1
|
Neumann J, Dietrich T, Azatsian K, Hofmann B, Gergs U. Cardiac effects of two hallucinogenic natural products, N,N-dimethyl-tryptamine and 5-methoxy-N,N-dimethyl-tryptamine. Sci Rep 2025; 15:6715. [PMID: 40000760 PMCID: PMC11862204 DOI: 10.1038/s41598-025-91400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
It is unclear whether hallucinogenic tryptamine derivatives namely N,N-dimethyl-tryptamine (DMT) and 5-methoxy-N,N-dimethyl-tryptamine (5-MeO-DMT) exert positive inotropic effects in the human heart. Therefore, we measured the inotropic effects of these drugs in isolated left and right atrial preparations of mice that overexpress human 5-HT4 receptors (5-HT4-TG) and preparations from wild type mice (WT). Moreover, we measured force of contraction in isolated right atrial preparations from adult patients, obtained in the process of open heart surgery due to severe coronary heart disease. DMT and 5-MeO-DMT augmented the force of contraction in isolated paced (1 Hz) left atrial preparations from 5-HT4-TG and raised the spontaneous beating rate of right atrial preparations from 5-HT4-TG. The drugs elevated force of contraction in paced (1 Hz) human right atrial muscle preparations. The maximum inotropic effects of DMT and 5-MeO-DMT were smaller at 10 µM (about 65%) than that of 1 µM 5-HT on the left atria from 5-HT4-TG. The maximum increase in the beating rate due to DMT and 5-MeO-DMT amounted 40 ± 5% of the effect of 5-HT on right atrial preparations from 5-HT4-TG (n = 5-6). DMT and 5-MeO-DMT were inactive in WT. The potency of 5-MeO-DMT to increase force of contraction could be increased by pre-treatment of human atrial preparations by the phosphodiesterase inhibitor cilostamide (1 µM). 5-MeO-DMT increased the phosphorylation state of phospholamban at serine 16 in isolated left atrial muscle strips of 5-HT4-TG. In summary, DMT and 5-MeO-DMT acted as partial agonists on human 5-HT4 receptors.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany
| | - Tobias Dietrich
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany
| | - Karyna Azatsian
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Gdansk, Poland
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, 06097, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, 06097, Halle, Germany.
| |
Collapse
|
2
|
Pham TH, Abella LMR, Hadova K, Klimas J, Dhein S, Pockes S, Schlicht JMA, Hofmann B, Kirchhefer U, Neumann J, Gergs U. Stimulation of histamine H 1-receptors produces a positive inotropic effect in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03735-y. [PMID: 39729205 DOI: 10.1007/s00210-024-03735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
There is a controversy whether histamine H1-receptor activation raises or lowers or does not affect contractility in the human heart. Therefore, we studied stimulation of H1-receptors in isolated electrically stimulated (one beat per second) human atrial preparations (HAP). For comparison, we measured force of contraction in left atrial preparations (LA) from mice with overexpression of the histamine H1-receptor in the heart (H1-TG). We detected the messenger ribonucleic acid (mRNA) expression of human histamine H1-receptors in HAP. In LA from H1-TG, each cumulatively applied concentration of histamine and a dual H1/H2-agonist called 2-(2-thiazolyl)-ethylamine (ThEA) caused a time-dependent initial negative inotropic effect followed over time by a lasting positive inotropic effect. Both effects were concentration-dependent in LA from H1-TG. After 100 µM cimetidine, 10 µM histamine exercised a positive inotropic effect in HAP that was diminished by 10 µM mepyramine, an H1-receptor antagonist. The concentrations of mepyramine and cimetidine used here are based on the work of others and our own work (e.g., Guo et al. J Cardiovasc Pharmacol. 6:1210-5 1984, Rayo Abella et al. J Pharmacol Exp Ther. 389:174-185 2024). Similarly, we observed that ThEA (10 µM, 30 µM, 100 µM cumulatively applied) induced a concentration- and time-dependent positive inotropic effect in HAP. In HAP, we detected never negative inotropic effects to either histamine or ThEA. The positive inotropic effects to ThEA in HAP were reduced by mepyramine. The positive inotropic effects of ThEA in LA from H1-TG and in HAP were not accompanied by reductions in the time of tension relaxation. We conclude that stimulation of histamine H1-receptors only increases and does not decrease force of contraction in the HAP in our patients.
Collapse
Affiliation(s)
- Thanh Hoai Pham
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Lina Maria Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Stefan Dhein
- Rudolf‑Boehm Institute for Pharmacology and Toxicology, University Leipzig, Härtelstraße 16‑18, D‑04107, Leipzig, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jonas Manfred Albert Schlicht
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle, Ernst-Grube-Str. 40, D‑06097, Halle (Saale), Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, Medical Faculty, University Münster, Domagkstraße 12, D-48149, Münster, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany.
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| |
Collapse
|
3
|
Karakuş F, Alagöz MA, Kuzu B. Screening and toxicity evaluation of natural compounds as adenosine 2a and 2b receptor ligands: insights from molecular docking, dynamics, and ADMET analysis. Drug Chem Toxicol 2024:1-10. [PMID: 39165027 DOI: 10.1080/01480545.2024.2389982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
Recent studies suggest that immunological and inflammatory responses in cardiovascular disorders, such as hypertension, myocardial infarction, ischemia injury, heart failure, arrhythmias, and atherosclerosis, may be affected by changes in the adenosine system. Pharmacological modulation of adenosine occurs through its receptor subtypes. In numerous preclinical studies, the activation of adenosine receptor 2A (A2AR) or the blockade of adenosine receptor 2B (A2BR) has shown promising results against cardiovascular diseases. This in silico study aimed to identify potential natural compounds that can activate A2AR or block A2BR without causing toxicity. Natural compounds were screened using COlleCtion of Open Natural ProdUcTs (COCONUT) or Natural Product Activity and Species Source Database (NPASS) databases to find agonists for A2AR or an antagonists/inverse agonists for A2BR. These compounds were then pre-filtered based on their toxicity profiles. The remaining compounds were subjected to molecular docking against A2AR and A2BR followed by molecular dynamics simulations were conducted. Finally, selected compounds' ADMET properties were determined using ADMETlab 2.0 web tool. Ultimately, one novel natural compound with potential agonistic activity (COCONUT IDs: CNP0450901) for A2AR and one antagonist/inverse agonist (rauwolscine) for A2BR were identified.
