1
|
Grosso MF, Řehůřková E, Virmani I, Sychrová E, Sovadinová I, Babica P. Impact of endocrine disruptors on key events of hepatic steatosis in HepG2 cells. Food Chem Toxicol 2025; 197:115241. [PMID: 39778647 DOI: 10.1016/j.fct.2025.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) may contribute to the rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). We investigated the potential of 10 environmentally relevant EDCs to affect key events of hepatic steatosis in HepG2 human hepatoblastoma cells. Increased lipid droplet formation, a key marker of steatosis, was induced by PFOA, bisphenol F, DDE, butylparaben, and DEHP, within the non-cytotoxic concentration range of 1 nM-25 μM. Cadmium also induced this effect, but at concentrations impairing cell viability (>1 μM). At non-cytotoxic concentrations, these compounds, along with bisphenol A, dysregulated major genes controlling lipid homeostasis. Cadmium, PFOA, DDE, and DEHP significantly upregulated the DGAT1 gene involved in triglyceride synthesis, while butylparaben increased the expression of the FAT/CD36 gene responsible for fatty acid uptake. Bisphenol A downregulated the CPT1A gene involved in fatty acid oxidation. No significant effects on lipid droplet accumulation or lipid metabolism-related genes were observed for PFOS, bisphenol S, and dibutyl phthalate. Among the tested EDCs, lipid accumulation positively correlated with the expression of SREBF1, DGAT1, and CPT1A. These findings provide additional evidence that EDCs can affect MASLD and highlight the utility of in vitro methods in the screening of EDCs with hazardous steatogenic and metabolism-disrupting properties.
Collapse
Affiliation(s)
- Marina F Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Eliška Řehůřková
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Ishita Virmani
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| |
Collapse
|
2
|
Štancl P, Gršković P, Držaić S, Vičić A, Karlić R, Korać P. RNA-Sequencing Identification of Genes Supporting HepG2 as a Model Cell Line for Hepatocellular Carcinoma or Hepatocytes. Genes (Basel) 2024; 15:1460. [PMID: 39596661 PMCID: PMC11593409 DOI: 10.3390/genes15111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Cell lines do not faithfully replicate the authentic transcriptomic condition of the disease under study. The HepG2 cell line is widely used for studying hepatocellular carcinoma (HCC), but not all biological processes and genes exhibit congruent expression patterns between cell lines and the actual disease. The objective of this study is to perform a comparative transcriptomic analysis of the HepG2 cell line, HCC, and primary hepatocytes (PH) in order to identify genes suitable for research in HepG2 as a model for PH or HCC research. Methods: We conducted a differential expression analysis between publicly available data from HCC patients, PH, and HepG2. We examined specific overlaps of differentially expressed genes (DEGs) in a pairwise manner between groups in order to obtain a valuable gene list for studying HCC or PH using different parameter filtering. We looked into the function and druggability of these genes. Conclusions: In total, we identified 397 genes for HepG2 as a valuable HCC model and 421 genes for HepG2 as a valuable PH model, and with more stringent criteria, we derived a smaller list of 40 and 21 genes, respectively. The majority of genes identified as a valuable set for the HCC model are involved in DNA repair and protein degradation mechanisms. This research aims to provide detailed guidance on gene selection for studying diseases like hepatocellular carcinoma, primary hepatocytes, or others using cell lines.
Collapse
Affiliation(s)
- Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Paula Gršković
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sara Držaić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Ana Vičić
- Department of Obstetrics and Gynecology, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia;
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Petra Korać
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Zhang Z, Yang Q, Jin M, Wang J, Chai Y, Zhang L, Jiang Z, Yu Q. Tamoxifen upregulates the peroxisomal β-oxidation enzyme Enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase ameliorating hepatic lipid accumulation in mice. Int J Biochem Cell Biol 2024; 172:106585. [PMID: 38734232 DOI: 10.1016/j.biocel.2024.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid β-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid β-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid β-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid β-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids β-oxidation.
