domain (Axl−ECD), consisting of 426 amino acids, has always been used as an antigen in the screening process for all six of these Axl-targeted mAbs. However, the Axl functional domain, which interacts with its natural ligand, growth arrest-specific protein 6 (Gas6), is only a small part of the Axl−ECD. Antibodies targeting the Axl functional domain may efficiently block Gas6-Axl binding and attenuate its downstream signals and activities. To the best of our knowledge, no mAbs targeting the Axl functional domain have been reported. In the present study, a major Axl functional domain interacting with Gas6 was determined using bioinformatics and structural biology methods. In MDA-MB-231 breast cancer cell assays, anti-Axl mAbs targeting this relatively specific Axl functional domain almost completely neutralized the stimulation of Gas6 in both Axl phosphorylation and cell migration assays, and showed similar activity to the positive control drug R428 (a small molecular tyrosine kinase inhibitor of Axl currently in phase II clinical trials) in the cell migration assay. Given the important role of Axl in tumor development and chemotherapy resistance, Axl-targeted mAbs could be used to inhibit tumor cells directly, as well as reduce the development of chemotherapy resistance by blocking Axl activity. The application of Axl-targeted mAbs combined with chemotherapy provides a promising treatment strategy for patients with tumors, particularly those with triple-negative breast cancer, for whom no targeted therapy is currently available.
Collapse
Affiliation(s)
- Hong Chang
- Institute of Medical Technology, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China.,College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Ran An
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050051, P.R. China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Xiaoling Lang
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Ming Lv
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China.,Laboratory of Immunology, Institute of Military Cognitive and Brain Sciences, Beijing 100850, P.R. China
| |
Collapse
|
12
|
Quinacrine Induces Nucleolar Stress in Treatment-Refractory Ovarian Cancer Cell Lines. Cancers (Basel) 2021; 13:cancers13184645. [PMID: 34572872 PMCID: PMC8466834 DOI: 10.3390/cancers13184645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
A considerable subset of gynecologic cancer patients experience disease recurrence or acquired resistance, which contributes to high mortality rates in ovarian cancer (OC). Our prior studies showed that quinacrine (QC), an antimalarial drug, enhanced chemotherapy sensitivity in treatment-refractory OC cells, including artificially generated chemoresistant and high-grade serous OC cells. In this study, we investigated QC-induced transcriptomic changes to uncover its cytotoxic mechanisms of action. Isogenic pairs of OC cells generated to be chemoresistant and their chemosensitive counterparts were treated with QC followed by RNA-seq analysis. Validation of selected expression results and database comparison analyses indicated the ribosomal biogenesis (RBG) pathway is inhibited by QC. RBG is commonly upregulated in cancer cells and is emerging as a drug target. We found that QC attenuates the in vitro and in vivo expression of nucleostemin (NS/GNL3), a nucleolar RBG and DNA repair protein, and the RPA194 catalytic subunit of Pol I that results in RBG inhibition and nucleolar stress. QC promotes the redistribution of fibrillarin in the form of extranuclear foci and nucleolar caps, an indicator of nucleolar stress conditions. In addition, we found that QC-induced downregulation of NS disrupted homologous recombination repair both by reducing NS protein levels and PARylation resulting in reduced RAD51 recruitment to DNA damage. Our data suggest that QC inhibits RBG and this inhibition promotes DNA damage by directly downregulating the NS-RAD51 interaction. Additionally, QC showed strong synergy with PARP inhibitors in OC cells. Overall, we found that QC downregulates the RBG pathway, induces nucleolar stress, supports the increase of DNA damage, and sensitizes cells to PARP inhibition, which supports new therapeutic stratagems for treatment-refractory OC. Our work offers support for targeting RBG in OC and determines NS to be a novel target for QC.