Collapse
Affiliation(s)
- Fuat Karakuş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Türkiye
| | - Mehmet Abdullah Alagöz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İnönü University, Malatya, Türkiye
| | - Burak Kuzu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Türkiye
| |
Collapse
|
4
|
Abella LMR, Jacob H, Hesse C, Hofmann B, Schneider S, Schindler L, Keller M, Buchwalow IB, Jin C, Panula P, Dhein S, Klimas J, Hadova K, Gergs U, Neumann J. Initial characterization of a transgenic mouse with overexpression of the human D 1-dopamine receptor in the heart. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4939-4959. [PMID: 38177456 PMCID: PMC11166794 DOI: 10.1007/s00210-023-02901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Dopamine can exert effects in the mammalian heart via five different dopamine receptors. There is controversy whether dopamine receptors increase contractility in the human heart. Therefore, we have generated mice that overexpress the human D1-dopamine receptor in the heart (D1-TG) and hypothesized that dopamine increases force of contraction and beating rate compared to wild-type mice (WT). In D1-TG hearts, we ascertained the presence of D1-dopamine receptors by autoradiography using [3H]SKF 38393. The mRNA for human D1-dopamine receptors was present in D1-TG hearts and absent in WT. We detected by in-situ-hybridization mRNA for D1-dopamine receptors in atrial and ventricular D1-TG cardiomyocytes compared to WT but also in human atrial preparations. We noted that in the presence of 10 µM propranolol (to antagonize β-adrenoceptors), dopamine alone and the D1- and D5-dopamine receptor agonist SKF 38393 (0.1-10 µM cumulatively applied) exerted concentration- and time-dependent positive inotropic effects and positive chronotropic effects in left or right atrial preparations from D1-TG. The positive inotropic effects of SKF 38393 in left atrial preparations from D1-TG led to an increased rate of relaxation and accompanied by and probably caused by an augmented phosphorylation state of the inhibitory subunit of troponin. In the presence of 0.4 µM propranolol, 1 µM dopamine could increase left ventricular force of contraction in isolated perfused hearts from D1-TG. In this model, we have demonstrated a positive inotropic and chronotropic effect of dopamine. Thus, in principle, the human D1-dopamine receptor can couple to contractility in the mammalian heart.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Dopamine/metabolism
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Heart/drug effects
- Heart/physiology
- Heart Atria/metabolism
- Heart Atria/drug effects
- Heart Rate/drug effects
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocardial Contraction/drug effects
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany
| | - Hannes Jacob
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany
| | - Christin Hesse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, D-06097, Halle (Saale), Germany
| | - Sarah Schneider
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany
| | - Lisa Schindler
- Institute of Pharmacy, University of Regensburg, D-93053, Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, University of Regensburg, D-93053, Regensburg, Germany
| | - Igor B Buchwalow
- Institute for Hematopathology, D-22547, Hamburg, Germany
- Scientific and Educational Resource Center for Molecular Morphology, Peoples' Friendship University of Russia, RU-117198, Moscow, Russia
| | - CongYu Jin
- Department of Anatomy, University of Helsinki, FI-00290, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, FI-00290, Helsinki, Finland
| | - Stefan Dhein
- Rudolf-Boehm Institute for Pharmacology and Toxicology, University Leipzig, D-04107, Leipzig, Germany
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, SK-83232, Bratislava, Slovak Republic
| | - Katarína Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, SK-83232, Bratislava, Slovak Republic
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097, Halle (Saale), Germany.
| |
Collapse
|
5
|
Neumann J, Dimov K, Azatsian K, Hofmann B, Gergs U. Effects of psilocin and psilocybin on human 5-HT 4 serotonin receptors in atrial preparations of transgenic mice and humans. Toxicol Lett 2024; 398:55-64. [PMID: 38876450 DOI: 10.1016/j.toxlet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Several fungi belonging to the genus Psilocybe, also called "magic mushrooms", contain the hallucinogenic drugs psilocybin and psilocin. They are chemically related to serotonin (5-HT). In addition to being abused as drugs, they are now also being discussed or used as a treatment option for depression. Here, we hypothesized that psilocybin and psilocin may act also on cardiac serotonin receptors and studied them in vitro in atrial preparations of our transgenic mouse model with cardiac myocytes-specific overexpression of the human 5-HT4 receptor (5-HT4-TG) as well as in human atrial preparations. Both psilocybin and psilocin enhanced the force of contraction in isolated left atrial preparations from 5-HT4-TG, increased the beating rate in isolated spontaneously beating right atrial preparations from 5-HT4-TG and augmented the force of contraction in the human atrial preparations. The inotropic and chronotropic effects of psilocybin and psilocin at 10 µM were smaller than that of 1 µM 5-HT on the left and right atria from 5-HT4-TG, respectively. Psilocybin and psilocin were inactive in WT. In the human atrial preparations, inhibition of the phosphodiesterase III by cilostamide was necessary to unmask the positive inotropic effects of psilocybin or psilocin. The effects of 10 µM psilocybin and psilocin were abrogated by 10 µM tropisetron or by 1 µM GR125487, a more selective 5-HT4 receptor antagonist. In summary, we demonstrated that psilocin and psilocybin act as agonists on cardiac 5-HT4 receptors.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany
| | - Kiril Dimov
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany
| | - Karyna Azatsian
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Gdansk, Poland
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Halle D-06097, Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle D-06097, Germany.
| |
Collapse
|
6
|
Schwarz R, Hofmann B, Gergs U, Neumann J. Cantharidin and sodium fluoride attenuate the negative inotropic effects of carbachol in the isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2183-2202. [PMID: 37801145 PMCID: PMC10933163 DOI: 10.1007/s00210-023-02747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Carbachol, an agonist at muscarinic receptors, exerts a negative inotropic effect in human atrium. Carbachol can activate protein phosphatases (PP1 or PP2A). We hypothesized that cantharidin or sodium fluoride, inhibitors of PP1 and PP2A, may attenuate a negative inotropic effect of carbachol. During bypass-surgery trabeculae carneae of human atrial preparations (HAP) were obtained. These trabeculae were mounted in organ baths and electrically stimulated (1 Hz). Force of contraction was measured under isometric conditions. For comparison, we studied isolated electrically stimulated left atrial preparations (LA) from mice. Cantharidin (100 µM) and sodium fluoride (3 mM) increased force of contraction in LA (n = 5-8, p < 0.05) by 113% ± 24.5% and by 100% ± 38.2% and in HAP (n = 13-15, p < 0.05) by 625% ± 169% and by 196% ± 23.5%, respectively. Carbachol (1 µM) alone exerted a rapid transient maximum negative inotropic effect in LA (n = 6) and HAP (n = 14) to 46.9% ± 3.63% and 19.4% ± 3.74%, respectively (p < 0.05). These negative inotropic effects were smaller in LA (n = 4-6) and HAP (n = 9-12) pretreated with 100 µM cantharidin and amounted to 58.0% ± 2.27% and 59.2% ± 6.19% or 3 mM sodium fluoride to 63.7% ± 9.84% and 46.3% ± 5.69%, (p < 0.05). We suggest that carbachol, at least in part, exerts a negative inotropic effect in the human atrium by stimulating the enzymatic activity of PP1 and/or PP2A.