Collapse
Affiliation(s)
- Ziling Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinqin Yang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jie Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuanyuan Chai
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Cilenti L, Di Gregorio J, Mahar R, Liu F, Ambivero CT, Periasamy M, Merritt ME, Zervos AS. Inactivation of mitochondrial MUL1 E3 ubiquitin ligase deregulates mitophagy and prevents diet-induced obesity in mice. Front Mol Biosci 2024; 11:1397565. [PMID: 38725872 PMCID: PMC11079312 DOI: 10.3389/fmolb.2024.1397565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Obesity is a growing epidemic affecting millions of people worldwide and a major risk factor for a multitude of chronic diseases and premature mortality. Accumulating evidence suggests that mitochondria have a profound role in diet-induced obesity and the associated metabolic changes, but the molecular mechanisms linking mitochondria to obesity remain poorly understood. Our studies have identified a new function for mitochondrial MUL1 E3 ubiquitin ligase, a protein known to regulate mitochondrial dynamics and mitophagy, in the control of energy metabolism and lipogenesis. Genetic deletion of Mul1 in mice impedes mitophagy and presents a metabolic phenotype that is resistant to high-fat diet (HFD)-induced obesity and metabolic syndrome. Several metabolic and lipidomic pathways are perturbed in the liver and white adipose tissue (WAT) of Mul1(-/-) animals on HFD, including the one driven by Stearoyl-CoA Desaturase 1 (SCD1), a pivotal regulator of lipid metabolism and obesity. In addition, key enzymes crucial for lipogenesis and fatty acid oxidation such as ACC1, FASN, AMPK, and CPT1 are also modulated in the absence of MUL1. The concerted action of these enzymes, in the absence of MUL1, results in diminished fat storage and heightened fatty acid oxidation. Our findings underscore the significance of MUL1-mediated mitophagy in regulating lipogenesis and adiposity, particularly in the context of HFD. Consequently, our data advocate the potential of MUL1 as a therapeutic target for drug development in the treatment of obesity, insulin resistance, NAFLD, and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lucia Cilenti
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Fei Liu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Camilla T. Ambivero
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Muthu Periasamy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Antonis S. Zervos
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
5
|
Saorin A, Saorin G, Duzagac F, Parisse P, Cao N, Corona G, Cavarzerani E, Rizzolio F. Microfluidic production of amiodarone loaded nanoparticles and application in drug repositioning in ovarian cancer. Sci Rep 2024; 14:6280. [PMID: 38491077 PMCID: PMC10943008 DOI: 10.1038/s41598-024-55801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Amiodarone repositioning in cancer treatment is promising, however toxicity limits seem to arise, constraining its exploitability. Notably, amiodarone has been investigated for the treatment of ovarian cancer, a tumour known for metastasizing within the peritoneal cavity. This is associated with an increase of fatty acid oxidation, which strongly depends on CPT1A, a transport protein which has been found overexpressed in ovarian cancer. Amiodarone is an inhibitor of CPT1A but its role still has to be explored. Therefore, in the present study, amiodarone was tested on ovarian cancer cell lines with a focus on lipid alteration, confirming its activity. Moreover, considering that drug delivery systems could lower drug side effects, microfluidics was employed for the development of drug delivery systems of amiodarone obtaining simultaneously liposomes with a high payload and amiodarone particles. Prior to amiodarone loading, microfluidics production was optimized in term of temperature and flow rate ratio. Moreover, stability over time of particles was evaluated. In vitro tests confirmed the efficacy of the drug delivery systems.
Collapse
Affiliation(s)
- Asia Saorin
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Fahriye Duzagac
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, Strada Statale 14 km 163.5, Basovizza, 34149, Trieste, Italy
- CNR-IOM - Istituto Officina dei Materiali, Area Science Park, s.s. 14 Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Ni Cao
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Enrico Cavarzerani
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, Venezia-Mestre, Italy.
