1
|
Girão AF, Barroca N, Hernández-Martín Y, Completo A, Marques PAAP, Serrano MC. 3D nanofibrous frameworks with on-demand engineered gray and white matters for reconstructing the injured spinal cord. BIOMATERIALS ADVANCES 2025; 170:214200. [PMID: 39904017 DOI: 10.1016/j.bioadv.2025.214200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/27/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Spinal cord injury (SCI) is a disruptive and heterogeneous medical condition affecting millions of patients worldwide. Due to the absence of medical treatments to effectively restore the lost sensorimotor and autonomic functions, there is an ongoing pursuit of scaffolds aiming to bridge the injured spinal area. Herein, a novel electrospinning modality to construct 3D nanofibrous frameworks (NFFs) in accordance with distinct spinal cord microenvironments is used to engineer a biomimetic hemicord. This scaffolding concept gravitates around the possibility of customizing NFFs with on-demand engineered gray and white matters to replicate the native spinal cytoarchitecture. In particular, a 3D reduced graphene oxide-based fibrous-porous system is developed to imitate the gray matter, while a 3D polycaprolactone (PCL)-chitosan nanofibrous network combined with PCL-graphene microfibers intends to mimic the white matter. The scaffolding components are tested in vitro with embryonic neural progenitor cells, integrated into the biomimetic NFF, and then tested in vivo in paralyzed rats with cervical hemisection. After 4 months of implantation, the scaffold generates both neuroprotective (e.g., limited infiltration of vimentin+ and ED1+ cells) and neuroregenerative (e.g., presence of new blood vessels and neurites) features accompanied with promising signs of forelimb function recovery.
Collapse
Affiliation(s)
- André F Girão
- Center for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal; Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain.
| | - Nathalie Barroca
- Center for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - Yasmina Hernández-Martín
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo 45071, Spain
| | - António Completo
- Center for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - Paula A A P Marques
- Center for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain.
| |
Collapse
|
2
|
Weng Y, Lu F, Li P, Jian Y, Xu J, Zhong T, Guo Q, Yang Y. Osteopontin Promotes Angiogenesis in the Spinal Cord and Exerts a Protective Role Against Motor Function Impairment and Neuropathic Pain After Spinal Cord Injury. Spine (Phila Pa 1976) 2024; 49:E142-E151. [PMID: 38329420 DOI: 10.1097/brs.0000000000004954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
STUDY DESIGN Basic science study using a hemisection spinal cord injury (SCI) model. OBJECTIVE We sought to assess the effect of blocking osteopontin (OPN) upregulation on motor function recovery and pain behavior after SCI and to further investigate the possible downstream target of OPN in the injured spinal cord. SUMMARY OF BACKGROUND DATA OPN is a noncollagenous extracellular matrix protein widely expressed across different tissues. Its expression substantially increases following SCI. A previous study suggested that this protein might contribute to locomotor function recovery after SCI. However, its neuroprotective potential was not fully explored, nor were the underlying mechanisms. MATERIALS AND METHODS We constructed a SCI mouse model and analyzed the expression of OPN at different time points and the particular cell distribution in the injured spinal cord. Then, we blocked OPN upregulation with lentivirus-delivering siRNA targeting OPN specifically and examined its effect on motor function impairment and neuropathic pain after SCI. The underlying mechanisms were explored in the OPN-knockdown mice model and cultured vascular endothelial cells. RESULTS The proteome study revealed that OPN was the most dramatically increased protein following SCI. OPN in the spinal cord was significantly increased three weeks after SCI. Suppressing OPN upregulation through siRNA exacerbated motor function impairment and neuropathic pain. In addition, SCI resulted in an increase in vascular endothelial growth factor (VEGF), AKT phosphorylation, and angiogenesis within the spinal cord, all of which were curbed by OPN reduction. Similarly, OPN knockdown suppressed VEGF expression, AKT phosphorylation, cell migration, invasion, and angiogenesis in cultured vascular endothelial cells. CONCLUSION OPN demonstrates a protective influence against motor function impairment and neuropathic pain following SCI. This phenomenon may result from the proangiogenetic effect of OPN, possibly due to activation of the VEGF and/or AKT pathways.