Collapse
|
13
|
Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi SMR, Ranjbar A, SeyedSaleh S, Sharifzadeh SO, Khan H, Ashrafizadeh M, Zarrabi A, Ahn KS. Elucidating Role of Reactive Oxygen Species (ROS) in Cisplatin Chemotherapy: A Focus on Molecular Pathways and Possible Therapeutic Strategies. Molecules 2021; 26:2382. [PMID: 33921908 PMCID: PMC8073650 DOI: 10.3390/molecules26082382] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
The failure of chemotherapy is a major challenge nowadays, and in order to ensure effective treatment of cancer patients, it is of great importance to reveal the molecular pathways and mechanisms involved in chemoresistance. Cisplatin (CP) is a platinum-containing drug with anti-tumor activity against different cancers in both pre-clinical and clinical studies. However, drug resistance has restricted its potential in the treatment of cancer patients. CP can promote levels of free radicals, particularly reactive oxygen species (ROS) to induce cell death. Due to the double-edged sword role of ROS in cancer as a pro-survival or pro-death mechanism, ROS can result in CP resistance. In the present review, association of ROS with CP sensitivity/resistance is discussed, and in particular, how molecular pathways, both upstream and downstream targets, can affect the response of cancer cells to CP chemotherapy. Furthermore, anti-tumor compounds, such as curcumin, emodin, chloroquine that regulate ROS and related molecular pathways in increasing CP sensitivity are described. Nanoparticles can provide co-delivery of CP with anti-tumor agents and by mediating photodynamic therapy, and induce ROS overgeneration to trigger CP sensitivity. Genetic tools, such as small interfering RNA (siRNA) can down-regulate molecular pathways such as HIF-1α and Nrf2 to promote ROS levels, leading to CP sensitivity. Considering the relationship between ROS and CP chemotherapy, and translating these findings to clinic can pave the way for effective treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Seyed Mohammad Reza Torabi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - SeyedHesam SeyedSaleh
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
14
|
Wium M, Ajayi-Smith AF, Paccez JD, Zerbini LF. The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications. Cancers (Basel) 2021; 13:1521. [PMID: 33806258 PMCID: PMC8037968 DOI: 10.3390/cancers13071521] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/22/2023] Open
Abstract
Resistance to chemotherapeutic agents by cancer cells has remained a major obstacle in the successful treatment of various cancers. Numerous factors such as DNA damage repair, cell death inhibition, epithelial-mesenchymal transition, and evasion of apoptosis have all been implicated in the promotion of chemoresistance. The receptor tyrosine kinase Axl, a member of the TAM family (which includes TYRO3 and MER), plays an important role in the regulation of cellular processes such as proliferation, motility, survival, and immunologic response. The overexpression of Axl is reported in several solid and hematological malignancies, including non-small cell lung, prostate, breast, liver and gastric cancers, and acute myeloid leukaemia. The overexpression of Axl is associated with poor prognosis and the development of resistance to therapy. Reports show that Axl overexpression confers drug resistance in lung cancer and advances the emergence of tolerant cells. Axl is, therefore, an important candidate as a prognostic biomarker and target for anticancer therapies. In this review, we discuss the consequence of Axl upregulation in cancers, provide evidence for its role in cancer progression and the development of drug resistance. We will also discuss the therapeutic potential of Axl in the treatment of cancer.
Collapse
Affiliation(s)
- Martha Wium
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| | - Aderonke F. Ajayi-Smith
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| | - Juliano D. Paccez
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | - Luiz F. Zerbini
- Cancer Genomics Group, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa; (M.W.); (A.F.A.-S.)
| |
Collapse
|
15
|
The Multifaceted Roles of TAM Receptors during Viral Infection. Virol Sin 2020; 36:1-12. [PMID: 32720213 DOI: 10.1007/s12250-020-00264-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Tyro3, Axl, and Mertk (TAM) receptors play multiple roles in a myriad of physiological and pathological processes, varying from promoting the phagocytic clearance of apoptotic cells, sustaining the immune and inflammatory homeostasis, maintaining the blood-brain barrier (BBB) integrity and central nervous system (CNS) homeostasis, to mediating cancer malignancy and chemoresistance. Growth arrest-specific protein 6 (Gas6) and protein S (Pros1) are the two ligands that activate TAM receptors. Recently, TAM receptors have been reported to mediate cell entry and infection of multitudinous enveloped viruses in a manner called apoptotic mimicry. Moreover, TAM receptors are revitalized during viral entry and infection, which sequesters innate immune and inflammatory responses, facilitating viral replication and immune evasion. However, accumulating evidence have now proposed that TAM receptors are not required for the infection of these viruses in vivo. In addition, TAM receptors protect mice against the CNS infection of neuroinvasive viruses and relieve the brain lesions during encephalitis. These protective effects are achieved through maintaining BBB integrity, attenuating proinflammatory cytokine production, and promoting neural cell survival. TAM receptors also regulate the programmed cell death modes of virus-infected cells, which have profound impacts on the pathogenesis and outcome of infection. Here, we systematically review the functionalities and underlying mechanisms of TAM receptors and propose the potential application of TAM agonists to prevent severe viral encephalitis.
Collapse
|
16
|
Lu X, Bao H, Cui L, Zhu W, Zhang L, Xu Z, Man X, Chu Y, Fu Q, Zhang H. hUMSC transplantation restores ovarian function in POI rats by inhibiting autophagy of theca-interstitial cells via the AMPK/mTOR signaling pathway. Stem Cell Res Ther 2020; 11:268. [PMID: 32620136 PMCID: PMC7333437 DOI: 10.1186/s13287-020-01784-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/05/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Background Previous studies of primary ovarian insufficiency (POI) have focused on granulosa cells (GCs) and ignored the role of theca-interstitial cells (TICs). This study aims to explore the mechanism of the protective effects of human umbilical cord-derived mesenchymal stem cells (hUMSCs) on ovarian function in POI rats by regulating autophagy of TICs. Methods The POI model was established in rats treated with cisplatin (CDDP). The hUMSCs were transplanted into POI rats by tail vein. Enzyme-linked immunosorbent assay (ELISA) analysis, hematoxylin and eosin (HE) staining, and immunohistochemistry were used to measure the protective effects of hUMSCs. The molecular mechanisms of injury and repairment of TICs were assessed by immunofluorescence, transmission electron microscope (TEM), flow cytometry (FCM), western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Results In vivo, hUMSC transplantation restored the ovarian function and alleviated the apoptosis of TICs in POI rats. In vitro, hUMSCs reduced the autophagy levels of TICs by reducing oxidative stress and regulating AMPK/mTOR signaling pathway, thereby alleviating the apoptosis of TICs. Conclusion This study indicates that hUMSCs protected ovarian function in POI by regulating autophagy signaling pathway AMPK/mTOR.