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy.
| |
Collapse
|
6
|
Martínez-Sena T, Moro E, Moreno-Torres M, Quintás G, Hengstler J, Castell JV. Metabolomics-based strategy to assess drug hepatotoxicity and uncover the mechanisms of hepatotoxicity involved. Arch Toxicol 2023; 97:1723-1738. [PMID: 37022445 PMCID: PMC10182947 DOI: 10.1007/s00204-023-03474-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Toxicity studies, among them hepatotoxicity, are key throughout preclinical stages of drug development to minimise undesired toxic effects that might eventually appear in the course of the clinical use of the new drug. Understanding the mechanism of injury of hepatotoxins is essential to efficiently anticipate their potential risk of toxicity in humans. The use of in vitro models and particularly cultured hepatocytes represents an easy and robust alternative to animal drug hepatotoxicity testing for predicting human risk. Here, we envisage an innovative strategy to identify potential hepatotoxic drugs, quantify the magnitude of the alterations caused, and uncover the mechanisms of toxicity. This strategy is based on the comparative analysis of metabolome changes induced by hepatotoxic and non-hepatotoxic compounds on HepG2 cells, assessed by untargeted mass spectrometry. As a training set, we used 25 hepatotoxic and 4 non-hepatotoxic compounds and incubated HepG2 cells for 24 h at a low and a high concentration (IC10 and IC50) to identify mechanism-related and cytotoxicity related metabolomic biomarkers and to elaborate prediction models accounting for global hepatotoxicity and mechanisms-related toxicity. Thereafter, a second set of 69 chemicals with known predominant mechanisms of toxicity and 18 non-hepatotoxic compounds were analysed at 1, 10, 100 and 1000 µM concentrations from which and based on the magnitude of the alterations caused as compared with non-toxic compounds, we defined a "toxicity index" for each compound. In addition, we extracted from the metabolome data the characteristic signatures for each mechanism of hepatotoxicity. The integration of all this information allowed us to identify specific metabolic patterns and, based on the occurrence of that specific metabolome changes, the models predicted the likeliness of a compound to behave as hepatotoxic and to act through a given toxicity mechanism (i.e., oxidative stress, mitochondrial disruption, apoptosis and steatosis) for each compound and concentration.
Collapse
Affiliation(s)
- Teresa Martínez-Sena
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain
- Departamento de Química Analítica, Facultad de Químicas, Universidad de Valencia, Valencia, Spain
| | - Erika Moro
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Marta Moreno-Torres
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto de Salud Carlos III, CIBEREHD, Madrid, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Valencia, Spain
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Dortmund, Germany
| | - José V Castell
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
- Instituto de Salud Carlos III, CIBEREHD, Madrid, Spain.
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
7
|
Hibino Y, Iguchi A, Zaitsu K. Preliminary study to classify mechanisms of mitochondrial toxicity by in vitro metabolomics and bioinformatics. Toxicol Appl Pharmacol 2022; 457:116316. [PMID: 36462684 DOI: 10.1016/j.taap.2022.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
AIM Mitochondrial toxicity is one of the causes for drug-induced liver injury, and the classification of phenotypes or mitochondrial toxicity are highly required though there are no molecular-profiling approaches for classifying mitochondrial toxicity. Therefore, the aim of this study was to classify the mechanisms of mitochondrial toxicity by metabolic profiling in vitro and bioinformatics. MAIN METHODS We applied an established gas chromatography tandem mass spectrometry-based metabolomics to human hepatoma grade 2 (HepG2) cells that were exposed to mitochondrial toxicants, whose mechanisms are different, such as rotenone (0.1 μM), carbonyl cyanide-3-chlorophenylhydrazone (CCCP, 0.5 μM), nefazodone (20 μM), perhexiline (6.25 μM), or digitonin (positive cytotoxic substance, 4 μM). These concentrations were determined by the Mitochondrial ToxGlo Assay. Galactose medium was used for suppressing the Warburg effect in HepG2 cells, and the metabolome analysis successfully identified 125 metabolites in HepG2 cells. Multivariate, metabolic pathway and network analyses were performed by the R software. KEY FINDINGS Metabolic profiling enabled the classifying the mitochondrial toxicity mechanisms of RCC inhibition and uncoupling. The metabolic profiles of respiratory chain complex (RCC) inhibitors (rotenone and nefazodone) and an uncoupler (CCCP) were fully differentiated from those of other compounds. The metabolic pathway analysis revealed that the RCC inhibitors and the uncoupler mainly disrupted TCA-cycle and related metabolic pathways. In addition, the correlation-based network analysis revealed that succinic acid, β-alanine, and glutamic acid were potential metabolic indicators for RCC inhibition and uncoupling. SIGNIFICANCE Our results provided new insights into classifying mechanisms of mitochondrial toxicity by in vitro metabolomics.