Collapse
Affiliation(s)
- Rebecca Schwarz
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
7
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
8
|
Rayo-Abella LM, Grundig P, Bernhardt MN, Hofmann B, Neumann J, Gergs U. OR-1896 increases force of contraction in the isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3823-3833. [PMID: 37354216 PMCID: PMC10643428 DOI: 10.1007/s00210-023-02592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
OR-1896 ((R)-N-(4-(4-methyl-6-oxo-1,4,5,6-tetrahydropyridazin-3-yl)phenyl)acetamide) is the main active metabolite of levosimendan. However, nobody has reported a positive inotropic effect of OR-1896 in isolated human cardiac preparations. The mechanism of action of OR-1896 remains controversial. Hence, we wanted to know whether OR-1896 exerts a positive inotropic effect in humans and what might be the underlying mechanism. Therefore, we measured the contractile effects of OR-1896 (0.01-10 µM cumulatively applied) in isolated electrically stimulated (1 Hz) human right atrial preparations (HAP) obtained during cardiac surgery. OR-1896, given alone, exerted time- and concentration-dependent positive inotropic effects; 1-µM OR-1896 increased force by 72 ± 14.7% (p < 0.05, n = 6) and shortened the time of relaxation by 10.6 ± 3.6% (p < 0.05, n = 11) in HAP started at 0.1 µM, plateaued at 1-µM OR-1896, and was antagonized by 1-µM propranolol. The maximum positive inotropic effect of OR-1896 in human right atrial preparations was less than that of 10-µM isoprenaline. EMD 57033 (10 µM), a calcium sensitizer, enhanced the force of contraction further in the additional presence of 1-µM OR-1896 by 109 ± 19% (p < 0.05, n = 4). Cilostamide (10 µM), an inhibitor of phosphodiesterase III given before OR-1896 (1 µM), blocked the positive inotropic effect of OR-1896 in HAP. Our data suggest that OR-1896 is, indeed, a positive inotropic agent in the human heart. OR-1896 acts as a PDE III inhibitor. OR-1896 is unlikely to act as a calcium sensitizer in the human heart.
Collapse
Affiliation(s)
- Lina M Rayo-Abella
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle, Germany
| | - Peter Grundig
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle, Germany
| | - Max N Bernhardt
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Ernst Grube Straße 40, 06097, Halle, Germany
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle, Germany
| |
Collapse
|
9
|
Herting JR, König JH, Hadova K, Heinick A, Müller FU, Pauls P, Seidl MD, Soppa C, Kirchhefer U. Hypercontractile cardiac phenotype in mice overexpressing the regulatory subunit PR72 of protein phosphatase 2A. Front Cardiovasc Med 2023; 10:1239555. [PMID: 37868783 PMCID: PMC10590119 DOI: 10.3389/fcvm.2023.1239555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Background The activity, localization, and substrate specificity of the protein phosphatase 2A (PP2A) heterotrimer are controlled by various regulatory B subunits. PR72 belongs to the B'' gene family and has been shown to be upregulated in human heart failure. However, little is known about the functions of PR72 in the myocardium. Methods To address this issue, we generated a transgenic mouse model with heart-specific overexpression of PP2A-PR72. Biochemical and physiological methods were used to determine contractility, Ca2+ cycling parameters, and protein phosphorylation. Results A 2.5-fold increase in PR72 expression resulted in moderate cardiac hypertrophy. Maximal ventricular pressure was increased in catheterized transgenic mice (TG) compared to wild-type (WT) littermates. This was accompanied by an increased shortening of sarcomere length and faster relaxation at the single-cell level in TG. In parallel with these findings, the peak amplitude of Ca2+ transients was increased, and the decay in intracellular Ca2+ levels was shortened in TG compared to WT. The changes in Ca2+ cycling in TG were also evident from an increase in the full duration and width at half maximum of Ca2+ sparks. Consistent with the contractile data, phosphorylation of phospholamban at threonine-17 was higher in TG hearts. The lower expression of the Na+/Ca2+ exchanger may also contribute to the hypercontractile state in transgenic myocardium. Conclusion Our results suggest that PP2A-PR72 plays an important role in regulating cardiac contractile function and Ca2+ cycling, indicating that the upregulation of PR72 in heart failure is an attempt to compensate functionally.
Collapse
Affiliation(s)
- Julius R. Herting
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Jule H. König
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexander Heinick
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Frank U. Müller
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Paul Pauls
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Matthias D. Seidl
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Carolina Soppa
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| |
Collapse
|
10
|
Hoffmann RJR, Gergs U, Hofmann B, Kirchhefer U, Neumann J. Temperature alters the inotropic, chronotropic and proarrhythmic effects of histamine in atrial muscle preparations from humans and H 2-receptor overexpressing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2137-2150. [PMID: 36951998 PMCID: PMC10409711 DOI: 10.1007/s00210-023-02457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
We investigated whether hypothermia and hyperthermia can alter the efficacy and potency of histamine at increasing the force of cardiac contractions in mice that overexpress the human H2 receptor only in their cardiac myocytes (labelled H2-TG). Contractile studies were performed in an organ bath on isolated, electrically driven (1 Hz) left atrial preparations and spontaneously beating right atrial preparations from H2-TG mice and wild-type (WT) littermate control mice. The basal beating rate in the right atrial preparations from H2-TG mice was lowered by hypothermia (23 °C) and elevated by hyperthermia (42 °C). Furthermore, the efficacy of histamine (0.01-100 µM) at exerting positive inotropic effects was more severely attenuated in the left and right H2-TG mouse atria under hypothermia and hyperthermia than under normothermia (37 °C). Similarly, the inotropic response to histamine was attenuated under hypothermia and hyperthermia in isolated electrically stimulated (1 Hz) right atrial preparations obtained from humans undergoing cardiac surgery. The phosphorylation state of phospholamban at serine 16 at 23 °C was inferior to that at 37 °C in left atrial preparations from H2-TG mice in the presence of 10 µM histamine. In contrast, in human atrial preparations, the phosphorylation state of phospholamban at serine 16 in the presence of 100 µM histamine was lower at 42 °C than at 37 °C. Finally, under hyperthermia, we recorded more and longer lasting arrhythmias in right atrial preparations from H2-TG mice than in those from WT mice. We conclude that the inotropic effects of histamine in H2-TG mice and in human atrial preparations, as well as the chronotropic effects of histamine in H2-TG mice, are temperature dependent. Furthermore, we observed that, even without stimulation of the H2 receptors by exogenous agonists, temperature elevation can increase arrhythmias in isolated right atrial preparations from H2-TG mice. We propose that H2 receptors play a role in hyperthermia-induced supraventricular arrhythmias in human patients.
