1
|
Akinola LS, Buzzi B, Kalck E, Le K, Klein S, Vaughn J, Basir J, Poklis J, Whiteaker P, Shelton KL, Damaj MI. Characterization of a novel oronasal-restricted nicotine vaping self-administration model in mice. Neuropharmacology 2025; 268:110315. [PMID: 39832529 PMCID: PMC11984223 DOI: 10.1016/j.neuropharm.2025.110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Nicotine use remains one of the leading causes of preventable deaths in the United States and, while the prevalence of combustible cigarette use has declined over the past few years, the popularity of electronic nicotine delivery systems continues to rise. Vaping is not without risks, and its long-term effects, particularly in vulnerable populations, remain largely unknown. This study introduces a novel, oronasal-restricted, nicotine vapor self-administration mouse model to investigate the impact of nicotine concentration, genotype, sex, and age on self-administration and behavioral response to nicotine. Our studies show that male and female young adult mice respond to nicotine, demonstrating notable sex-related differences in intake, locomotor sensitization, and somatic withdrawal signs. In addition, we characterized intake in adolescent mice, showing sex differences as well. Finally, we showed genotype-related differences when using β2 knock-out mice, emphasizing the role of the β2 nAChR in nicotine reward and nicotine intake. This new model offers a more targeted approach to studying the potential risks of nicotine vaping in a more relevant and face-valid model compared to traditional whole-body nicotine vapor exposure in rodents.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Erin Kalck
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kimmie Le
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sarah Klein
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Julian Vaughn
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jamil Basir
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul Whiteaker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Keith L Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
2
|
Park S, Heu J, Hoener MC, Kilduff TS. Wakefulness Induced by TAAR1 Partial Agonism in Mice Is Mediated Through Dopaminergic Neurotransmission. Int J Mol Sci 2024; 25:11351. [PMID: 39518904 PMCID: PMC11547084 DOI: 10.3390/ijms252111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) is a negative regulator of dopamine (DA) release. The partial TAAR1 agonist RO5263397 promotes wakefulness and suppresses NREM and REM sleep in rodents and non-human primates. We tested the hypothesis that the TAAR1-mediated effects on sleep/wake regulation were due, in part, to DA release. Male C57BL6/J mice (n = 8) were intraperitoneally administered the D1R antagonist SCH23390, the D2R antagonist eticlopride, a combination of D1R + D2R antagonists, or saline at ZT5.5, followed 30 min later by RO5263397 or vehicle per os. EEG, EMG, subcutaneous temperature, and activity were recorded across the 8 treatments and sleep architecture was analyzed for 6 h post-dosing. As described previously, RO5263397 increased wakefulness and delayed NREM and REM sleep onset. D1, D2, and D1 + D2 pretreatment reduced RO5263397-induced wakefulness for 1-2 h after dosing but only the D1 antagonist significantly reduced the TAAR1-mediated increase in NREM latency. Neither the D1 nor the D2 antagonist affected the TAAR1-mediated suppression of REM sleep. These results suggest that, whereas the TAAR1 effects on wakefulness are mediated, in part, through the D2R, D1R activation plays a role in reversing the TAAR1-mediated increase in NREM sleep latency. In contrast, the TAAR1-mediated suppression of REM sleep appears not to involve D1R or D2R mechanisms.
Collapse
Affiliation(s)
- Sunmee Park
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (S.P.); (J.H.)
| | - Jasmine Heu
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (S.P.); (J.H.)
| | - Marius C. Hoener
- Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland;
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA; (S.P.); (J.H.)