Collapse
Affiliation(s)
- Yui Hibino
- Safety Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan; Department of Legal Medicine & Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kei Zaitsu
- Multimodal Informatics and Wide-data Analytics Laboratory, Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishi Mitani, Kinokawa, Wakayama 649-6493, Japan; In Vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
8
|
Vaspin attenuates steatosis-induced fibrosis via GRP78 receptor by targeting AMPK signaling pathway. J Physiol Biochem 2022; 78:185-197. [PMID: 35001345 DOI: 10.1007/s13105-021-00852-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rapidly becoming a public health problem. An imbalance in lipid distribution to the hepatocytes and metabolism causes hepatocyte steatosis. Vaspin is a newly discovered adipokine that has been linked to a variety of metabolic disorders. The effects of vaspin on steatosis and fibrosis pathogenesis and related mechanisms are unclear. Thus, this study investigated the molecular mechanism of vaspin on hepatocyte steatosis and fibrosis. HepG2 cells were treated with 1.2 mM free fatty acid and the intracellular lipid values were measured by flow cytometry and Nile red assay. RT-qPCR was used to assess the effect of vaspin and blocking of the GRP78 receptor on the expression of lipogenesis, oxidation, uptake, and secretion of fatty acid (FA), as well as AMPK activity. In co-cultured HepG2 and LX-2 cell lines, the expression of main proteins of hepatocyte fibrosis was analyzed using Western blot analysis. In the HepG2 cell line, we discovered that vaspin increased oxidation, FA secretion and gene expression, and AMPK activity and decreased lipogenesis and FA uptake and gene expression. Western blot analysis in co-cultured HepG2 and LX-2 cell lines showed that α-SMA and TGF-β1 protein expression decreased. The data demonstrated that vaspin acts as a novel regulator of hepatocyte steatosis through the GRP78 receptor, effectively reducing hepatocyte fibrosis through AMPK activation and decreasing NF-κB gene expression.
Collapse
|
9
|
Kaiser L, Quint I, Csuk R, Jung M, Deigner HP. Lineage-Selective Disturbance of Early Human Hematopoietic Progenitor Cell Differentiation by the Commonly Used Plasticizer Di-2-ethylhexyl Phthalate via Reactive Oxygen Species: Fatty Acid Oxidation Makes the Difference. Cells 2021; 10:cells10102703. [PMID: 34685682 PMCID: PMC8534767 DOI: 10.3390/cells10102703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Exposure to ubiquitous endocrine-disrupting chemicals (EDCs) is a major public health concern. We analyzed the physiological impact of the EDC, di-2-ethylhexyl phthalate (DEHP), and found that its metabolite, mono-2-ethylhexyl phthalate (MEHP), had significant adverse effects on myeloid hematopoiesis at environmentally relevant concentrations. An analysis of the underlying mechanism revealed that MEHP promotes increases in reactive oxygen species (ROS) by reducing the activity of superoxide dismutase in all lineages, possibly via its actions at the aryl hydrocarbon receptor. This leads to a metabolic shift away from glycolysis toward the pentose phosphate pathway and ultimately results in the death of hematopoietic cells that rely on glycolysis for energy production. By contrast, cells that utilize fatty acid oxidation for energy production are not susceptible to this outcome due to their capacity to uncouple ATP production. These responses were also detected in non-hematopoietic cells exposed to alternate inducers of ROS.
Collapse
Affiliation(s)
- Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; (L.K.); (I.Q.)
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany;
| | - Isabel Quint
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; (L.K.); (I.Q.)
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany;
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany;
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054 Villingen-Schwenningen, Germany; (L.K.); (I.Q.)