Collapse
Affiliation(s)
- Xueyan Lu
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongchu Bao
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Linlu Cui
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wenqian Zhu
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Lianshuang Zhang
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Zheng Xu
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xuejing Man
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Yongli Chu
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Qiang Fu
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| | - Hongqin Zhang
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China. .,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
17
|
Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front Pharmacol 2020; 11:343. [PMID: 32265714 PMCID: PMC7100275 DOI: 10.3389/fphar.2020.00343] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 01/17/2023] Open
Abstract
Platinum-based anticancer drugs, including cisplatin, carboplatin, oxaliplatin, nedaplatin, and lobaplatin, are heavily applied in chemotherapy regimens. However, the intrinsic or acquired resistance severely limit the clinical application of platinum-based treatment. The underlying mechanisms are incredibly complicated. Multiple transporters participate in the active transport of platinum-based antitumor agents, and the altered expression level, localization, or activity may severely decrease the cellular platinum accumulation. Detoxification components, which are commonly increasing in resistant tumor cells, can efficiently bind to platinum agents and prevent the formation of platinum–DNA adducts, but the adducts production is the determinant step for the cytotoxicity of platinum-based antitumor agents. Even if adequate adducts have formed, tumor cells still manage to survive through increased DNA repair processes or elevated apoptosis threshold. In addition, autophagy has a profound influence on platinum resistance. This review summarizes the critical participators of platinum resistance mechanisms mentioned above and highlights the most potential therapeutic targets or predicted markers. With a deeper understanding of the underlying resistance mechanisms, new solutions would be produced to extend the clinical application of platinum-based antitumor agents largely.
Collapse
Affiliation(s)
- Jiabei Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Chen Y, Favata M, Pusey M, Li J, Lo Y, Ye M, Wynn R, Wang X, Yao W, Chen Y. Identification of pAKT as a pharmacodynamic marker for MER kinase in human melanoma G361 cells. Biomark Res 2020; 8:4. [PMID: 32042425 PMCID: PMC7001211 DOI: 10.1186/s40364-020-0184-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
Background The MER signaling pathway represents an attractive therapeutic target for human cancers. Growth arrest–specific protein 6 (GAS6)–induced MER phosphorylation is often unstable and difficult to detect without pervanadate pretreatment in human cancer cells, posing a challenge for the development of selective MER kinase inhibitors. Here, we identified phosphorylated AKT (pAKT) as a specific pharmacodynamic marker for MER kinase inhibitors in human melanoma G361 cells. Methods The expression of MER, TYRO3, and AXL were profiled among multiple human cancer cells. To determine whether they play a role in the activation of pAKT, MER and TYRO3 were selectively depleted by small, interfering RNA knockdown. In addition, using AKT phosphorylation as a readout, a high-throughput cell-based assay was established in G361 cells for evaluation of the potency of potential inhibitors of MER pathway activation. Results We demonstrated that high levels of MER and TYRO3, but not AXL, were expressed in G361 cells. In these cells, pAKT was induced by GAS6 treatment, which could be reversed by AXL/MER inhibitors. We showed that GAS6-induced pAKT is only dependent on MER kinase, but not TYRO3, in G361 cells. Furthermore, we observed a correlation in potency between inhibition of pAKT in G361 cells and pMER in MER-overexpressing Ba/F3 cells by these inhibitors. Conclusions In summary, we have demonstrated that GAS6-induced pAKT is a possible pharmacodynamic marker for the inhibition of MER kinase, and we have successfully developed a cell-based functional assay for screening small-molecule inhibitors of MER kinase for potential therapeutic utility in treating GAS6/MER-deregulated human cancers.