Collapse
Affiliation(s)
- Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Feng Lu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Department of Maternity, Xiangya Hospital, Central South University, Changsha, China
| | - Yanping Jian
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Jingmei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Tao Zhong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| |
Collapse
|
3
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Le Bao C, Waller H, Dellaquila A, Peters D, Lakey J, Chaubet F, Simon-Yarza T. Spatial-Controlled Coating of Pro-Angiogenic Proteins on 3D Porous Hydrogels Guides Endothelial Cell Behavior. Int J Mol Sci 2022; 23:14604. [PMID: 36498931 PMCID: PMC9737628 DOI: 10.3390/ijms232314604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
In tissue engineering, the composition and the structural arrangement of molecular components within the extracellular matrix (ECM) determine the physical and biochemical features of a scaffold, which consequently modulate cell behavior and function. The microenvironment of the ECM plays a fundamental role in regulating angiogenesis. Numerous strategies in tissue engineering have attempted to control the spatial cues mimicking in vivo angiogenesis by using simplified systems. The aim of this study was to develop 3D porous crosslinked hydrogels with different spatial presentation of pro-angiogenic molecules to guide endothelial cell (EC) behavior. Hydrogels with pores and preformed microchannels were made with pharmaceutical-grade pullulan and dextran and functionalized with novel pro-angiogenic protein polymers (Caf1-YIGSR and Caf1-VEGF). Hydrogel functionalization was achieved by electrostatic interactions via incorporation of diethylaminoethyl (DEAE)-dextran. Spatial-controlled coating of hydrogels was realized through a combination of freeze-drying and physical absorption with Caf1 molecules. Cells in functionalized scaffolds survived, adhered, and proliferated over seven days. When incorporated alone, Caf1-YIGSR mainly induced cell adhesion and proliferation, whereas Caf1-VEGF promoted cell migration and sprouting. Most importantly, directed cell migration required the presence of both proteins in the microchannel and in the pores, highlighting the need for an adhesive substrate provided by Caf1-YIGSR for Caf1-VEGF to be effective. This study demonstrates the ability to guide EC behavior through spatial control of pro-angiogenic cues for the study of pro-angiogenic signals in 3D and to develop pro-angiogenic implantable materials.
Collapse
Affiliation(s)
- Chau Le Bao
- Laboratory for Vascular Translational Science (LVTS) INSERM U1148, Université Paris Cité, Université Sorbonne Paris Nord, CEDEX 18, 75877 Paris, France
| | - Helen Waller
- Biosciences Institute, Newcastle University Biosciences Institute, Newcastle upon Tyne NE1 7RU, UK
| | - Alessandra Dellaquila
- Laboratory for Vascular Translational Science (LVTS) INSERM U1148, Université Paris Cité, Université Sorbonne Paris Nord, CEDEX 18, 75877 Paris, France
| | - Daniel Peters
- Biosciences Institute, Newcastle University Biosciences Institute, Newcastle upon Tyne NE1 7RU, UK
| | - Jeremy Lakey
- Biosciences Institute, Newcastle University Biosciences Institute, Newcastle upon Tyne NE1 7RU, UK
| | - Frédéric Chaubet
- Laboratory for Vascular Translational Science (LVTS) INSERM U1148, Université Paris Cité, Université Sorbonne Paris Nord, CEDEX 18, 75877 Paris, France
| | - Teresa Simon-Yarza
- Laboratory for Vascular Translational Science (LVTS) INSERM U1148, Université Paris Cité, Université Sorbonne Paris Nord, CEDEX 18, 75877 Paris, France
| |
Collapse
|
5
|
Yao C, Cao Y, Wang D, Lv Y, Liu Y, Gu X, Wang Y, Wang X, Yu B. Single-cell sequencing reveals microglia induced angiogenesis by specific subsets of endothelial cells following spinal cord injury. FASEB J 2022; 36:e22393. [PMID: 35699080 DOI: 10.1096/fj.202200337r] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) results in dynamic alterations of the microenvironment at the lesion site, which inevitably leads to neuronal degeneration and functional impairment. The destruction of the spinal vascular system leads to a significant deterioration of the milieu, which exacerbates inflammatory response and deprives cells of nutrient support in the lesion. Limited endogenous angiogenesis occurs after SCI, but the cellular events at the lesion site during this process are unclear so far. Here, we performed single-cell RNA sequencing (scRNA-seq) on spinal cord tissues of rats at different time points after SCI. After clustering and cell-type identification, we focused on vascular endothelial cells (ECs), which play a pivotal role in angiogenesis, and drew the cellular and molecular atlas for angiogenesis after SCI. We found that microglia and macrophages promote endogenous angiogenesis by regulating EC subsets through SPP1 and IGF signaling pathways. Our results indicate that immune cells promote angiogenesis by regulating specific subsets of vascular ECs, which provides new clues for exploring SCI intervention.