Collapse
Affiliation(s)
- Robert J. R. Hoffmann
- Institut Für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Ulrich Gergs
- Institut Für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Medizinische Fakultät, Herzchirurgie, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstr. 12, 48149 Münster, Germany
| | - Joachim Neumann
- Institut Für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
11
|
Neumann J, Hußler W, Azatsian K, Hofmann B, Gergs U. Methamphetamine increases force of contraction in isolated human atrial preparations through the release of noradrenaline. Toxicol Lett 2023:S0378-4274(23)00212-6. [PMID: 37394154 DOI: 10.1016/j.toxlet.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
We measured the cardiac contractile effects of the sympathomimetic amphetamine-like drug methamphetamine alone and in the presence of cocaine or propranolol in human atrial preparations. For a more comprehensive analysis, we also examined the effects of methamphetamine in preparations from the left and right atria of mice and, for comparison, analyzed the cardiac effects of amphetamine itself. In human atrial preparations, methamphetamine and amphetamine increased the contractile force, the relaxation rate, and the rate of tension development, and shortened the time to maximum tension and the time to relaxation. Likewise, in mice preparations, methamphetamine and amphetamine increased the contractile force in the left atrium and increased the beating rate in the right atrium. The effect in human atrial preparations started at 1µM, therefore methamphetamine was less effective and potent than isoproterenol in increasing contractile force. These positive inotropic effects of methamphetamine were greatly attenuated by 10µM cocaine and abolished by 10µM propranolol. The inotropic effects of methamphetamine in human atrial preparations were associated with, and are believed to be mediated at least in part by, an increase in the phosphorylation state of the inhibitory subunit of troponin. In conclusion, the sympathomimetic central stimulant drug methamphetamine (as well as amphetamine) increased contractile force and protein phosphorylation, presumably through a release of noradrenaline in isolated human atrial preparations. Thus, methamphetamine acts as an indirect sympathomimetic in the human atrium.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097 Halle, Germany
| | - Wilhelm Hußler
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097 Halle, Germany
| | - Karyna Azatsian
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, D-06097 Halle, Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097 Halle, Germany.
| |
Collapse
|
12
|
Cardiovascular effects of bufotenin on human 5-HT 4 serotonin receptors in cardiac preparations of transgenic mice and in human atrial preparations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02414-8. [PMID: 36754881 DOI: 10.1007/s00210-023-02414-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
It is unclear whether bufotenin (= N,N-dimethyl-serotonin = 5-hydroxy-N,N-dimethyl-tryptamine), a hallucinogenic drug, can act on human cardiac serotonin 5-HT4 receptors. Therefore, the aim of the study was to examine the cardiac effects of bufotenin and for comparison tryptamine in transgenic mice that only express the human 5-HT4 receptor in cardiomyocytes (5-HT4-TG), in their wild-type littermates (WT) and in isolated electrically driven (1 Hz) human atrial preparations. In 5-HT4-TG, we found that both bufotenin and tryptamine enhanced the force of contraction in left atrial preparations (pD2 = 6.77 or 5.5, respectively) and the beating rate in spontaneously beating right atrial preparations (pD2 = 7.04 or 5.86, respectively). Bufotenin (1 µM) increased left ventricular force of contraction and beating rate in Langendorff perfused hearts from 5-HT4-TG, whereas it was inactive in hearts from WT animals, as was tryptamine. The positive inotropic and chronotropic effects of bufotenin and tryptamine were potentiated by an inhibitor of monoamine oxidases (50 µM pargyline). Furthermore, bufotenin concentration- (0.1-10 µM) and time-dependently elevated force of contraction in isolated electrically stimulated musculi pectinati from the human atrium and these effects were likewise reversed by tropisetron (10 µM). We found that bufotenin (10 µM) increased the phosphorylation state of phospholamban in the isolated perfused hearts, left and right atrial muscle strips of 5-HT4-TG but not from WT and in isolated human right atrial preparations. In summary, we showed that bufotenin can increase the force of contraction via stimulation of human 5-HT4 receptors transgenic mouse cardiac preparations but notably also in human atrial preparations.
Collapse
|
13
|
Abella LMR, Höhm C, Hofmann B, Gergs U, Neumann J. Effects of omecamtiv mecarbil and mavacamten in isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:499-511. [PMID: 36399186 PMCID: PMC9898377 DOI: 10.1007/s00210-022-02333-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Heart failure is a syndrome that can result from impaired heart muscle contractions like in dilative cardiomyopathy but also from hypertrophic obstructive cardiomyopathy (HOCOM). A pharmacological therapy might lie in Ca2+-sensitizing or Ca2+-desensitizing drugs, respectively. Such drugs are thought to be omecamtiv mecarbil (OME) and mavacamten (MYK-461), respectively. Their function in contracting human muscle is not fully understood and was the focus of the present study. OME from 1 nM to 10 µM cumulatively applied failed to raise force of contraction in human right atrial preparations strips (HAP) or mouse left atrial preparations (LA). However, OME prolonged time to peak tension and time of relaxation in HAP and LA but did not alter the beating rate in right atrial preparations from mice (RA). In contrast, MYK-461 (10 nM to 10 µM) reduced concentration- and time-dependently force of contraction in HAP and LA. MYK-461 (10 µM) did not affect the beating rate in RA. In summary, the present data failed to detect an increase in force of contraction for OME, in human and mouse atrium. In contrast, a Ca2+ desensitizer studied for comparison was able to reduce force of contraction in HAP and LA. We conclude that putative beneficial effects of OME in dilated cardiomyopathy cannot be explained by positive inotropic effects in the HAP, whereas beneficial functional effects of MYK-461 in HOCOM can be explained by negative inotropic effects in HAP.
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- grid.9018.00000 0001 0679 2801Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany
| | - Christian Höhm
- grid.9018.00000 0001 0679 2801Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany
| | - Britt Hofmann
- grid.9018.00000 0001 0679 2801Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, D-06097 Halle, Germany
| | - Ulrich Gergs
- grid.9018.00000 0001 0679 2801Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 4, D-06097, Halle, Germany.
| |
Collapse
|
14
|
Abella LMR, Hoffmann R, Neumann J, Hofmann B, Gergs U. Levosimendan increases the phosphorylation state of phospholamban in the isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:669-682. [PMID: 36445386 PMCID: PMC10042762 DOI: 10.1007/s00210-022-02348-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Abstract
Levosimendan (up to 10 µM) given alone failed to increase force of contraction in isolated electrically stimulated (1 Hz) left atrial (LA) preparations from wild-type mice. Only in the additional presence of 0.1 µM rolipram, an inhibitor of the activity of phosphodiesterase IV, levosimendan increased force of contraction in LA and increased the phosphorylation state of phospholamban at amino acid serine 16. Levosimendan alone increased the beating rate in isolated spontaneously beating right atrial preparations from mice and this effect was potentiated by rolipram. The positive inotropic and the positive chronotropic effects of levosimendan in mouse atrial preparations were attenuated by 10 µM propranolol. Finally, we studied the contractile effects of levosimendan in isolated electrically stimulated (1 Hz) right atrial preparations from the human atrium (HAP), obtained during cardiac surgery. We detected concentration-dependent positive inotropic effects of levosimendan alone that reached plateau at 1 µM levosimendan in HAP (n = 11). Levosimendan shortened time of tension relaxation in HAP. Cilostamide (1 µM), an inhibitor of phosphodiesterase III, or propranolol (10 µM) blocked the positive inotropic effect of levosimendan in HAP. Levosimendan (1 µM) alone increased in HAP the phosphorylation state of phospholamban. In conclusion, we present evidence that levosimendan acts via phosphodiesterase III inhibition in the human atrium leading to phospholamban phosphorylation and thus explaining the positive inotropic effects of levosimendan in HAP.