Collapse
Affiliation(s)
- Yaoyu Chen
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803 USA
| | - Margaret Favata
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803 USA
| | - Michelle Pusey
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803 USA
| | - Jun Li
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803 USA
| | - Yvonne Lo
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803 USA
| | - Min Ye
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803 USA
| | - Richard Wynn
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803 USA
| | - Xiaozhao Wang
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803 USA
| | - Wenqing Yao
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803 USA
| | - Yingnan Chen
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803 USA
| |
Collapse
|
19
|
Yang PW, Liu YC, Chang YH, Lin CC, Huang PM, Hua KT, Lee JM, Hsieh MS. Cabozantinib (XL184) and R428 (BGB324) Inhibit the Growth of Esophageal Squamous Cell Carcinoma (ESCC). Front Oncol 2019; 9:1138. [PMID: 31781483 PMCID: PMC6851194 DOI: 10.3389/fonc.2019.01138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease for which no effective targeted therapeutic agent has been approved. Both AXL and c-MET have been reported to be independent prognostic factors for ESCC. Thus, inhibitors of AXL/c-MET might have great potential as targeted therapy for ESCC. In the current study, we evaluated the therapeutic potential of the AXL/c-MET selective inhibitors, R428 and cabozantinib, in cell and mouse xenograft models. We demonstrated that both R428 and cabozantinib significantly inhibited the growth of CE81T and KYSE-70 ESCC cells and showed by wound-healing assay that they both inhibited ESCC cell migration. In the animal model, ESCC xenograft models were established by injecting KYSE-70 cells with Matrigel into the upper back region of NOD-SCID male mice followed by treatment with vehicle control, R428 (50 mg/kg/day), cisplatin (1.0 mg/kg), or cabozantinib (30 mg/kg/day) for the indicated number of days. R428 alone significantly inhibited ESCC tumor growth compared to the vehicle; however, no synergistic effect with cisplatin was observed. Notably, the dramatic efficacy of cabozantinib alone was observed in the mouse xenograft model. Collectively, our study demonstrated that both cabozantinib and R428 inhibit ESCC growth in cell and xenograft models. The results reveal the great potential of using cabozantinib for targeted therapy of ESCC.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Cheng Liu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Han Chang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ching Lin
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Ming Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Shu Hsieh
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
20
|
Nuvoli B, Amadio B, Cortese G, Benedetti S, Antoniani B, Soriani A, Carosi M, Strigari L, Galati R. The effect of CELLFOOD TM on radiotherapy or combined chemoradiotherapy: preclinical evidence. Ther Adv Med Oncol 2019; 11:1758835919878347. [PMID: 31662796 PMCID: PMC6792276 DOI: 10.1177/1758835919878347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/04/2019] [Indexed: 11/16/2022] Open
Abstract
Background Based on previous observations that the nutraceutical CELLFOOD™ (CF), the 'physiological modulator' that aimed to make oxygen available 'on demand', inhibits the growth of cancer cells, this study was designed to investigate the role of CF in the regulation of hypoxia-inducible factor 1 alpha (HIF1α) and its correlated proteins, phosphoglycerate kinase 1 and vascular endothelial growth factor. Our idea was that CF, acting on HIF1α, in combination with current anticancer therapies could improve their effectiveness. Methods To evaluate the effect of CF in association with radiotherapy and chemotherapy, different human cancer cell lines and mice with mesothelioma were analysed by tumour growth, clonogenic assay, western blot and immunohistochemical analysis. Results CF in combination with radiation with or without cisplatin increases the death rate of cancer cells. In vivo, 70% of mice treated with CF before the mesothelioma graft did not show any tumour growth, indicating a possible preventive effect of CF. Moreover, in mouse mesothelioma xenografts, CF improves the effect of radiotherapy also in combination with chemotherapy treatment. Immunohistochemical analysis of tumour explants showed that HIF1α expression was reduced by the combination of CF and radiotherapy treatment and even more by the combination of CF and radiotherapy and chemotherapy treatment. Mechanistically, CF increases the fraction of oxygenated cells, making the radiotherapy more effective with a greater production of reactive oxygen species (ROS) that in turn, reduce the HIF1α expression. This effect is amplified by further increase in ROS from chemotherapy. Conclusions Collectively, results from preclinical trials suggest that CF could be a useful intervention to improve the efficacy of radiotherapy or combined treatment strategies and could be a promising treatment modality to counteract cancer.
Collapse
Affiliation(s)
- Barbara Nuvoli
- Preclinical Models and New Therapeutic Agent Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bruno Amadio
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giancarlo Cortese
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Urbino, Italy
| | - Barbara Antoniani
- Anatomy Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonella Soriani
- Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- Anatomy Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Galati
- Preclinical Models and New Therapeutic Agent Unit, IRCCS Regina Elena National Cancer Institute, Via Chianesi, Rome 00144, Italy
| |
Collapse
|
21
|
Kumar S, Oien DB, Khurana A, Cliby W, Hartmann L, Chien J, Shridhar V. Coiled-Coil and C2 Domain-Containing Protein 1A (CC2D1A) Promotes Chemotherapy Resistance in Ovarian Cancer. Front Oncol 2019; 9:986. [PMID: 31632917 PMCID: PMC6779793 DOI: 10.3389/fonc.2019.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Recurrence within 6 months of the last round of chemotherapy is clinically defined as platinum-resistant ovarian cancer. Gene expression associated with early recurrence may provide insights into platinum resistant recurrence. Prior studies identified a 14-gene model that accurately predicted early or late recurrence in 86% of patients. One of the genes identified was CC2D1A (encoding coiled-coil and C2 domain containing 1A), which showed higher expression in tumors from patients with early recurrence. Here, we show that CC2D1A protein expression was higher in cisplatin-resistant ovarian cancer cell lines compared to cisplatin-sensitive cell lines. In addition, immunohistochemical analysis of patient tumors on a tissue microarray (n = 146) showed that high levels of CC2D1A were associated with a significantly worse overall and progression-free survival (p = 0.0002 and p = 0.006, respectively). To understand the contribution of CC2D1A in chemoresistance, we generated shRNA-mediated knockdown of CC2D1A in SKOV3ip and PEO4 cell lines. Cell death and clonogenic assays of these isogenic clonal lines clearly showed that downregulation of CC2D1A resulted in increased sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Moreover, nude mice bearing SKOV3ip xenografts with stably downregulated CC2D1A were more sensitive to chemotherapy as evidenced by a significantly longer survival time compared to xenografts derived from cells stably transduced with non-targeting shRNA. These results suggest CC2D1A promotes chemotherapy resistance in ovarian cancer.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ashwani Khurana
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - William Cliby
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Lynn Hartmann
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
22
|
Ghrifi F, Allam L, Wiame L, Ibrahimi A. Curcumin-Synthetic Analogs Library Screening by Docking and Quantitative Structure-Activity Relationship Studies for AXL Tyrosine Kinase Inhibition in Cancers. J Comput Biol 2019; 26:1156-1167. [PMID: 31009237 PMCID: PMC6786334 DOI: 10.1089/cmb.2019.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AXL is an important drug target for cancers. Two-dimensional quantitative structure-activity relationship (2D-QSAR) tests were performed to elucidate a relationship between molecular structures and the activity of a series of 400 curcumin derivatives subjected to AXL kinase by ATP competition in the catalytic site. The partial least square regression method implanted in molecular operating environment software was applied to develop QSAR models, which were further validated for statistical significance by internal and external validation. The best model has proven to be statistically robust with a good predictive correlation of
R
2
= 0.996 and a significant cross-validation correlation coefficient of
q
2
= 0.707. Docking analysis reveled that three curcumin derivatives have the best affinity for AXL and formed a hydrogen bond with the important amino acid residues in the binding pocket. As treated in this article, the docking studies and 2D-QSAR approach will pave the way for the development of new drugs while highlighting curcumin and its derivatives.