Collapse
Affiliation(s)
- Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuqi Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yehua Lv
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuhua Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
6
|
Hong JY, Kim SH, Seo Y, Jeon J, Davaa G, Hyun JK, Kim SH. Self-assembling peptide gels promote angiogenesis and functional recovery after spinal cord injury in rats. J Tissue Eng 2022; 13:20417314221086491. [PMID: 35340425 PMCID: PMC8943448 DOI: 10.1177/20417314221086491] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) leads to disruption of the blood–spinal cord barrier,
hemorrhage, and tissue edema, which impair blood circulation and induce
ischemia. Angiogenesis after SCI is an important step in the repair of damaged
tissues, and the extent of angiogenesis strongly correlates with the neural
regeneration. Various biomaterials have been developed to promote angiogenesis
signaling pathways, and angiogenic self-assembling peptides are useful for
producing diverse supramolecular structures with tunable functionality. RADA16
(Ac-RARADADARARADADA-NH2), which forms nanofiber networks under physiological
conditions, is a self-assembling peptide that can provide mechanical support for
tissue regeneration and reportedly has diverse roles in wound healing. In this
study, we applied an injectable form of RADA16 with or without the neuropeptide
substance P to the contused spinal cords of rats and examined angiogenesis
within the damaged spinal cord and subsequent functional improvement.
Histological and immunohistochemical analyses revealed that the inflammatory
cell population in the lesion cavity was decreased, the vessel number and
density around the damaged spinal cord were increased, and the levels of
neurofilaments within the lesion cavity were increased in SCI rats that received
RADA16 and RADA16 with substance P (rats in the RADA16/SP group). Moreover,
real-time PCR analysis of damaged spinal cord tissues showed that IL-10
expression was increased and that locomotor function (as assessed by the Basso,
Beattie, and Bresnahan (BBB) scale and the horizontal ladder test) was
significantly improved in the RADA16/SP group compared to the control group. Our
findings indicate that RADA16 modified with substance P effectively stimulates
angiogenesis within the damaged spinal cord and is a candidate agent for
promoting functional recovery post-SCI.
Collapse
Affiliation(s)
- Jin Young Hong
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Su Hee Kim
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
- Medifab Ltd., Seoul, Republic of
Korea
| | - Yoojin Seo
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
| | - Jooik Jeon
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Ganchimeg Davaa
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science
and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University,
Cheonan, Republic of Korea
- Institute of Tissue Regeneration
Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Rehabilitation Medicine,
College of Medicine, Dankook University, Cheonan, Republic of Korea
- Jung Keun Hyun, Department of
Rehabilitation Medicine, College of Medicine, Dankook University, 119 Dandae-ro,
Anseo-dong, Dongnam-gu, Cheonan 31116, Republic of Korea.