Collapse
|
15
|
Adenosine and Adenosine Receptors: Advances in Atrial Fibrillation. Biomedicines 2022; 10:biomedicines10112963. [PMID: 36428533 PMCID: PMC9687155 DOI: 10.3390/biomedicines10112963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in the world. Because the key to developing innovative therapies that limit the onset and the progression of AF is to fully understand the underlying molecular mechanisms of AF, the aim of the present narrative review is to report the most recent advances in the potential role of the adenosinergic system in the pathophysiology of AF. After a comprehensive approach describing adenosinergic system signaling and the mechanisms of the initiation and maintenance of AF, we address the interactions of the adenosinergic system's signaling with AF. Indeed, adenosine release can activate four G-coupled membrane receptors, named A1, A2A, A2B and A3. Activation of the A2A receptors can promote the occurrence of delayed depolarization, while activation of the A1 receptors can shorten the action potential's duration and induce the resting membrane's potential hyperpolarization, which promote pulmonary vein firing, stabilize the AF rotors and allow for functional reentry. Moreover, the A2B receptors have been associated with atrial fibrosis homeostasis. Finally, the adenosinergic system can modulate the autonomous nervous system and is associated with AF risk factors. A question remains regarding adenosine release and the adenosine receptors' activation and whether this would be a cause or consequence of AF.
Collapse
|
16
|
Franco R, Lillo A, Navarro G, Reyes-Resina I. The adenosine A 2A receptor is a therapeutic target in neurological, heart and oncogenic diseases. Expert Opin Ther Targets 2022; 26:791-800. [DOI: 10.1080/14728222.2022.2136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Glaser D, Heinick A, Herting JR, Massing F, Müller FU, Pauls P, Rozhdestvensky TS, Schulte JS, Seidl MD, Skryabin BV, Stümpel F, Kirchhefer U. Impaired myocellular Ca 2+ cycling in protein phosphatase PP2A-B56α knockout mice is normalized by β-adrenergic stimulation. J Biol Chem 2022; 298:102362. [PMID: 35963431 PMCID: PMC9478386 DOI: 10.1016/j.jbc.2022.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
The activity of protein phosphatase 2A (PP2A) is determined by the expression and localization of the regulatory B-subunits. PP2A-B56α is the dominant isoform of the B′-family in the heart. Its role in regulating the cardiac response to β-adrenergic stimulation is not yet fully understood. We therefore generated mice deficient in B56α to test the functional cardiac effects in response to catecholamine administration versus corresponding WT mice. We found the decrease in basal PP2A activity in hearts of KO mice was accompanied by a counter-regulatory increase in the expression of B′ subunits (β and γ) and higher phosphorylation of sarcoplasmic reticulum Ca2+ regulatory and myofilament proteins. The higher phosphorylation levels were associated with enhanced intraventricular pressure and relaxation in catheterized KO mice. In contrast, at the cellular level, we detected depressed Ca2+ transient and sarcomere shortening parameters in KO mice at basal conditions. Consistently, the peak amplitude of the L-type Ca2+ current was reduced and the inactivation kinetics of ICaL were prolonged in KO cardiomyocytes. However, we show β-adrenergic stimulation resulted in a comparable peak amplitude of Ca2+ transients and myocellular contraction between KO and WT cardiomyocytes. Therefore, we propose higher isoprenaline-induced Ca2+ spark frequencies might facilitate the normalized Ca2+ signaling in KO cardiomyocytes. In addition, the application of isoprenaline was associated with unchanged L-type Ca2+ current parameters between both groups. Our data suggest an important influence of PP2A-B56α on the regulation of Ca2+ signaling and contractility in response to β-adrenergic stimulation in the myocardium.
Collapse
Affiliation(s)
- Dennis Glaser
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Julius R Herting
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Fabian Massing
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Paul Pauls
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Timofey S Rozhdestvensky
- Department of Medicine, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Jan S Schulte
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Matthias D Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Boris V Skryabin
- Department of Medicine, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Frank Stümpel
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany.
| |
Collapse
|
18
|
Neumann J, Bödicker K, Buchwalow IB, Schmidbaur C, Ramos G, Frantz S, Hofmann U, Gergs U. Effects of acute ischemia and hypoxia in young and adult calsequestrin (CSQ2) knock-out and wild-type mice. Mol Cell Biochem 2022; 477:1789-1801. [PMID: 35312907 PMCID: PMC9068673 DOI: 10.1007/s11010-022-04407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
Abstract
Calsequestrin (CSQ2) is the main Ca2+-binding protein in the sarcoplasmic reticulum of the mammalian heart. In order to understand the function of calsequestrin better, we compared two age groups (young: 4-5 months of age versus adult: 18 months of age) of CSQ2 knock-out mice (CSQ2(-/-)) and littermate wild-type mice (CSQ2(+/+)). Using echocardiography, in adult mice, the basal left ventricular ejection fraction and the spontaneous beating rate were lower in CSQ2(-/-) compared to CSQ2(+/+). The increase in ejection fraction by β-adrenergic stimulation (intraperitoneal injection of isoproterenol) was lower in adult CSQ2(-/-) versus adult CSQ2(+/+). After hypoxia in vitro (isolated atrial preparations) by gassing the organ bath buffer with 95% N2, force of contraction in electrically driven left atria increased to lower values in young CSQ2(-/-) than in young CSQ2(+/+). In addition, after global ischemia and reperfusion (buffer-perfused hearts according to Langendorff; 20-min ischemia and 15-min reperfusion), the rate of tension development was higher in young CSQ2(-/-) compared to young CSQ2(+/+). Finally, we evaluated signs of inflammation (immune cells, autoantibodies, and fibrosis). However, whereas no immunological alterations were found between all investigated groups, pronounced fibrosis was found in the ventricles of adult CSQ2(-/-) compared to all other groups. We suggest that in young mice, CSQ2 is important for cardiac performance especially in isolated cardiac preparations under conditions of impaired oxygen supply, but with differences between atrium and ventricle. Lack of CSQ2 leads age dependently to fibrosis and depressed cardiac performance in echocardiographic studies.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
- Institut für Pharmakologie und Toxikologie, Martin-Luther-Universität Halle-Wittenberg, Medizinische Fakultät, Magdeburger Str. 4, 06112 Halle, Germany
| | - Konrad Bödicker
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | | | - Constanze Schmidbaur
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Gustavo Ramos
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
19
|
Non-Invasive Assessment of Locally Overexpressed Human Adenosine 2A Receptors in the Heart of Transgenic Mice. Int J Mol Sci 2022; 23:ijms23031025. [PMID: 35162950 PMCID: PMC8835051 DOI: 10.3390/ijms23031025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