| |
Collapse
|
3
|
Park S, Heu J, Hoener MC, Kilduff TS. Wakefulness Induced by TAAR1 Partial Agonism is Mediated Through Dopaminergic Neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612122. [PMID: 39314371 PMCID: PMC11419104 DOI: 10.1101/2024.09.09.612122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) is known to negatively regulate dopamine (DA) release. The partial TAAR1 agonist RO5263397 promotes wakefulness and suppresses NREM and REM sleep in mice, rats, and non-human primates. We tested the hypothesis that the TAAR1-mediated effects on sleep/wake were due, at least in part, to DA release. Male C57BL6/J mice (n=8) were intraperitoneally administered the D1R antagonist SCH23390, the D2R antagonist eticlopride, a combination of D1R+D2R antagonists or saline at ZT5.5, followed 30 min later by RO5263397 or vehicle (10% DMSO in DI water) at ZT6 per os. EEG, EMG, subcutaneous temperature, and activity were recorded in each mouse across the 8 treatment conditions and sleep architecture was analyzed for 6 hours post-dosing. Consistent with our previous reports, RO5263397 increased wakefulness as well as the latency to NREM and REM sleep. D1, D2, and D1+D2 pretreatment reduced RO5263397-induced wakefulness during the first 1-2 hours after dosing, but only the D1+D2 combination attenuated the wake-promoting effect of RO5263397 from ZT6-8, mostly by increasing NREM sleep. Although D1+D2 antagonism blocked the wake-promoting effect of RO5263397, only the D1 antagonist significantly reduced the TAAR1-mediated increase in NREM latency. Neither the D1 nor the D2 antagonist affected TAAR1-mediated suppression of REM sleep. These results suggest that, whereas TAAR1 effects on wakefulness are mediated in part through the D2R, D1R activation plays a role in reversing the TAAR1-mediated increase in NREM sleep latency. By contrast, TAAR1-mediated suppression of REM sleep appears not to involve D1R or D2R mechanisms.
Collapse
Affiliation(s)
- Sunmee Park
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| | - Jasmine Heu
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| | - Marius C. Hoener
- Neuroscience, Ophthalmology and Rare Diseases DTA, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| |
Collapse
|
4
|
Tang F, Yang L, Yang W, Li C, Zhang J, Liu J. The genetic susceptibility analysis of TAAR1 rs8192620 to methamphetamine and heroin abuse and its role in impulsivity. Eur Arch Psychiatry Clin Neurosci 2024; 274:453-459. [PMID: 37145176 DOI: 10.1007/s00406-023-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
Abnormal genetic polymorphism of trace amine-associated receptor 1 (TAAR1) rs8192620 site has been confirmed to induce methamphetamine (MA) use and drug craving. However, the genetic susceptibility difference between MA addicts and heroin addicts is unknown. This study evaluated genetic heterogeneity of TAAR1 rs8192620 between MA and heroin addicts and elucidated whether rs8192620 genotypes associated with discrepancy in emotional impulsivity, which would help to instruct individualized treatment in addiction via acting on TAAR1 and evaluate risk of varied drug addiction. Participants consisting of gender-matched 63 MA and 71 heroin abusers were enrolled in the study. Due to mixed drug usage in some MA addicts, MA users were further subdivided into 41 only-MA (only MA taking) and 22 mixed-drug (Magu composed of about 20% MA and 70% caffeine) abusers. Via inter-individual single nucleotide polymorphism (SNP) analysis and two-sample t tests, respectively, the genotypic and Barratt Impulsiveness Scale-11 (BIS-11) scores differences between groups were completed. With following genotypic stratification, the differences in BIS-11 scores between groups were analyzed through two-sample t test. Individual SNP analysis showed significant differences in alleles distribution of rs8192620 between MA and heroin subjects (p = 0.019), even after Bonferroni correction. The TT homozygotes of rs8192620 dominated in MA participants, while C-containing genotypes in heroin (p = 0.026). There was no association of genotypes of TAAR1 rs8192620 with addicts' impulsivity. Our research indicates that the TAAR1 gene polymorphism might mediate the susceptibility discrepancy between MA and heroin abuse.
Collapse
Affiliation(s)
- Fei Tang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Longtao Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cong Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China.
- Department of Radiology Quality Control Center in Hunan Province, Changsha, China.
| |
Collapse
|
5
|
Wang X, Chen Y, Dong J, Ge J, Liu X, Liu J. Neurobiology of Stress-Induced Nicotine Relapse. Int J Mol Sci 2024; 25:1482. [PMID: 38338760 PMCID: PMC10855331 DOI: 10.3390/ijms25031482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Tobacco smoking is the leading cause of preventable death and disease. Although there are some FAD-approved medicines for controlling smoking, the relapse rate remains very high. Among the factors that could induce nicotine relapse, stress might be the most important one. In the last decades, preclinical studies have generated many new findings that lead to a better understanding of stress-induced relapse of nicotine-seeking. Several molecules such as α3β4 nicotinic acetylcholine receptor, α2-adrenergic receptors, cannabinoid receptor 1, trace amine-associated receptor 1, and neuropeptide systems (corticotropin-releasing factor and its receptors, dynorphine and kappa opioid receptor) have been linked to stress-induced nicotine relapse. In this review, we discuss recent advances in the neurobiology, treatment targets, and potential therapeutics of stress-induced nicotine relapse. We also discuss some factors that may influence stress-induced nicotine relapse and that should be considered in future studies. In the final section, a perspective on some research directions is provided. Further investigation on the neurobiology of stress-induced nicotine relapse will shed light on the development of new medicines for controlling smoking and will help us understand the interactions between the stress and reward systems in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianfeng Liu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China (Y.C.); (J.D.)