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, 18057 Rostock, Germany
- Associated Member of Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7720-307-4232
| |
Collapse
|
10
|
Mitochondrial Lipid Homeostasis at the Crossroads of Liver and Heart Diseases. Int J Mol Sci 2021; 22:ijms22136949. [PMID: 34203309 PMCID: PMC8268967 DOI: 10.3390/ijms22136949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
The prevalence of NAFLD (non-alcoholic fatty liver disease) is a rapidly increasing problem, affecting a huge population around the globe. However, CVDs (cardiovascular diseases) are the most common cause of mortality in NAFLD patients. Atherogenic dyslipidemia, characterized by plasma hypertriglyceridemia, increased small dense LDL (low-density lipoprotein) particles, and decreased HDL-C (high-density lipoprotein cholesterol) levels, is often observed in NAFLD patients. In this review, we summarize recent genetic evidence, proving the diverse nature of metabolic pathways involved in NAFLD pathogenesis. Analysis of available genetic data suggests that the altered operation of fatty-acid β-oxidation in liver mitochondria is the key process, connecting NAFLD-mediated dyslipidemia and elevated CVD risk. In addition, we discuss several NAFLD-associated genes with documented anti-atherosclerotic or cardioprotective effects, and current pharmaceutical strategies focused on both NAFLD treatment and reduction of CVD risk.
Collapse
|
11
|
Li P, Xia Z, Kong W, Wang Q, Zhao Z, Arnold A, Xu Q, Xu J. Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity. Nutr Metab (Lond) 2021; 18:65. [PMID: 34167568 PMCID: PMC8223334 DOI: 10.1186/s12986-021-00592-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background Impaired hepatic fatty acid metabolism and persistent mitochondrial dysfunction are phenomena commonly associated with liver failure. Decreased serum levels of L-carnitine, a amino acid derivative involved in fatty-acid and energy metabolism, have been reported in severe burn patients. The current study aimed to evaluate the effects of L-carnitine supplementation on mitochondrial damage and other hepatocyte injuries following severe burns and the related mechanisms. Methods Serum carnitine and other indicators of hepatocytic injury, including AST, ALT, LDH, TG, and OCT, were analyzed in severe burn patients and healthy controls. A burn model was established on the back skin of rats; thereafter, carnitine was administered, and serum levels of the above indicators were evaluated along with Oil Red O and TUNEL staining, transmission electron microscopy, and assessment of mitochondrial membrane potential and carnitine palmitoyltransferase 1 (CPT1) activity and expression levels in the liver. HepG2 cells pretreated with the CPT1 inhibitor etomoxir were treated with or without carnitine for 24 h. Next, the above indicators were examined, and apoptotic cells were analyzed via flow cytometry. High-throughput sequencing of rat liver tissues identified several differentially expressed genes (Fabp4, Acacb, Acsm5, and Pnpla3) were confirmed using RT-qPCR. Results Substantially decreased serum levels of carnitine and increased levels of AST, ALT, LDH, and OCT were detected in severe burn patients and the burn model rats. Accumulation of TG, evident mitochondrial shrinkage, altered mitochondrial membrane potential, decreased ketogenesis, and reduced CPT1 activity were detected in the liver tissue of the burned rats. Carnitine administration recovered CPT1 activity and improved all indicators related to cellular and fatty acid metabolism and mitochondrial injury. Inhibition of CPT1 activity with etomoxir induced hepatocyte injuries similar to those in burn patients and burned rats; carnitine supplementation restored CPT1 activity and ameliorated these injuries. The expression levels of the differentially expressed genes Fabp4, Acacb, Acsm5, and Pnpla3 in the liver tissue from burned rats and etomoxir-treated hepatocytes were also restored by treatment with exogenous carnitine. Conclusion Exogenous carnitine exerts protective effects against severe burn-induced cellular, fatty-acid metabolism, and mitochondrial dysfunction of hepatocytes by restoring CPT1 activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00592-x.