A2A adenosine receptors (A2A-AR) have a cardio-protective function upon ischemia and reperfusion, but on the other hand, their stimulation could lead to arrhythmias. Our aim was to investigate the potential use of the PET radiotracer [18F]FLUDA to non-invasively determine the A2A-AR availability for diagnosis of the A2AR status. Therefore, we compared mice with cardiomyocyte-specific overexpression of the human A2A-AR (A2A-AR TG) with the respective wild type (WT). We determined: (1) the functional impact of the selective A2AR ligand FLUDA on the contractile function of atrial mouse samples, (2) the binding parameters (Bmax and KD) of [18F]FLUDA on mouse and human atrial tissue samples by autoradiographic studies, and (3) investigated the in vivo uptake of the radiotracer by dynamic PET imaging in A2A-AR TG and WT. After A2A-AR stimulation by the A2A-AR agonist CGS 21680 in isolated atrial preparations, antagonistic effects of FLUDA were found in A2A-AR-TG animals but not in WT. Radiolabelled [18F]FLUDA exhibited a KD of 5.9 ± 1.6 nM and a Bmax of 455 ± 78 fmol/mg protein in cardiac samples of A2A-AR TG, whereas in WT, as well as in human atrial preparations, only low specific binding was found. Dynamic PET studies revealed a significantly higher initial uptake of [18F]FLUDA into the myocardium of A2A-AR TG compared to WT. The hA2A-AR-specific binding of [18F]FLUDA in vivo was verified by pre-administration of the highly affine A2AAR-specific antagonist istradefylline. Conclusion: [18F]FLUDA is a promising PET probe for the non-invasive assessment of the A2A-AR as a marker for pathologies linked to an increased A2A-AR density in the heart, as shown in patients with heart failure.
Collapse
|
20
|
Functional interaction of H 2-receptors and 5HT 4-receptors in atrial tissues isolated from double transgenic mice and from human patients. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2401-2418. [PMID: 34562141 PMCID: PMC8592968 DOI: 10.1007/s00210-021-02145-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 01/08/2023]
Abstract
In the past, we generated transgenic mice that overexpress the human histamine 2 (H2)-receptor (H2-TG) or that overexpress the human serotonin 4 (5-HT4)-receptor (5-HT4-TG) in the heart. Here, we crossbred these lines of mice to generate double transgenic mice that overexpress both receptors (DT). This was done to study a conceivable interaction between these receptors in the mouse heart as a model for the human heart. When in left atria, initially, force of contraction was elevated maximally with 1 µM serotonin, and subsequently, histamine was cumulatively applied; a biphasic effect of histamine was noted: the force of contraction initially decreased, maximally at 10 nM histamine, and thereafter, the force of contraction increased again at 1 µM histamine. Notably, functional interaction between 5-HT and histamine was also identified in isolated electrically stimulated trabeculae carneae from human right atrium (obtained during cardiac surgery). These functional and biochemical data together are consistent with a joint overexpression of inotropically active H2-receptors and 5-HT4-receptors in the same mouse heart. We also describe an antagonistic interaction on the force of contraction of both receptors in the mouse atrium (DT) and in the human atrial muscle strips. We speculate that via this interaction, histamine might act as a "brake" on the cardiac actions of 5-HT via inhibitory GTP-binding proteins acting on the activity of adenylyl cyclase.
Collapse
|
21
|
Gergs U, Brückner T, Hofmann B, Neumann J. The proarrhythmic effects of hypothermia in atria isolated from 5-HT 4-receptor-overexpressing mice. Eur J Pharmacol 2021; 906:174206. [PMID: 34048737 DOI: 10.1016/j.ejphar.2021.174206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
We investigated whether hypothermia would be arrhythmogenic in mice that overexpress the human 5-HT4 receptor only in their cardiac myocytes (5-HT4-TG). Contractile studies were performed in isolated, electrically driven (1 Hz) left and spontaneously beating right atrial preparations of 5-HT4-TG and littermate wild-type control mice (WT). Hypothermia (23 °C) decreased the force of contraction in the mouse right and left atrial preparations. Moreover, the concentration-dependent positive inotropic effects of 5-HT were blunted but still shifted to lower 5-HT concentrations in the left 5-HT4-TG atria in hypothermia compared to normothermia (37 °C). Furthermore, hypothermia increased the incidence of right atrial arrhythmias in 5-HT4-TG more than in WT mice. In contrast, at 37 °C, lowering the potassium concentration from 5.2 to 2.0 mM also induced arrhythmias in the right atrium, but with a similar incidence in WT and 5-HT4-TG mice. In contrast, 10 μM d,l-sotalol and 300 μM erythromycin did not induce arrhythmias. Hypothermia was accompanied by the increased expression of heat shock protein 70 (HSP70) in WT but not in 5-HT4-TG mice. We concluded that without the stimulation of 5-HT4-receptors by exogenous agonists, a simple temperature reduction can increase arrhythmias in 5-HT4-TG mice. It is tempting to speculate that in human patients, 5-HT4 receptors might contribute to potentially deadly hypothermia-induced arrhythmias.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| | - Tobias Brückner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| |
Collapse
|
22
|
Liu Y, Long S, Zhang S, Tan Y, Wang T, Wu Y, Jiang T, Liu X, Peng D, Liu Z. Synthesis and antioxidant activities of berberine 9- O-benzoic acid derivatives. RSC Adv 2021; 11:17611-17621. [PMID: 35480221 PMCID: PMC9033176 DOI: 10.1039/d1ra01339d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/17/2021] [Indexed: 12/22/2022] Open
Abstract
Although berberine (BBR) shows antioxidant activity, its activity is limited. We synthesized 9-O-benzoic acid berberine derivatives, and their antioxidant activities were screened via ABTS, DPPH, HOSC and FRAP assays. The para-position was modified with halogen elements on the benzoic acid ring, which led to an enhanced antioxidant activity and the substituent on the ortho-position was found to be better than the meta-position. Compounds 8p, 8c, 8d, 8i, 8j, 8l, and especially 8p showed significantly higher antioxidant activities, which could be attributed to the electronic donating groups. All the berberine derivatives possessed proper lipophilicities. In conclusion, compound 8p is a promising antioxidant candidate with remarkable elevated antioxidant activity and moderate lipophilicity. Although berberine (BBR) shows antioxidant activity, its activity is limited.![]()
Collapse
Affiliation(s)
- Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Shuo Long
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Shanshan Zhang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine Changsha 410208 China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University Changsha 410013 China
| |
Collapse
|
23
|
Neumann J, Seidler T, Fehse C, Marušáková M, Hofmann B, Gergs U. Cardiovascular effects of metoclopramide and domperidone on human 5-HT 4-serotonin-receptors in transgenic mice and in human atrial preparations. Eur J Pharmacol 2021; 901:174074. [PMID: 33811834 DOI: 10.1016/j.ejphar.2021.174074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