| |
Collapse
|
6
|
Liu J, Wu R, Li JX. TAAR1 as an emerging target for the treatment of psychiatric disorders. Pharmacol Ther 2024; 253:108580. [PMID: 38142862 PMCID: PMC11956758 DOI: 10.1016/j.pharmthera.2023.108580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trace amines, a group of amines expressed at the nanomolar level in the mammalian brain, can modulate monoamine transmission. The discovery of and the functional research on the trace amine-associated receptors (TAARs), especially the most well-characterized TAAR1, have largely facilitated our understanding of the function of the trace amine system in the brain. TAAR1 is expressed in the mammalian brain at a low level and widely distributed in the monoaminergic system, including the ventral tegmental area and substantial nigra, where the dopamine neurons reside in the mammalian brain. Growing in vitro and in vivo evidence has demonstrated that TAAR1 could negatively modulate monoamine transmission and play a crucial role in many psychiatric disorders, including schizophrenia, substance use disorders, sleep disorders, depression, and anxiety. Notably, in the last two decades, many studies have repeatedly confirmed the pharmacological effects of the selective TAAR1 ligands in various preclinical models of psychiatric disorders. Recent clinical trials of the dual TAAR1 and serotonin receptor agonist ulotaront also revealed a potential efficacy for treating schizophrenia. Here, we review the current understanding of the TAAR1 system and the recent advances in the elucidation of behavioral and physiological properties of TAAR1 agonists evaluated both in preclinical animal models and clinical trials. We also discuss the potential TAAR1-dependent signaling pathways and the cellular mechanisms underlying the inhibitory effects of TAAR1 activation on drug addiction. We conclude that TAAR1 is an emerging target for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Jianfeng Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China; School of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| | - Ruyan Wu
- Department of in vivo pharmacology, Discovery Biology, WuXi Biology, WuXi AppTec Co., Ltd., Shanghai 200120, PR China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14203, USA.
| |
Collapse
|
7
|
Cichero E, Francesconi V, Casini B, Casale M, Kanov E, Gerasimov AS, Sukhanov I, Savchenko A, Espinoza S, Gainetdinov RR, Tonelli M. Discovery of Guanfacine as a Novel TAAR1 Agonist: A Combination Strategy through Molecular Modeling Studies and Biological Assays. Pharmaceuticals (Basel) 2023; 16:1632. [PMID: 38004497 PMCID: PMC10674299 DOI: 10.3390/ph16111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) is an attractive target for the design of innovative drugs to be applied in diverse pharmacological settings. Due to a non-negligible structural similarity with endogenous ligands, most of the agonists developed so far resulted in being affected by a low selectivity for TAAR1 with respect to other monoaminergic G protein-coupled receptors, like the adrenoreceptors. This study utilized comparative molecular docking studies and quantitative-structure activity relationship (QSAR) analyses to unveil key structural differences between TAAR1 and alpha2-adrenoreceptor (α2-ADR), with the aim to design novel TAAR1 agonists characterized by a higher selectivity profile and reduced off-target effects. While the presence of hydrophobic motives is encouraged towards both the two receptors, the introduction of polar/positively charged groups and the ligand conformation deeply affect the TAAR1 or α2-ADR putative selectivity. These computational methods allowed the identification of the α2A-ADR agonist guanfacine as an attractive TAAR1-targeting lead compound, demonstrating nanomolar activity in vitro. In vivo exploration of the efficacy of guanfacine showed that it is able to decrease the locomotor activity of dopamine transporter knockout (DAT-KO) rats. Therefore, guanfacine can be considered as an interesting template molecule worthy of structural optimization. The dual activity of guanfacine on both α2-ADR and TAAR1 signaling and the related crosstalk between the two pathways will deserve more in-depth investigation.