Collapse
Affiliation(s)
- Fatima Ghrifi
- The Biotechnology Lab (MedBiotech), BioInova Research center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.,Address correspondence to: Fatima Ghrifi, PhD Student, The Biotechnology Lab (MedBiotech), BioInova Research center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Avenue Mr belarbi Alaoui, Suissi-Rabat, BP6203 Rabat Institutes, Rabat 10000, Morocco
| | - Loubna Allam
- The Biotechnology Lab (MedBiotech), BioInova Research center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Lakhlili Wiame
- The Biotechnology Lab (MedBiotech), BioInova Research center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Azeddine Ibrahimi
- The Biotechnology Lab (MedBiotech), BioInova Research center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
23
|
Sarkar Bhattacharya S, Thirusangu P, Jin L, Roy D, Jung D, Xiao Y, Staub J, Roy B, Molina JR, Shridhar V. PFKFB3 inhibition reprograms malignant pleural mesothelioma to nutrient stress-induced macropinocytosis and ER stress as independent binary adaptive responses. Cell Death Dis 2019; 10:725. [PMID: 31562297 PMCID: PMC6764980 DOI: 10.1038/s41419-019-1916-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The metabolic signatures of cancer cells are often associated with elevated glycolysis. Pharmacological (PFK158 treatment) and genetic inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a critical control point in the glycolytic pathway, decreases glucose uptake, ATP production, and lactate dehydrogenase activity and arrests malignant pleural mesothelioma (MPM) cells in the G0/G1 phase to induce cell death. To overcome this nutrient stress, inhibition of PFKFB3 activity led to an escalation in endoplasmic reticulum (ER) activity and aggravated ER stress mostly by upregulating BiP and GADD153 expression and activation of the endocytic Rac1-Rab5-Rab7 pathway resulting in a unique form of cell death called “methuosis” in both the sarcomatoid (H28) and epithelioid (EMMeso) cells. Transmission electron microscopy (TEM) analysis showed the formation of nascent macropinocytotic vesicles, which rapidly coalesced to form large vacuoles with compromised lysosomal function. Both immunofluorescence microscopy and co-immunoprecipitation analyses revealed that upon PFKFB3 inhibition, two crucial biomolecules of each pathway, Rac1 and Calnexin interact with each other. Finally, PFK158 alone and in combination with carboplatin-inhibited tumorigenesis of EMMeso xenografts in vivo. Since most cancer cells exhibit an increased glycolytic rate, these results provide evidence for PFK158, in combination with standard chemotherapy, may have a potential in the treatment of MPM.
Collapse
Affiliation(s)
- Sayantani Sarkar Bhattacharya
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Prabhu Thirusangu
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ling Jin
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Debarshi Roy
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Deokbeom Jung
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie Staub
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bhaskar Roy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Julian R Molina
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA.
| | - Viji Shridhar
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
24
|
Oien DB, Pathoulas CL, Ray U, Thirusangu P, Kalogera E, Shridhar V. Repurposing quinacrine for treatment-refractory cancer. Semin Cancer Biol 2019; 68:21-30. [PMID: 31562955 DOI: 10.1016/j.semcancer.2019.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Quinacrine, also known as mepacrine, has originally been used as an antimalarial drug for close to a century, but was recently rediscovered as an anticancer agent. The mechanisms of anticancer effects of quinacrine are not well understood. The anticancer potential of quinacrine was discovered in a screen for small molecule activators of p53, and was specifically shown to inhibit NFκB suppression of p53. However, quinacrine can cause cell death in cells that lack p53 or have p53 mutations, which is a common occurrence in many malignant tumors including high grade serous ovarian cancer. Recent reports suggest quinacrine may inhibit cancer cell growth through multiple mechanisms including regulating autophagy, FACT (facilitates chromatin transcription) chromatin trapping, and the DNA repair process. Additional reports also suggest quinacrine is effective against chemoresistant gynecologic cancer. In this review, we discuss anticancer effects of quinacrine and potential mechanisms of action with a specific focus on gynecologic and breast cancer where treatment-refractory tumors are associated with increased mortality rates. Repurposing quinacrine as an anticancer agent appears to be a promising strategy based on its ability to target multiple pathways, its selectivity against cancer cells, and the synergistic cytotoxicity when combined with other anticancer agents with limited side effects and good tolerability profile.