It is unclear whether metoclopramide and domperidone act on human cardiac serotonin 5-HT4-receptors. Therefore, we studied transgenic mice that only express the human 5-HT4 receptor in cardiomyocytes in the atrium and in the ventricle (5-HT4-TG), their wild type-littermates (WT) and isolated human atrial preparations. We found that only metoclopramide but not domperidone enhanced the force of contraction in left atrial preparations (pEC50 = 6.0 ± 0.1; n = 7) from 5-HT4-TG, isolated spontaneously beating right atrial preparations (pEC50 = 6.1 ± 0.1; n = 7) from 5-HT4-TG, Langendorff perfused hearts from 5-HT4-TG, living 5-HT4-TG and human right atrial muscle preparations obtained during bypass surgery of patients suffering from coronary heart disease. The maximum inotropic effect of metoclopramide was smaller (81 ± 2%) than that of 5-HT on the left atria from 5-HT4-TG. The maximum increase in the beating rate due to metoclopramide was 93 ± 2% of effect of 5-HT on right atrial preparations from 5-HT4-TG. Metoclopramide and domperidone were inactive in WT. We found that metoclopramide but not domperidone increased the phosphorylation state of phospholamban in the isolated perfused hearts or muscle strips of 5-HT4-TG, but not in WT. Metoclopramide, but not domperidone, shifted the positive inotropic or chronotropic effects of 5-HT in isolated left atrial and right atrial preparations from 5-HT4-TG dextrally, resp., to higher concentrations: the pEC50 of 5-HT for increase in force was in the absence of metoclopramide 8.6 ± 0.1 (n = 5) versus 8.0 ± 0.3 in the presence of 1 μM metoclopramide (n = 5; P < 0.05); and the beating rate was 7.8 ± 0.2 (n = 7) in the absence of metoclopramide versus 7.2 ± 0.1 in the presence of 1 μM metoclopramide (n = 6; P < 0.05). These results suggested that metoclopramide had an antagonistic effect on human cardiac 5-HT4 receptors. In summary, we showed that metoclopramide, but not domperidone, was a partial agonist at human cardiac 5-HT4-receptors.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Tom Seidler
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Charlotte Fehse
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Margaréta Marušáková
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| |
Collapse
|
24
|
Neumann J, Binter MB, Fehse C, Marušáková M, Büxel ML, Kirchhefer U, Hofmann B, Gergs U. Amitriptyline functionally antagonizes cardiac H 2 histamine receptors in transgenic mice and human atria. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1251-1262. [PMID: 33625558 PMCID: PMC8208937 DOI: 10.1007/s00210-021-02065-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
We have previously shown that histamine (2-(1H-imidazol-4-yl)ethanamine) exerted concentration-dependent positive inotropic effects (PIE) or positive chronotropic effects (PCE) on isolated left and right atria, respectively, of transgenic (H2R-TG) mice that overexpress the human H2 histamine receptor (H2R) in the heart; however, the effects were not seen in their wild-type (WT) littermates. Amitriptyline, which is still a highly prescribed antidepressant drug, was reported to act as antagonist on H2Rs. Here, we wanted to determine whether the histamine effects in H2R-TG were antagonized by amitriptyline. Contractile studies were performed on isolated left and right atrial preparations, isolated perfused hearts from H2R-TG and WT mice and human atrial preparations. Amitriptyline shifted the concentration-dependent PIE of histamine (1 nM-10 μM) to higher concentrations (rightward shift) in left atrial preparations from H2R-TG. Similarly, in isolated perfused hearts from H2R-TG and WT mice, histamine increased the contractile parameters and the phosphorylation state of phospholamban (PLB) at serine 16 in the H2R-TG mice, but not in the WT mice. However, the increases in contractility and PLB phosphorylation were attenuated by the addition of amitriptyline in perfused hearts from H2R-TG. In isolated electrically stimulated human atria, the PIE of histamine that was applied in increasing concentrations from 1 nM to 10 μM was reduced by 10-μM amitriptyline. In summary, we present functional evidence that amitriptyline also acts as an antagonist of contractility at H2Rs in H2R-TG mouse hearts and in the human heart which might in part explain the side effects of amitriptyline.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Maximilian Benedikt Binter
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Charlotte Fehse
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Margaréta Marušáková
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maren Luise Büxel
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstr. 12, D-48149, Münster, Germany
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06120, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Halle, Germany.
| |
Collapse
|
25
|
Boknik P, Eskandar J, Hofmann B, Zimmermann N, Neumann J, Gergs U. Role of Cardiac A 2A Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol 2021; 11:627838. [PMID: 33574762 PMCID: PMC7871008 DOI: 10.3389/fphar.2020.627838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
This review presents an overview of cardiac A2A-adenosine receptors The localization of A2A-AR in the various cell types that encompass the heart and the role they play in force regulation in various mammalian species are depicted. The putative signal transduction systems of A2A-AR in cells in the living heart, as well as the known interactions of A2A-AR with membrane-bound receptors, will be addressed. The possible role that the receptors play in some relevant cardiac pathologies, such as persistent or transient ischemia, hypoxia, sepsis, hypertension, cardiac hypertrophy, and arrhythmias, will be reviewed. Moreover, the cardiac utility of A2A-AR as therapeutic targets for agonistic and antagonistic drugs will be discussed. Gaps in our knowledge about the cardiac function of A2A-AR and future research needs will be identified and formulated.
Collapse
Affiliation(s)
- P. Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - J. Eskandar
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - B. Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - N. Zimmermann
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - J. Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - U. Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
26
|
Paganelli F, Gaudry M, Ruf J, Guieu R. Recent advances in the role of the adenosinergic system in coronary artery disease. Cardiovasc Res 2020; 117:1284-1294. [PMID: 32991685 DOI: 10.1093/cvr/cvaa275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine is an endogenous nucleoside that plays a major role in the physiology and physiopathology of the coronary artery system, mainly by activating its A2A receptors (A2AR). Adenosine is released by myocardial, endothelial, and immune cells during hypoxia, ischaemia, or inflammation, each condition being present in coronary artery disease (CAD). While activation of A2AR improves coronary blood circulation and leads to anti-inflammatory effects, down-regulation of A2AR has many deleterious effects during CAD. A decrease in the level and/or activity of A2AR leads to: (i) lack of vasodilation, which decreases blood flow, leading to a decrease in myocardial oxygenation and tissue hypoxia; (ii) an increase in the immune response, favouring inflammation; and (iii) platelet aggregation, which therefore participates, in part, in the formation of a fibrin-platelet thrombus after the rupture or erosion of the plaque, leading to the occurrence of acute coronary syndrome. Inflammation contributes to the development of atherosclerosis, leading to myocardial ischaemia, which in turn leads to tissue hypoxia. Therefore, a vicious circle is created that maintains and aggravates CAD. In some cases, studying the adenosinergic profile can help assess the severity of CAD. In fact, inducible ischaemia in CAD patients, as assessed by exercise stress test or fractional flow reserve, is associated with the presence of a reserve of A2AR called spare receptors. The purpose of this review is to present emerging experimental evidence supporting the existence of this adaptive adenosinergic response to ischaemia or inflammation in CAD. We believe that we have achieved a breakthrough in the understanding and modelling of spare A2AR, based upon a new concept allowing for a new and non-invasive CAD management.