Collapse
Affiliation(s)
- Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Valeria Francesconi
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Beatrice Casini
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| | - Monica Casale
- Section of Chemistry and Food and Pharmaceutical Technologies, University of Genoa, 16148 Genoa, Italy;
| | - Evgeny Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrey S. Gerasimov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia; (I.S.); (A.S.)
| | - Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, 197022 St. Petersburg, Russia; (I.S.); (A.S.)
| | - Stefano Espinoza
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy;
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.K.); (A.S.G.); (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (V.F.); (B.C.)
| |
Collapse
|
8
|
Kuvarzin SR, Sukhanov I, Onokhin K, Zakharov K, Gainetdinov RR. Unlocking the Therapeutic Potential of Ulotaront as a Trace Amine-Associated Receptor 1 Agonist for Neuropsychiatric Disorders. Biomedicines 2023; 11:1977. [PMID: 37509616 PMCID: PMC10377193 DOI: 10.3390/biomedicines11071977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
All antipsychotics currently used in clinic block D2 dopamine receptors. Trace amine-associated receptor 1 is emerging as a new therapeutic target for schizophrenia and several other neuropsychiatric disorders. SEP-363856 (International Nonproprietary Name: Ulotaront) is an investigational antipsychotic drug with a novel mechanism of action that does not involve antagonism of dopamine D2 receptors. Ulotaront is an agonist of trace amine-associated receptor 1 and serotonin 5-HT1A receptors, but can modulate dopamine neurotransmission indirectly. In 2019, the United States Food and Drug Administration granted Breakthrough Therapy Designation for ulotaront for the treatment of schizophrenia. Phase 2 clinical studies indicated that ulotaront can reduce both positive and negative symptoms of schizophrenia without causing the extrapyramidal or metabolic side effects that are inherent to most currently used antipsychotics. At present, it is in phase 3 clinical development for the treatment of schizophrenia and is expected to be introduced into clinical practice in 2023-2024. Clinical studies evaluating the potential efficacy of ulotaront in Parkinson's disease psychosis, generalized anxiety disorder, and major depressive disorder have also been started. The aim of this scoping review is to summarize all currently available preclinical and clinical evidence on the utility of ulotaront in the treatment of schizophrenia. Here, we show the main characteristics and distinctive features of this drug. Perspectives and limitations on the potential use of ulotaront in the pharmacotherapy of several other neuropsychiatric disorders are also discussed.
Collapse
Affiliation(s)
- Savelii R Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov Medical University, 197022 Saint Petersburg, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Accellena Research and Development Inc., 199106 Saint Petersburg, Russia
| | | | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
9
|
Fan FS. Residues of ractopamine, a livestock feed additive, in meat might alleviate misuse of cocaine, nicotine, methamphetamine, and morphine. Nutr Health 2022; 29:171-174. [PMID: 36266952 DOI: 10.1177/02601060221134139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Substance misuse brings tremendous harm to global health. Strategies for the treatment and prevention of drug addiction are in urgent need. Aim: Trace amine-associated receptor 1 (TAAR1) widely distributed in the central nervous system has been identified as a hopeful target in the management of certain substance abuse. Discovery of food ingredients that act on TAAR1 might help health care providers develop chemoprevention for substance misuse disorders. Methods: Animal experiments clearly demonstrated the capability of TAAR1 agonists in attenuating addictive behavior regarding cocaine, nicotine, methamphetamine, and morphine. Ractopamine, a livestock feed additive used in the United States for over 20 years, has proven to be a full TAAR1 agonist. Literature review and internet web database survey were performed to see if ractopamine residues in meat could affect substance addiction behavior. Results: Integrating all available epidemiologic studies revealed that the prevalence of cocaine, nicotine, methamphetamine, and opioid misuse showed steadily downward or stable trends coincidently during the same time period of ractopamine use in the United States. Conclusion: A hypothesis is thus raised here that ractopamine residues in meat might have contributed secretly to the smoothened prevalence curves of cocaine, nicotine, methamphetamine, and opioids addiction.