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul, Republic of
Korea
- Korea Institute of Science and
Technology Europe, Saarbrücken, Germany
- NBIT, KU-KIST Graduate School of
Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Luo D, Li X, Hou Y, Hou Y, Luan J, Weng J, Zhan J, Lin D. Sodium tanshinone IIA sulfonate promotes spinal cord injury repair by inhibiting blood spinal cord barrier disruption in vitro and in vivo. Drug Dev Res 2021; 83:669-679. [PMID: 34842291 DOI: 10.1002/ddr.21898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) leads to microvascular damage and the destruction of the blood spinal cord barrier (BSCB), which can progress into secondary injuries, such as apoptosis and necrosis of neurons and glia, culminating in permanent neurological deficits. BSCB restoration is the primary goal of SCI therapy, although very few drugs can repair damaged barrier structure and permeability. Sodium tanshinone IIA sulfonate (STS) is commonly used to treat cardiovascular disease. However, the therapeutic effects of STS on damaged BSCB during the early stage of SCI remain uncertain. Therefore, we exposed spinal cord microvascular endothelial cells to H2 O2 and treated them with different doses of STS. In addition to protecting the cells from H2 O2 -induced apoptosis, STS also reduced cellular permeability. In the in vivo model of SCI, STS reduced BSCB permeability, relieved tissue edema and hemorrhage, suppressed MMP activation and prevented the loss of tight junction and adherens junction proteins. Our findings indicate that STS treatment promotes SCI recovery, and should be investigated further as a drug candidate against traumatic SCI.
Collapse
Affiliation(s)
- Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Li
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyao Luan
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Second College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxian Weng
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Zawadzka M, Kwaśniewska A, Miazga K, Sławińska U. Perspectives in the Cell-Based Therapies of Various Aspects of the Spinal Cord Injury-Associated Pathologies: Lessons from the Animal Models. Cells 2021; 10:cells10112995. [PMID: 34831217 PMCID: PMC8616284 DOI: 10.3390/cells10112995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic injury of the spinal cord (SCI) is a devastating neurological condition often leading to severe dysfunctions, therefore an improvement in clinical treatment for SCI patients is urgently needed. The potential benefits of transplantation of various cell types into the injured spinal cord have been intensively investigated in preclinical SCI models and clinical trials. Despite the many challenges that are still ahead, cell transplantation alone or in combination with other factors, such as artificial matrices, seems to be the most promising perspective. Here, we reviewed recent advances in cell-based experimental strategies supporting or restoring the function of the injured spinal cord with a particular focus on the regenerative mechanisms that could define their clinical translation.
Collapse
|
9
|
Adhikari K, Dolma S, Mamidi T, Roy A, Pathak Z, Kumar H. Tomographic Imaging and Correlation to Quantify Vascular and Inflammatory Changes in an Experimental Spinal Cord Injury. ACS Chem Neurosci 2021; 12:3864-3872. [PMID: 34628864 DOI: 10.1021/acschemneuro.1c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition causing the loss of sensory and motor functions. SCI pathology is multifaceted, encompassing inflammation, scarring, neuronal damage, and vascular and tissue remodeling. The dynamics of SCI rapidly transform from acute, sub-acute, and chronic phases. The rapidly changing environment necessitates the real-time monitoring of disease severity. Therefore, in this study, we used the IVIS spectrum, a noninvasive fluorescence imaging modality, to monitor the disease pathology in live animals. We used near-infrared fluorescence imaging agents including Angiosense 750 EX, a probe that detects vascular changes, and Cat B 680 FAST, a probe that detects inflammation at various day points post injury (DPI), that is, DPI-1, DPI-14, and DPI-28. We quantified the pathophysiological changes after SCI using IVIS in live animals. As a result, we observed distinct differences in the disease progression between injured and sham mice. Moreover, live imaging showed a good correlation with behavioral studies, protein expression, and immunohistological analysis. Hence, the goal of this study was to introduce a new optical imaging modality that offers a determination of disease severity and the advantage of accelerated imaging of the correlated biomarkers in a real-time and dynamic manner. This study concluded that Cat B 680 Fast and Angiosense 750 EX could be used to assess the disease severity after SCI. Furthermore, our study suggests that the noninvasive fluorescence optical imaging modality offers a unique approach in monitoring neuroinflammatory diseases in live animals.