Collapse
Affiliation(s)
- Franck Paganelli
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Department of Cardiology, North Hospital, Chemin des Bourrely, F-13015 Marseille, France
| | - Marine Gaudry
- Department of Vascular Surgery, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| | - Jean Ruf
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France
| | - Régis Guieu
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Laboratory of Biochemistry, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| |
Collapse
|
27
|
Wang J, Li G, Tu C, Chen X, Yang B, Huo Y, Li Y, Chen AZ, Lan P, Zhang YS, Xie M. High-throughput single-cell analysis of exosome mediated dual drug delivery, in vivo fate and synergistic tumor therapy. NANOSCALE 2020; 12:13742-13756. [PMID: 32573602 DOI: 10.1039/d0nr02344b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exosomes could serve as delivery platforms, owing to their good biocompatibility, stability, and long blood circulation time. Tracking the biological fate of exosomes in vivo is essential for evaluating their functions, delivery efficacy, and biosafety, and it is invaluable for guiding exosome-based therapy. Here, we merged a single-cell technique, mass cytometry, with in vivo uptake analysis to comprehensively reveal the fate of exosomes at the single-cell level. In tandem with multivariate cellular phenotyping, in vivo uptake of exosomes labeled with heavy metal-containing tags was quantified in a high-throughput manner. Interestingly, an organ-dependent uptake landscape of exosomes by diverse cell types was distinctly demonstrated, which implied that cancer cells seemed to preferably take up more released drugs from the exosomes. Using these cellular insights, the administration method of drug-loaded exosomes was optimized to elevate their accumulation in tumor sites and minimize their spread into healthy organs. Dual drug-loaded exosomes were locally administered and superior synergistic tumor treatment effects were achieved in a solid tumor model. The disclosure of exosome cellular distribution, together with the successful engineering of exosomes with multiple anticancer capacities, provides a new level of insight into optimizing and enhancing exosome-based drug delivery and synergistic tumor therapy.
Collapse
Affiliation(s)
- Jinheng Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China. and Affiliated Cancer Hospital & Institute of Guangzhou Medical University; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease; Guangzhou Medical University, 510095, Guangzhou, China
| | - Guangmeng Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Chenggong Tu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China. and Affiliated Cancer Hospital & Institute of Guangzhou Medical University; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; State Key Laboratory of Respiratory Disease; Guangzhou Medical University, 510095, Guangzhou, China
| | - Xiaoming Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Bin Yang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yongliang Huo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yi Li
- School of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Maobin Xie
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China. and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Abstract
Purinergic signaling involves extracellular purines and pyrimidines acting upon specific cell surface purinoceptors classified into the P1, P2X, and P2Y families for nucleosides and nucleotides. This widespread signaling mechanism is active in all major tissues and influences a range of functions in health and disease. Orthologs to all but one of the human purinoceptors have been found in mouse, making this laboratory animal a useful model to study their function. Indeed, analyses of purinoceptors via knock-in or knockout approaches to produce gain or loss of function phenotypes have revealed several important therapeutic targets. None of the homozygous purinoceptor knockouts proved to be developmentally lethal, which suggest that either these receptors are not involved in key developmental processes or that the large number of receptors in each family allowed for functional compensation. Different models for the same purinoceptor often show compatible phenotypes but there have been examples of significant discrepancies. These revealed unexpected differences in the structure of human and mouse genes and emphasized the importance of the genetic background of different mouse strains. In this chapter, we provide an overview of the current knowledge and new trends in the modifications of purinoceptor genes in vivo. We discuss the resulting phenotypes, their applications and relative merits and limitations of mouse models available to study purinoceptor subtypes.
Collapse
Affiliation(s)
- Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| |
Collapse
|
29
|
Boknik P, Drzewiecki K, Eskandar J, Gergs U, Hofmann B, Treede H, Grote-Wessels S, Fabritz L, Kirchhof P, Fortmüller L, Müller FU, Schmitz W, Zimmermann N, Kirchhefer U, Neumann J. Evidence for Arrhythmogenic Effects of A 2A-Adenosine Receptors. Front Pharmacol 2019; 10:1051. [PMID: 31619997 PMCID: PMC6759833 DOI: 10.3389/fphar.2019.01051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
Adenosine can be released from the heart and may stimulate four different cardiac adenosine receptors. A receptor subtype that couples to the generation of cyclic adenosine monophosphate (cAMP) is the A2A-adenosine receptor (A2A-AR). To better understand its role in cardiac function, we studied mechanical and electrophysiological effects in transgenic mice that overexpress the human A2A-AR in cardiomyocytes (A2A-TG). We used isolated preparations from the left atrium, the right atrium, isolated perfused hearts with surface electrocardiogram (ECG) recording, and surface body ECG recordings of living mice. The hypothesized arrhythmogenic effects of transgenicity per se and A2A-AR stimulation were studied. We noted an increase in the incidence of supraventricular and ventricular arrhythmias under these conditions in A2A-TG. Moreover, we noted that the A2A-AR agonist CGS 21680 exerted positive inotropic effect in isolated human electrically driven (1 Hz) right atrial trabeculae carneae. We conclude that A2A-ARs are functional not only in A2A-TG but also in isolated human atrial preparations. A2A-ARs in A2A-TG per se and their stimulation can lead to cardiac arrhythmias not only in isolated cardiac preparations from A2A-TG but also in living A2A-TG.
Collapse
Affiliation(s)
- Peter Boknik
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Katharina Drzewiecki
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - John Eskandar
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Britt Hofmann
- Klinik für Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hendrik Treede
- Klinik für Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Stephanie Grote-Wessels
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Sandwell and West Birmingham Hospital NHS Trust, Birmingham, United Kingdom
| | - Lisa Fortmüller
- Institute for Human Genetics, Genetic epidemiology, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Frank Ulrich Müller
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Wilhelm Schmitz
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | | | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
30
|
Selected Literature Watch. J Caffeine Adenosine Res 2018. [DOI: 10.1089/caff.2018.29008.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|