Collapse
Affiliation(s)
- Frank S Fan
- Department of Medicine, Ministry of Health and Welfare Taitung Hospital, Taitung County, Taiwan
| |
Collapse
|
10
|
Evaluation of Approach to a Conspecific and Blood Biochemical Parameters in TAAR1 Knockout Mice. Brain Sci 2022; 12:brainsci12050614. [PMID: 35625001 PMCID: PMC9139149 DOI: 10.3390/brainsci12050614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
It is known that the trace amine-associated receptor 1 (TAAR1) receptor is involved in limbic brain functions by regulating dopamine transmission and putative reward circuitry. Moreover, other TAARs are expressed in the olfactory system of all studied vertebrate species, sensing innate socially-relevant odors, including pheromones. Therefore, one can assume that TAARs may play a role in rodent social and sexual behavior. A comparative behavioral and biochemical analysis of TAAR1 knockout (TAAR1-KO) and wild-type mice is also important for the preliminary evaluation of the potential side effects of future TAAR1-based therapies. In our studies, we adapted a sexual incentive motivation test for mice to evaluate the sexual behavior of TAAR1-KO and wild-type mice. Previously, similar methods were primarily applied to rats. Furthermore, we measured testosterone and other biochemical parameters in the blood. As a result, we found only minimal alterations in all of the studied parameters. Thus, the lack of TAAR1 does not significantly affect sexual motivation and routine lipid and metabolic blood biochemical parameters, suggesting that future TAAR1-based therapies should have a favorable safety profile.
Collapse
|
11
|
TAAR1 regulates drug-induced reinstatement of cocaine-seeking via negatively modulating CaMKIIα activity in the NAc. Mol Psychiatry 2022; 27:2136-2145. [PMID: 35079125 PMCID: PMC9829124 DOI: 10.1038/s41380-022-01448-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
Abstract
Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.
Collapse
|
12
|
Wu R, Liu J, Li JX. Trace amine-associated receptor 1 and drug abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:373-401. [PMID: 35341572 PMCID: PMC9826737 DOI: 10.1016/bs.apha.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is the best characterized receptor selectively activated by trace amines. It is broadly expressed in the monoaminergic system in the brain including ventral tegmental area (VTA), nucleus accumbens (NAc), dorsal raphe (DR) and substantial nigra (SN). Extensive studies have suggested that TAAR1 plays an important role in the modulation of monoaminergic system, especially dopamine (DA) transmission which may underlie the mechanisms by which TAAR1 interventions affect drug abuse-like behaviors. TAAR1 activation inhibits the rewarding and reinforcing effects of drugs from different classes including psychostimulants, opioid and alcohol as well as drug-induced increase in DA accumulation. The mechanisms of TAAR1's function in mediating drug abuse-like behaviors are not clear. However, it is hypothesized that TAAR1 interaction with DA transporter (DAT) and dopamine D2 receptor (D2) and the subsequent modulation of cellular cascades may contribute to the effects of TAAR1 in regulating drug abuse. Further studies are needed to investigate the role of TAAR1 in other drugs of abuse-related behaviors and its safety and efficacy for prolonged medications. Together, TAAR1 inhibits drug-induced DA transmission and drug abuse-related behaviors. Therefore, TAAR1 may be a promising therapeutic target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Medical College of Yangzhou University, Yangzhou, China,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Jianfeng Liu
- Department of Psychological and Brain Sciences, College of Liberal Arts, Texas A&M University, College Station, TX, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801
| |
Collapse
|
13
|
Wu R, Liu J, Johnson B, Huang Y, Zhang Y, Li JX. Activation of trace amine-associated receptor 1 attenuates nicotine withdrawal-related effects. Addict Biol 2022; 27:e13075. [PMID: 34170054 PMCID: PMC8709869 DOI: 10.1111/adb.13075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023]
Abstract
Nicotine addiction is a leading avoidable brain disorder globally. Although nicotine induces a modest reinforcing effect, which is important for the initial drug use, the transition from nicotine use to nicotine addiction involves the mechanisms responsible for the negative consequences of drug abstinence. Recent study suggested that trace amine-associated receptor 1 (TAAR1) is a promising pharmacological target for the modulation of positive reinforcing effects of nicotine. However, whether TAAR1 plays a part in the negative reinforcement of nicotine withdrawal remains to be determined. Here, using a long-access (LA) self-administration model, we investigated whether LA rats show increased nicotine intake and withdrawal symptoms in comparison with saline and ShA rats and then tested the effect of TAAR1 partial agonist RO5263397 on nicotine withdrawal effects. We found that rats from long-access group showed significant abstinence-induced anxiety-like behaviour, mechanic hypersensitivity, increased number of precipitated withdrawal signs and higher motivation for the drug, while rats from short-access did not differ from saline group. TAAR1 partial agonist RO5263397 significantly reduced the physical and motivational withdrawal effects of nicotine in LA rats, as reflected by increased time spent on the open arm in the elevated plus maze (EPM) test, normalized paw withdrawal threshold, decreased withdrawal signs and motivation to self-administer nicotine. This study indicates that activation of TAAR1 attenuates the negative-reinforcing effects of nicotine withdrawal and further suggests TAAR1 as a promising target to treat nicotine addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Bernard Johnson