Collapse
Affiliation(s)
- Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christopher L Pathoulas
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Upasana Ray
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Prabhu Thirusangu
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
25
|
Zhang H, Chen R, Wang X, Zhang H, Zhu X, Chen J. Lobaplatin-Induced Apoptosis Requires p53-Mediated p38MAPK Activation Through ROS Generation in Non-Small-Cell Lung Cancer. Front Oncol 2019; 9:538. [PMID: 31428569 PMCID: PMC6689983 DOI: 10.3389/fonc.2019.00538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023] Open
Abstract
Platinum-based chemotherapy is recommended as the first-line treatment regimen for patients with advanced non-small-cell lung cancer (NSCLC). Lobaplatin (LBP), a third-generation platinum anti-neoplastic agent, has shown an improved efficacy. This study is aimed to investigate the mechanisms of LBP-induced apoptosis in the A549 p53 wild-type cell line. The Cell Counting Kit-8 assay (CCK-8), flow cytometry (FCM), Western blot, xenograft tumor models, terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL), and RNA interference were used in this study. Our results showed that the proliferation of A549 cells could be inhibited by LBP. At lower concentrations, LBP triggered cell cycle arrest at the G1 phase in A549 cells. LBP could also induce apoptosis of A549 cells. LBP also increased the expression of PARP and Bax and the cleavage of caspase-3, caspase-8, and caspase-9 and reduced Bcl-2 expression. In vivo experiment confirmed that LBP could inhibit tumor growth in the A549 xenograft models and induce apoptosis. Apoptosis of A549 cells was decreased after transfected with p53 shRNA or treated with reactive oxygen species inhibitor NAC and p38MAPK inhibitor SB203580, suggesting that the p53/ROS/p38MAPK pathway appeared to mediate the LBP-induced apoptosis of A549 cells. Our data demonstrate that LBP could be a promising candidate for the treatment of NSCLC with wild-type p53.
Collapse
Affiliation(s)
- Hongming Zhang
- Department of Respiratory Medicine, The Affiliated Yancheng Hospital, Medical School, Southeast University, Yancheng, China
| | - Runzhe Chen
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiyong Wang
- Anhui Medical University (Suzhou Municipal Hospital), Suzhou, China
| | - Haijun Zhang
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiaoli Zhu
- Department of Pulmonary Medicine, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jibei Chen
- Department of Respiratory Medicine, The Affiliated Yancheng Hospital, Medical School, Southeast University, Yancheng, China
| |
Collapse
|
26
|
Blum Y, Meiller C, Quetel L, Elarouci N, Ayadi M, Tashtanbaeva D, Armenoult L, Montagne F, Tranchant R, Renier A, de Koning L, Copin MC, Hofman P, Hofman V, Porte H, Le Pimpec-Barthes F, Zucman-Rossi J, Jaurand MC, de Reyniès A, Jean D. Dissecting heterogeneity in malignant pleural mesothelioma through histo-molecular gradients for clinical applications. Nat Commun 2019; 10:1333. [PMID: 30902996 PMCID: PMC6430832 DOI: 10.1038/s41467-019-09307-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is recognized as heterogeneous based both on histology and molecular profiling. Histology addresses inter-tumor and intra-tumor heterogeneity in MPM and describes three major types: epithelioid, sarcomatoid and biphasic, a combination of the former two types. Molecular profiling studies have not addressed intra-tumor heterogeneity in MPM to date. Here, we use a deconvolution approach and show that molecular gradients shed new light on the intra-tumor heterogeneity of MPM, leading to a reconsideration of MPM molecular classifications. We show that each tumor can be decomposed as a combination of epithelioid-like and sarcomatoid-like components whose proportions are highly associated with the prognosis. Moreover, we show that this more subtle way of characterizing MPM heterogeneity provides a better understanding of the underlying oncogenic pathways and the related epigenetic regulation and immune and stromal contexts. We discuss the implications of these findings for guiding therapeutic strategies, particularly immunotherapies and targeted therapies.