Collapse
Affiliation(s)
- Kirti Adhikari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Sonam Dolma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Teena Mamidi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Zarna Pathak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
10
|
Habibizadeh M, Nadri S, Fattahi A, Rostamizadeh K, Mohammadi P, Andalib S, Hamidi M, Forouzideh N. Surface modification of neurotrophin-3 loaded PCL/chitosan nanofiber/net by alginate hydrogel microlayer for enhanced biocompatibility in neural tissue engineering. J Biomed Mater Res A 2021; 109:2237-2254. [PMID: 34132482 DOI: 10.1002/jbm.a.37208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
This study prepared a novel three-dimensional nanocomposite scaffold by the surface modification of PCL/chitosan nanofiber/net with alginate hydrogel microlayer, hoping to have the privilege of both nanofibers and hydrogels simultaneously. Bead free randomly oriented nanofiber/net (NFN) structure composed of chitosan and polycaprolactone (PCL) was fabricated by electrospinning method. The low surface roughness, good hydrophilicity, and high porosity were obtained from the NFN structure. Then, the PCL/chitosan nanofiber/net was coated with a microlayer of alginate containing neurotrophin-3 (NT-3) and conjunctiva mesenchymal stem cells (CJMSCs) as a new stem cell source. According to the cross-sectional FESEM, the scaffold shows a two-layer structure with interconnected pores in the range of 20 μm diameter. The finding revealed that the surface modification of nanofiber/net by alginate hydrogel microlayer caused lower inflammatory response and higher proliferation of CJMSCs than the unmodified scaffold. The initial burst release of NT-3 was 69% in 3 days which followed by a sustained release up to 21 days. The RT-PCR analysis showed that the expression of Nestin, MAP-2, and β-tubulin III genes were increased 6, 5.4, and 8.8-fold, respectively. The results revealed that the surface-modified biomimetic scaffold possesses enhanced biocompatibility and could successfully differentiate CJMSCs to the neuron-like cells.
Collapse
Affiliation(s)
- Mina Habibizadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Center for Applied NanoBioscience and Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parvin Mohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Andalib
- Department of Pharmacology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Narges Forouzideh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Simon-Yarza T, Labour MN, Aid R, Letourneur D. Channeled polysaccharide-based hydrogel reveals influence of curvature to guide endothelial cell arrangement in vessel-like structures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111369. [DOI: 10.1016/j.msec.2020.111369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
|
12
|
Xu Z, Xu W, Chen X, Zhou Y. [Study on vascular remodeling, inflammatory response, and their correlations in acute spinal cord injury in rats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1429-1437. [PMID: 33191702 DOI: 10.7507/1002-1892.202003186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To study the local vascular remodeling, inflammatory response, and their correlations following acute spinal cord injury (SCI) with different grades, and to assess the histological changes in SCI rats. Methods One hundred and sixteen adult female Sprague Dawley rats were randomly divided into 4 groups ( n=29). The rats in sham group were received laminectomy only. A standard MASCIS spinal cord compactor was applied with drop height of 12.5, 25.0, or 50.0 mm to establish the mild, moderate, or severe SCI model, respectively. Quantitative rat endothelial cell antigen 1 (RECA1) and CD68 positive areas and the correlations were studied by double immunofluorescent (DIF) staining at 12 hours, 24 hours, 3 days, 7 days, and 28 days following SCI. Moreover, qualitative neurofilament-H (NF-H) and glial fibrillary acidic protein (GFAP) positive glial cells were studied by DIF staining at 28 days. ELISA was used to detect the levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 in spinal cord homogenates at 12 hours, 24 hours, and 3 days, and the correlations between TNF-α, IL-1β, or IL-6 levels and microvascular density (RECA1) were accordingly studied. Moreover, the neural tissue integrity and neuron damage were assessed by HE staining at 12 hours, 24 hours, 3 days, 7 days, and 28 days, and Nissl's staining at 28 days following SCI, respectively. Results DIF staining revealed that the ratio of RECA1 positive area was the highest in moderate group, higher in mild and severe groups, and the lowest in sham group with significant differences between