Collapse
Affiliation(s)
- Pengtao Li
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhengguo Xia
- Department of Wound Repair and Plastic and Aesthetic Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Road, Xinzhan District, China
| | - Weichang Kong
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Qiong Wang
- Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ziyue Zhao
- Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ashley Arnold
- International College of Anhui Medical University, No. 81 Meishan road, Hefei, 230032, Anhui, China
| | - Qinglian Xu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Jiegou Xu
- Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
12
|
Huang C, Hsu HJ, Wang ME, Hsu MC, Wu LS, Jong DS, Jiang YF, Chiu CH. Fatty acids suppress the steroidogenesis of the MA-10 mouse Leydig cell line by downregulating CYP11A1 and inhibiting late-stage autophagy. Sci Rep 2021; 11:12561. [PMID: 34131222 PMCID: PMC8206377 DOI: 10.1038/s41598-021-92008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022] Open
Abstract
Obese men have lower circulating testosterone than men with an optimal body mass index. Elevated fatty acids (FAs) caused by obesity have been reported to suppress the steroidogenesis of Leydig cells. Recent studies have demonstrated that autophagy regulates steroidogenesis in endocrine cells; however, few studies have investigated the molecular mechanisms of FA-impaired steroidogenesis. To study FA regulation in the steroidogenesis of Leydig cells, MA-10 cells were treated with an FA mixture and co-treated with 8-Br-cAMP to stimulate the steroidogenesis capacity. We showed that FAs led to cellular lipid accumulation and decreased steroidogenesis of MA-10 cells, and FA-suppressed steroidogenesis was largely recovered by P5 treatment but not by 22R-OHC treatment, suggesting the primary defect was the deficiency of CYP11A1. To examine the involvement of autophagy in the steroidogenesis of Leydig cells, we treated MA-10 cells with autophagy regulators, including rapamycin, bafilomycin, and chloroquine. Inhibition of late-stage autophagy including FA-upregulated Rubicon suppressed the steroidogenesis of MA-10 cells. More interestingly, Rubicon played a novel regulatory role in the steroidogenesis of MA-10 cells, independent of inhibitors of late-stage autophagy. Collectively, this study provides novel targets to investigate the interaction between FAs and steroidogenesis in steroidogenic cells.
Collapse
Affiliation(s)
- Chien Huang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsiu-Ju Hsu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Mu-En Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Meng-Chieh Hsu
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leang-Shin Wu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - De-Shien Jong
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Chih-Hsien Chiu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
13
|
Allard J, Bucher S, Massart J, Ferron PJ, Le Guillou D, Loyant R, Daniel Y, Launay Y, Buron N, Begriche K, Borgne-Sanchez A, Fromenty B. Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell Biol Toxicol 2021; 37:151-175. [PMID: 32535746 PMCID: PMC8012331 DOI: 10.1007/s10565-020-09537-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Steatosis is a liver lesion reported with numerous pharmaceuticals. Prior studies showed that severe impairment of mitochondrial fatty acid oxidation (mtFAO) constantly leads to lipid accretion in liver. However, much less is known about the mechanism(s) of drug-induced steatosis in the absence of severe mitochondrial dysfunction, although previous studies suggested the involvement of mild-to-moderate inhibition of mtFAO, increased de novo lipogenesis (DNL), and impairment of very low-density lipoprotein (VLDL) secretion. The objective of our study, mainly carried out in human hepatoma HepaRG cells, was to investigate these 3 mechanisms with 12 drugs able to induce steatosis in human: amiodarone (AMIO, used as positive control), allopurinol (ALLO), D-penicillamine (DPEN), 5-fluorouracil (5FU), indinavir (INDI), indomethacin (INDO), methimazole (METHI), methotrexate (METHO), nifedipine (NIF), rifampicin (RIF), sulindac (SUL), and troglitazone (TRO). Hepatic cells were exposed to drugs for 4 days with concentrations decreasing ATP level by less than 30% as compared to control and not exceeding 100 × Cmax. Among the 12 drugs, AMIO, ALLO, 5FU, INDI, INDO, METHO, RIF, SUL, and TRO induced steatosis in HepaRG cells. AMIO, INDO, and RIF decreased mtFAO. AMIO, INDO, and SUL enhanced DNL. ALLO, 5FU, INDI, INDO, SUL, RIF, and TRO impaired VLDL secretion. These seven drugs reduced the mRNA level of genes playing a major role in VLDL assembly and also induced endoplasmic reticulum (ER) stress. Thus, in the absence of severe mitochondrial dysfunction, drug-induced steatosis can be triggered by different mechanisms, although impairment of VLDL secretion seems more frequently involved, possibly as a consequence of ER stress.