Collapse
Affiliation(s)
- Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013, Paris, France
| | - Clément Meiller
- Centre de Recherche des Cordeliers, Sorbonne Universités, Inserm, UMRS-1138, 75006, Paris, France
- Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75000, Paris, France
| | - Lisa Quetel
- Centre de Recherche des Cordeliers, Sorbonne Universités, Inserm, UMRS-1138, 75006, Paris, France
- Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75000, Paris, France
| | - Nabila Elarouci
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013, Paris, France
| | - Mira Ayadi
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013, Paris, France
| | - Danisa Tashtanbaeva
- Centre de Recherche des Cordeliers, Sorbonne Universités, Inserm, UMRS-1138, 75006, Paris, France
- Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75000, Paris, France
| | - Lucile Armenoult
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013, Paris, France
| | - François Montagne
- Centre de Recherche des Cordeliers, Sorbonne Universités, Inserm, UMRS-1138, 75006, Paris, France
- Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75000, Paris, France
- Service de Chirurgie Thoracique, Hôpital Calmette - CHRU de Lille, 59000, Lille, France
- Université de Lille, 59045, Lille, France
- Service de Chirurgie Générale et Thoracique, CHU de Rouen, 76000, Rouen, France
| | - Robin Tranchant
- Centre de Recherche des Cordeliers, Sorbonne Universités, Inserm, UMRS-1138, 75006, Paris, France
- Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75000, Paris, France
- Laboratoire de Biochimie (LBC), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, 75005, Paris, France
| | - Annie Renier
- Centre de Recherche des Cordeliers, Sorbonne Universités, Inserm, UMRS-1138, 75006, Paris, France
- Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75000, Paris, France
| | - Leanne de Koning
- Translational Research Department, Institut Curie, PSL Research University, 75005, Paris, France
| | - Marie-Christine Copin
- Université de Lille, 59045, Lille, France
- Institut de Pathologie, Centre de Biologie-Pathologie, CHRU de Lille, 59037, Lille, France
| | - Paul Hofman
- Laboratoire de Pathologie Clinique et Expérimentale (LPCE) et biobanque (BB-0033-00025), CHRU de Nice, 06003, Nice, France
- Université Côte d'Azur, 06108, Nice, France
| | - Véronique Hofman
- Laboratoire de Pathologie Clinique et Expérimentale (LPCE) et biobanque (BB-0033-00025), CHRU de Nice, 06003, Nice, France
- Université Côte d'Azur, 06108, Nice, France
| | - Henri Porte
- Service de Chirurgie Thoracique, Hôpital Calmette - CHRU de Lille, 59000, Lille, France
- Université de Lille, 59045, Lille, France
| | - Françoise Le Pimpec-Barthes
- Centre de Recherche des Cordeliers, Sorbonne Universités, Inserm, UMRS-1138, 75006, Paris, France
- Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75000, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 75015, Paris, France
- Département de Chirurgie Thoracique, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Universités, Inserm, UMRS-1138, 75006, Paris, France
- Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75000, Paris, France
| | - Marie-Claude Jaurand
- Centre de Recherche des Cordeliers, Sorbonne Universités, Inserm, UMRS-1138, 75006, Paris, France
- Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75000, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013, Paris, France.
| | - Didier Jean
- Centre de Recherche des Cordeliers, Sorbonne Universités, Inserm, UMRS-1138, 75006, Paris, France.
- Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, 75000, Paris, France.
| |
Collapse
|
27
|
Quinn JM, Greenwade MM, Palisoul ML, Opara G, Massad K, Guo L, Zhao P, Beck-Noia H, Hagemann IS, Hagemann AR, McCourt CK, Thaker PH, Powell MA, Mutch DG, Fuh KC. Therapeutic Inhibition of the Receptor Tyrosine Kinase AXL Improves Sensitivity to Platinum and Taxane in Ovarian Cancer. Mol Cancer Ther 2018; 18:389-398. [PMID: 30478151 DOI: 10.1158/1535-7163.mct-18-0537] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/11/2018] [Accepted: 11/13/2018] [Indexed: 02/03/2023]
Abstract
Ovarian cancer, one of the deadliest malignancies in female cancer patients, is characterized by recurrence and poor response to cytotoxic chemotherapies. Fewer than 30% of patients with resistant disease will respond to additional chemotherapy treatments. This study aims to determine whether and how inhibition of the receptor tyrosine kinase AXL can restore sensitivity to first-line platinum and taxane therapy in ovarian cancer. AXL staining was quantified in a patient tissue microarray and correlated with chemoresponse of patients. We used small hairpin RNAs to knock down AXL expression and the small-molecule inhibitor BGB324 to inhibit AXL and assessed sensitivity of cell lines and primary patient-derived cells to chemotherapy. We quantified platinum accumulation by inductivity-coupled plasma phase mass spectrometry. Finally, we treated chemoresistant patient-derived xenografts with chemotherapy, BGB324, or chemotherapy plus BGB324 and monitored tumor burden. AXL expression was higher in chemoresistant patient tumors and cell lines than in chemosensitive tumors and cell lines. AXL staining significantly predicted chemoresponse. Knockdown and inhibition of AXL dose-dependently improved response to paclitaxel and carboplatin in both cell lines and primary cells. AXL inhibition increased platinum accumulation by 2-fold (*, P < 0.05). In vivo studies indicated that AXL inhibition enhanced the ability of chemotherapy to prevent tumor growth (****, P < 0.0001). AXL contributes to platinum and taxane resistance in ovarian cancer, and inhibition of AXL improves chemoresponse and accumulation of chemotherapy drugs. This study supports continued investigation into AXL as a clinical target.