groups ( P<0.05). The ratio of CD68 positive area was the highest in severe group, higher in moderate and mild groups, and the lowest in sham group with significant differences between groups ( P<0.05), except the comparisons between mild and moderate groups at 24 hours and 28 days after SCI ( P>0.05). There was no significant correlation between the RECA1 and CD68 expressions in sham group at different time points ( P>0.05). At 12 and 24 hours after SCI, the RECA1 and CD68 expressions in mild and moderate groups showed significant positive correlations ( P<0.05), while no significant correlation was found in severe group ( P>0.05). No significant correlations between the RECA1 and CD68 expressions was shown in all SCI groups at 3 days and in severe group at 7 days ( P>0.05), while the negative correlations were shown in mild and moderate groups at 7 days, and in all SCI groups at 28 days ( P<0.05). In mild, moderate, and severe groups, the axons became disrupted, shorter and thicker rods-like, or even merged blocks with increased injury, while the astrocytes decreased in number, unorganized and condensed in appearance. ELISA studies showed that TNF-α, IL-1β, and IL-6 levels in sham group were significantly lower than those in other 3 groups at different time points ( P>0.05). The differences in TNF-α, IL-1β, and IL-6 levels between SCI groups at different time points were sinificant ( P<0.05), except IL-1β levels between the mild and moderate groups at 12 hours ( P>0.05). Three inflammatory factors were all significantly correlated with the microvascular density grades ( P<0.05). Histological analysis indicated that the damage to spinal cord tissue structure correlated with the extent of SCI. In severe group, local hemorrhage, edema, and infiltration of inflammatory cells were found the most drastic, the grey/white matter boundary was disappeared concurrently with the formation of cavity and shortage of normal neurons. Conclusion In the acute stage following mild or moderate SCI, progressively aggravated injury result in higher microvessel density and increased inflammation. However, at the SCI region, the relation between microvessel density and inflammation inverse with time in the different grades of SCI. Accordingly, the destruction of neural structures positively relate to the grades of SCI and severity of inflammation.
Collapse
Affiliation(s)
- Zixing Xu
- Department of Spinal and Orthopedic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350005, P.R.China
| | - Weihong Xu
- Department of Spinal and Orthopedic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350005, P.R.China
| | - Xuemin Chen
- Department of Spinal and Orthopedic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350005, P.R.China
| | - Yinan Zhou
- Department of Spinal and Orthopedic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou Fujian, 350005, P.R.China
| |
Collapse
|
13
|
Guo S, Redenski I, Landau S, Szklanny A, Merdler U, Levenberg S. Prevascularized Scaffolds Bearing Human Dental Pulp Stem Cells for Treating Complete Spinal Cord Injury. Adv Healthc Mater 2020; 9:e2000974. [PMID: 32902147 DOI: 10.1002/adhm.202000974] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/08/2020] [Indexed: 02/05/2023]
Abstract
The regeneration of injured spinal cord is hampered by the lack of vascular supply and neurotrophic support. Transplanting tissue-engineered constructs with developed vascular networks and neurotrophic factors, and further understanding the pattern of vessel growth in the remodeled spinal cord tissue are greatly desired. To this end, highly vascularized scaffolds embedded with human dental pulp stem cells (DPSCs) are fabricated, which possess paracrine-mediated angiogenic and neuroregenerative potentials. The potent pro-angiogenic effect of the prevascularized scaffolds is first demonstrated in a rat femoral bundle model, showing robust vessel growth and blood perfusion induced within these scaffolds postimplantation, as evidenced by laser speckle contrast imaging and 3D microCT dual imaging modalities. More importantly, in a rat complete spinal cord transection model, the implantation of these scaffolds to the injured spinal cords can also promote revascularization, as well as axon regeneration, myelin deposition, and sensory recovery. Furthermore, 3D microCT imaging and novel morphometric analysis on the remodeled spinal cord tissue demonstrate substantial regenerated vessels, more significantly in the sensory tract regions, which correlates with behavioral recovery following prevascularization treatment. Taken together, prevascularized DPSC-embedded constructs bear angiogenic and neurotrophic potentials, capable of augmenting and modulating SCI repair.