Collapse
Affiliation(s)
- Julien Allard
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Simon Bucher
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Julie Massart
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
- HCS Pharma, 250 rue Salvador Allende, 59120 Loos, France
| | - Dounia Le Guillou
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Roxane Loyant
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Yoann Daniel
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Youenn Launay
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Nelly Buron
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Karima Begriche
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Annie Borgne-Sanchez
- MITOLOGICS S.A.S, Faculté de Médecine, rue du Général Sarrail, 94000 Créteil, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
14
|
Affiliation(s)
- Sangeetha Nithiyanandam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
15
|
Grünig D, Szabo L, Marbet M, Krähenbühl S. Valproic acid affects fatty acid and triglyceride metabolism in HepaRG cells exposed to fatty acids by different mechanisms. Biochem Pharmacol 2020; 177:113860. [PMID: 32165129 DOI: 10.1016/j.bcp.2020.113860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022]
Abstract
Treatment with valproate is associated with hepatic steatosis, but the mechanisms are not fully elucidated in human cell systems. We therefore investigated the effects of valproate on fatty acid and triglyceride metabolism in HepaRG cells, a human hepatoma cell line. In previously fatty acid loaded HepaRG cells, valproate impaired lipid droplet disposal starting at 1 mM after incubation for 3 or 7 days. Valproate increased the expression of genes associated with fatty acid import and triglyceride synthesis, but did not relevantly affect expression of genes engaged in fatty acid activation. Valproate impaired mitochondrial fatty acid metabolism by inhibiting β-ketothiolase and the function of the electron transport chain, which was associated with increased mitochondrial reactive oxygen species production. Valproate increased the mitochondrial DNA copy number per HepaRG cell, possibly as a consequence of impaired mitochondrial function. Valproate decreased the hepatocellular mRNA and protein expression of the fatty acid binding protein 1 (FABP1) and of the microsomal triglyceride transfer protein (MTTP) at 1 mM and increased the hepatocellular concentration of free fatty acids. Furthermore, valproate decreased protein expression and excretion of ApoB100 in HepaRG cells at 1 mM, reflecting impaired formation and excretion of very low-density lipoprotein (VLDL). In conclusion, valproate increased the hepatocellular triglyceride content by multiple mechanisms, whereby impaired expression of FABP1 and MTTP as well as impaired VLDL formation and excretion appeared to be dominant. Valproate caused cell death mainly by apoptosis, which may be a consequence of mitochondrial oxidative stress and increased hepatocellular concentration of free fatty acids.
Collapse
Affiliation(s)
- David Grünig
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Leonora Szabo
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Martina Marbet
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland; Swiss Center for Applied Human Toxicology (SCAHT), Switzerland.
| |
Collapse
|
16
|
Kim G, Choi HK, Lee H, Moon KS, Oh JH, Lee J, Shin JG, Kim DH. Increased hepatic acylcarnitines after oral administration of amiodarone in rats. J Appl Toxicol 2020; 40:1004-1013. [PMID: 32084307 DOI: 10.1002/jat.3960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Amiodarone is known to induce hepatic injury in some recipients. We applied an untargeted metabolomics approach to identify endogenous metabolites with potential as biomarkers for amiodarone-induced liver injury. Oral amiodarone administration for 1 week in rats resulted in significant elevation of acylcarnitines and phospholipids in the liver. Hepatic short- and medium-chain acylcarnitines were dramatically increased in a dose-dependent manner, while the serum levels of these acylcarnitines did not change substantially. In addition, glucose levels were significantly increased in both the serum and liver. Gene expression profiling showed that the hepatic mRNA levels of Cpt1, Cpt2, and Acat1 were significantly suppressed, whereas those of Acot1, Acly, Acss2, and Acsl3 were increased. These results suggest that hepatic acylcarnitines and glucose levels might be increased due to disruption of mitochondrial function and suppression of glucose metabolism. Perturbation of energy metabolism might be associated with amiodarone-induced hepatotoxicity.