Collapse
Affiliation(s)
- Jeanne M Quinn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri.,Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Molly M Greenwade
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri.,Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Marguerite L Palisoul
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri.,Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory Opara
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Katina Massad
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Lei Guo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri.,Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Peinan Zhao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Hollie Beck-Noia
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrea R Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Carolyn K McCourt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Premal H Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew A Powell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - David G Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine C Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri. .,Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Genetic regulation of longevity and age-associated diseases through the methionine sulfoxide reductase system. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1756-1762. [PMID: 30481589 DOI: 10.1016/j.bbadis.2018.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/25/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
Methionine sulfoxide reductase enzymes are a protective system against biological oxidative stress in aerobic organisms. Modifications to this antioxidant system have been shown to impact the lifespan of several model system organisms. In humans, methionine oxidation of critical proteins and deficiencies in the methionine sulfoxide reductase system have been linked to age-related diseases, including cancer and neurodegenerative disease. Substrates for methionine sulfoxide reductases have been reviewed multiple times, and are still an active area of discovery. In contrast, less is known about the genetic regulation of methionine sulfoxide reductases. In this review, we discuss studies on the genetic regulation of the methionine sulfoxide reductase system with relevance to longevity and age-related diseases. A better understanding of genetic regulation for methionine sulfoxide reductases may lead to new therapeutic approaches for age-related diseases in the future.
Collapse
|
29
|
Du W, Brekken RA. Does Axl have potential as a therapeutic target in pancreatic cancer? Expert Opin Ther Targets 2018; 22:955-966. [PMID: 30244621 PMCID: PMC6292430 DOI: 10.1080/14728222.2018.1527315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pancreatic cancer is a leading cause of cancer-related death. Metastasis, therapy resistance, and immunosuppression are dominant characteristics of pancreatic tumors. Strategies that enhance the efficacy of standard of care and/or immune therapy are likely the most efficient route to improve overall survival in this disease. Areas covered: Axl, a member of the TAM (Tyro3, Axl, MerTK) family of receptor tyrosine kinases, is involved in cell plasticity, chemoresistance, immune suppression, and metastasis in various cancers, including pancreatic cancer. This review provides an overview of Axl and its function in normal conditions, summarizes the regulation and function of Axl in cancer, and highlights the contribution of Axl to pancreatic cancer as well as its potential as a therapeutic target. Expert opinion: Axl is an attractive therapeutic target in pancreatic cancer because it contributes to many of the roadblocks that hamper therapeutic efficacy. Clinical evidence supporting Axl inhibition in pancreatic cancer is currently limited; however, multiple clinical trials have been initiated or are in the planning phase to test the effect of inhibiting Axl in conjunction with standard therapy in pancreatic cancer patients. We anticipate that these studies will provide robust validation of Axl as a therapeutic target in pancreatic cancer.
Collapse
|
30
|
Bastola P, Oien DB, Cooley M, Chien J. Emerging Cancer Therapeutic Targets in Protein Homeostasis. AAPS JOURNAL 2018; 20:94. [PMID: 30151644 DOI: 10.1208/s12248-018-0254-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Genomic aberrations inside malignant cells through copy number alterations, aneuploidy, and mutations can exacerbate misfolded and unfolded protein burden resulting in increased proteotoxic stress. Increased proteotoxic stress can be deleterious to malignant cells; therefore, these cells rely heavily on the protein quality control mechanisms for survival and proliferation. Components of the protein quality control, such as the unfolded protein response, heat shock proteins, autophagy, and the ubiquitin proteasome system, orchestrate a cascade of downstream events that allow the mitigation of the proteotoxic stress. This dependency makes components of the protein quality control mechanisms attractive targets in cancer therapeutics. In this review, we explore the components of the protein homeostasis especially focusing on the emerging cancer therapeutic agents/targets that are being actively pursued actively.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66130, USA
| | - Derek B Oien
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA
| | - Megan Cooley
- Methods Development, Small Molecules, PRA Health Sciences, Lenexa, KS, 66215, USA
| | - Jeremy Chien
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA.
| |
Collapse
|
31
|
Cheng G, Zielonka M, Dranka B, Kumar SN, Myers CR, Bennett B, Garces AM, Dias Duarte Machado LG, Thiebaut D, Ouari O, Hardy M, Zielonka J, Kalyanaraman B. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future. J Biol Chem 2018; 293:10363-10380. [PMID: 29739855 DOI: 10.1074/jbc.ra118.003044] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O2̇̄), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O2̇̄) and forms a stable fluorescent product or reacts with O2̇̄ to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.
Collapse
Affiliation(s)
- Gang Cheng
- From the Department of Biophysics.,Free Radical Research Center
| | - Monika Zielonka
- From the Department of Biophysics.,Free Radical Research Center
| | - Brian Dranka
- the Cell Analysis Division, Agilent Technologies, Santa Clara, California 95051
| | | | - Charles R Myers
- Pharmacology and Toxicology, and.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Brian Bennett
- the Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, and
| | - Alexander M Garces
- the Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, and
| | | | - David Thiebaut
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Olivier Ouari
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Micael Hardy
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Jacek Zielonka
- From the Department of Biophysics.,Free Radical Research Center.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Balaraman Kalyanaraman
- From the Department of Biophysics, .,Free Radical Research Center.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|