Collapse
Affiliation(s)
- Shaowei Guo
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- The First Affiliated Hospital, Shantou University Medical College, Shantou, 515000, China
| | - Idan Redenski
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shira Landau
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ariel Szklanny
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Uri Merdler
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
14
|
Simitzi C, Hendow E, Li Z, Day RM. Promotion of Proangiogenic Secretome from Mesenchymal Stromal Cells via Hierarchically Structured Biodegradable Microcarriers. ADVANCED BIOSYSTEMS 2020; 4:e2000062. [PMID: 32511898 PMCID: PMC8425330 DOI: 10.1002/adbi.202000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Adipose-derived mesenchymal stromal cells (AdMSC) release numerous soluble factors capable of stimulating angiogenesis. Improved methods for delivering these cells to maximize their potency are now sought that ideally they retain viable cells in the target tissue while promoting the secretion of angiogenic factors. Substrate surface topography is a parameter that can be used to manipulate the behavior of AdMSC but challenges exist with translating this parameter into materials compatible with minimally invasive delivery into tissues for in situ delivery of the angiogenic secretome. The current study investigates three compositions of hierarchically structured, porous biodegradable microcarriers for the culture of AdMSC and the influence of their surface topographies on the angiogenic secretome. All three compositions perform well as cell microcarriers in xeno-free conditions. The attached AdMSC retain their capacity for subsequent trilineage differentiation. The secretome of AdMSC attached to the microcarriers consists of multiple proangiogenic factors, including significantly elevated levels of vascular endothelial growth factor, which stimulates angiogenesis in vitro. The unique properties of hierarchically structured, porous biodegradable microcarriers investigated in this study offer a radically transformative approach for achieving targeted in vivo delivery of AdMSC and enhancing the potency of their proangiogenic activity to induce neovascularization in ischemic tissue.
Collapse
Affiliation(s)
- Chara Simitzi
- Applied Biomedical Engineering Group Centre for Precision HealthcareUCL Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Eseelle Hendow
- Applied Biomedical Engineering Group Centre for Precision HealthcareUCL Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| | - Zhuangnan Li
- Department of ChemistryUniversity College LondonLondonWC1H 0AJUK
| | - Richard M. Day
- Applied Biomedical Engineering Group Centre for Precision HealthcareUCL Division of MedicineUniversity College LondonLondonWC1E 6JFUK
| |
Collapse
|
15
|
Zhong J, Xu J, Lu S, Wang Z, Zheng Y, Tang Q, Zhu J, Zhu T. A Prevascularization Strategy Using Novel Fibrous Porous Silk Scaffolds for Tissue Regeneration in Mice with Spinal Cord Injury. Stem Cells Dev 2020; 29:615-624. [PMID: 32085678 DOI: 10.1089/scd.2019.0199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Junjie Zhong
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Jiaxin Xu
- Endoscopy Centre and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijun Lu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, China
| | - Zhifu Wang
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Yongtao Zheng
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Qisheng Tang
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Jianhong Zhu
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Tongming Zhu
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| |
Collapse
|
16
|
Gritsch L, Liverani L, Lovell C, Boccaccini AR. Polycaprolactone Electrospun Fiber Mats Prepared Using Benign Solvents: Blending with Copper(II)‐Chitosan Increases the Secretion of Vascular Endothelial Growth Factor in a Bone Marrow Stromal Cell Line. Macromol Biosci 2020; 20:e1900355. [DOI: 10.1002/mabi.201900355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/08/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Lukas Gritsch
- Institute of BiomaterialsUniversity of Erlangen‐Nuremberg Cauerstraße 6 91058 Erlangen Germany
- Lucideon Ltd. Queens Road, Penkhull Stoke‐on‐Trent Staffordshire ST4 7LQ UK
| | - Liliana Liverani
- Institute of BiomaterialsUniversity of Erlangen‐Nuremberg Cauerstraße 6 91058 Erlangen Germany
| | - Christopher Lovell
- Lucideon Ltd. Queens Road, Penkhull Stoke‐on‐Trent Staffordshire ST4 7LQ UK
| | - Aldo R. Boccaccini
- Institute of BiomaterialsUniversity of Erlangen‐Nuremberg Cauerstraße 6 91058 Erlangen Germany
| |
Collapse
|
17
|
Swetha S, Lavanya K, Sruthi R, Selvamurugan N. An insight into cell-laden 3D-printed constructs for bone tissue engineering. J Mater Chem B 2020; 8:9836-9862. [DOI: 10.1039/d0tb02019b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we have spotlighted various combinations of bioinks to optimize the biofabrication of 3D bone constructs.