Collapse
Affiliation(s)
- Gabin Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, South Korea
| | | | - Hwanhui Lee
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | | | - Jung Hwa Oh
- Korea Institute of Toxicology, Daejeon, South Korea
| | - Jaeick Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jae Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, South Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
17
|
Fromenty B. Inhibition of mitochondrial fatty acid oxidation in drug-induced hepatic steatosis. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Dedual MA, Wueest S, Borsigova M, Konrad D. Intermittent fasting improves metabolic flexibility in short-term high-fat diet-fed mice. Am J Physiol Endocrinol Metab 2019; 317:E773-E782. [PMID: 31503513 DOI: 10.1152/ajpendo.00187.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Four days of high-fat diet (HFD) feeding are sufficient to induce glucose intolerance and hepatic steatosis in mice. While prolonged HFD-induced metabolic complications are partly mediated by increased food intake during the light (inactive) phase, such a link has not yet been established in short-term HFD-fed mice. Herein, we hypothesized that a short bout of HFD desynchronizes feeding behavior, thereby contributing to glucose intolerance and hepatic steatosis. To this end, 12-wk-old C57BL/6J littermates were fed a HFD for 4 days either ad libitum or intermittently. Intermittent-fed mice were fasted for 8 h during their inactive phase. Initiation of HFD led to an immediate increase in food intake already during the first light phase. Moreover, glucose tolerance was significantly impaired in ad libitum- but not in intermittent HFD-fed mice, indicating that desynchronized feeding behavior contributes to short-term HFD-induced glucose intolerance. Of note, overall food intake was similar between the groups, as was body weight. However, intermittent HFD-fed mice revealed higher fat depot weights. Phosphorylation of hormone sensitivity lipase and free fatty acid release from isolated adipocytes were significantly elevated, suggesting increased lipolysis in intermittent HFD-fed mice. Moreover, hepatic mRNA expression of lipogenetic enzymes and liver triglyceride levels were significantly increased in intermittent HFD-fed mice. Importantly, food deprivation decreased respiratory exchange ratio promptly in intermittent- but not in ad libitum HFD-fed mice. In conclusion, retaining a normal feeding pattern prevented HFD-induced impairment of metabolic flexibility in short-term HFD-fed mice.
Collapse
Affiliation(s)
- Mara A Dedual
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Marcela Borsigova
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Allard J, Le Guillou D, Begriche K, Fromenty B. Drug-induced liver injury in obesity and nonalcoholic fatty liver disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:75-107. [PMID: 31307592 DOI: 10.1016/bs.apha.2019.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is commonly associated with nonalcoholic fatty liver (NAFL), a benign condition characterized by hepatic lipid accumulation. However, NAFL can progress in some patients to nonalcoholic steatohepatitis (NASH) and then to severe liver lesions including extensive fibrosis, cirrhosis and hepatocellular carcinoma. The entire spectrum of these hepatic lesions is referred to as nonalcoholic fatty liver disease (NAFLD). The transition of simple fatty liver to NASH seems to be favored by several genetic and environmental factors. Different experimental and clinical investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs may cause more severe and/or more frequent acute liver injury in obese individuals whereas others may trigger the transition of simple fatty liver to NASH or may worsen hepatic lipid accumulation, necroinflammation and fibrosis. This review presents the available information regarding drugs that may cause a specific risk in the context of obesity and NAFLD. These drugs, which belong to different pharmacological classes, include acetaminophen, halothane, methotrexate, rosiglitazone and tamoxifen. For some of these drugs, experimental investigations confirmed the clinical observations and unveiled different pathophysiological mechanisms which may explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Because obese people often take several drugs for the treatment of different obesity-related diseases, there is an urgent need to identify the main pharmaceuticals that may cause acute liver injury on a fatty liver background or that may enhance the risk of severe chronic liver disease.
Collapse
Affiliation(s)
- Julien Allard
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Dounia Le Guillou
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Karima Begriche
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Rennes, France.
| |
Collapse
|
20
|
Grünig D, Felser A, Duthaler U, Bouitbir J, Krähenbühl S. Effect of the Catechol-O-Methyltransferase Inhibitors Tolcapone and Entacapone on Fatty Acid Metabolism in HepaRG Cells. Toxicol Sci 2018; 164:477-488. [DOI: 10.1093/toxsci/kfy101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- David Grünig
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Andrea Felser
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Swiss Center for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Swiss Center for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| |
Collapse
|