Collapse
Affiliation(s)
- S. Swetha
- Department of Biotechnology, College of Engineering and Technology
- SRM Institute of Science and Technology
- Kattankulathur 603 203
- India
| | - K. Lavanya
- Department of Biotechnology, College of Engineering and Technology
- SRM Institute of Science and Technology
- Kattankulathur 603 203
- India
| | - R. Sruthi
- Department of Biotechnology, College of Engineering and Technology
- SRM Institute of Science and Technology
- Kattankulathur 603 203
- India
| | - N. Selvamurugan
- Department of Biotechnology, College of Engineering and Technology
- SRM Institute of Science and Technology
- Kattankulathur 603 203
- India
| |
Collapse
|
18
|
Yu B, Yao C, Wang Y, Mao S, Wang Y, Wu R, Feng W, Chen Y, Yang J, Xue C, Liu D, Ding F, Gu X. The Landscape of Gene Expression and Molecular Regulation Following Spinal Cord Hemisection in Rats. Front Mol Neurosci 2019; 12:287. [PMID: 31824262 PMCID: PMC6883948 DOI: 10.3389/fnmol.2019.00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/12/2019] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is a challenging clinical problem worldwide. The cellular state and molecular expression in spinal cord tissue after injury are extremely complex and closely related to functional recovery. However, the spatial and temporal changes of gene expression and regulation in various cell types after SCI are still unclear. Here, we collected the rostral and caudal regions to the lesion at 11 time points over a period of 28 days after rat hemisection SCI. Combining whole-transcriptome sequencing and bioinformatic analysis, we identified differentially expressed genes (DEGs) between spinal cord tissue from injured and sham-operated animals. Significantly altered biological processes were enriched from DEGs in astrocytes, microglia, oligodendrocytes, immune cells, and vascular systems after SCI. We then identified dynamic trends in these processes using the average expression profiles of DEGs. Gene expression and regulatory networks for selected biological processes were also constructed to illustrate the complicate difference between rostral and caudal tissues. Finally, we validated the expressions of some key genes from these networks, including α-synuclein, heme oxygenase 1, bone morphogenetic protein 2, activating transcription factor 3, and leukemia inhibitory factor. Collectively, we provided a comprehensive network of gene expression and regulation to shed light on the molecular characteristics of critical biological processes that occur after SCI, which will broaden the understanding of SCI and facilitate clinical therapeutics for SCI.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanping Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chengbin Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
19
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
20
|
Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D, Levenberg S. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury. ACS NANO 2019; 13:10015-10028. [PMID: 31454225 DOI: 10.1021/acsnano.9b01892] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Individuals with spinal cord injury (SCI) usually suffer from permanent neurological deficits, while spontaneous recovery and therapeutic efficacy are limited. Here, we demonstrate that when given intranasally, exosomes derived from mesenchymal stem cells (MSC-Exo) could pass the blood brain barrier and migrate to the injured spinal cord area. Furthermore, MSC-Exo loaded with phosphatase and tensin homolog small interfering RNA (ExoPTEN) could attenuate the expression of PTEN in the injured spinal cord region following intranasal administrations. In addition, the loaded MSC-Exo considerably enhanced axonal growth and neovascularization, while reducing microgliosis and astrogliosis. The intranasal ExoPTEN therapy could also partly improve structural and electrophysiological function and, most importantly, significantly elicited functional recovery in rats with complete SCI. The results imply that intranasal ExoPTEN may be used clinically to promote recovery for SCI individuals.
Collapse
Affiliation(s)
- Shaowei Guo
- Department of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
- The First Affiliated Hospital , Shantou University Medical College , Shantou 515041 , China
| | | | - Oshra Betzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Shahar Ben-Shaul
- Department of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | | | - Izhak Michaelevski
- Department of Molecular Biology , Ariel University , Ariel 40700 , Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | | | - Shulamit Levenberg
- Department of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| |
Collapse
|