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Yufei Huang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
14
|
Potential of Ligands for Trace Amine-Associated Receptor 1 (TAAR1) in the Management of Substance Use Disorders. CNS Drugs 2021; 35:1239-1248. [PMID: 34766253 PMCID: PMC8787759 DOI: 10.1007/s40263-021-00871-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
Trace amines, including β-phenylethylamine (β-PEA), p-tyramine (TYR), tryptamine (TRP), and p-octopamine (OCT), represent a group of amines expressed at low levels in the mammalian brain. Given the close structural similarities to traditional monoamines, links between trace amines and the monoaminergic system have long been suspected. Trace amine-associated receptor 1 (TAAR1), the most well characterized receptor in the TAAR family, has been shown to be potently activated by trace amines such as TYR and PEA. Further, catecholamine metabolites and amphetamine analogs are also potent agonists of TAAR1, implicating the receptor in mediating the monoaminergic system and in substance use disorders. In the central nervous system, TAAR1 is expressed in brain regions involved in dopaminergic, serotonergic, and glutamatergic transmission, and genetic animal models and electrophysiological studies have revealed that TAAR1 is a potent modulator of the monoaminergic system. Selective and potent engineered TAAR1 ligands, including full (RO5166017 and RO5256390) and partial (RO5203648, RO5263397 and RO5073012) agonists and the antagonist EPPTB (N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl) benzamide, RO5212773), serve as invaluable tools for the investigation of TAAR1 functions and display significant potential for the development of TAAR1-based pharmacotherapies for the treatment of substance use disorders. Despite a number of advances that have been made, more clinical studies are warranted in order to test the potential and efficacy of TAAR1 ligands in the treatment of psychiatric disorders, including substance use disorders.
Collapse
|
15
|
Trace Amine-Associated Receptor 1 as a Target for the Development of New Antipsychotics: Current Status of Research and Future Directions. CNS Drugs 2021; 35:1153-1161. [PMID: 34655036 DOI: 10.1007/s40263-021-00864-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia is a mental illness associated with an array of symptoms that often result in disability. The primary treatments for schizophrenia are termed antipsychotics. Although antipsychotics modulate a number of different receptor types and subtypes, all currently regulatory agency-approved antipsychotics share in common direct or functional antagonism at the dopamine type 2 receptor (D2R). The majority of people with schizophrenia do not achieve full resolution of their symptoms with antipsychotics, suggesting the need for alternative or complementary approaches. The primary focus of this review is to assess the evidence for the role of the trace amine-associated receptor 1 (TAAR-1) in schizophrenia and the role of TAAR-1 modulators as novel-mechanism antipsychotics. Topics include an overview of TAAR-1 physiology and pathophysiology in schizophrenia, interaction with other neurotransmitter systems, including the dopaminergic, glutamatergic and serotonergic system, and finally, a review of investigational TAAR-1 compounds that have reached Phase II clinical studies in schizophrenia: SEP-363856 (ulotaront) and RO6889450 (ralmitaront). Thus far, results are publicly available only for ulotaront in a relatively young (18-40 years) and acutely exacerbated cohort. These results showed positive effects for overall schizophrenia symptoms without significant tolerability concerns. An ongoing study of ralmitaront will assess specific efficacy in patients with persistent negative symptoms. If trials of TAAR-1 modulators, and other novel-mechanism targets for schizophrenia that are under active study, continue to show positive results, the definition of an antipsychotic may need to be expanded beyond the D2R target in the near future.
Collapse
|
16
|
Zhukov DA, Vinogradova EP. Trace Amines and Behavior. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Hempel BJ, Melkumyan M, Crissman ME, Winston CA, Madar J, Riley AL. Pre-conception exposure to THC fails to impact nicotine reward in adult offspring. Pharmacol Biochem Behav 2020; 197:173001. [PMID: 32710886 DOI: 10.1016/j.pbb.2020.173001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/19/2020] [Indexed: 01/04/2023]
Abstract
Exposure to environmental stimuli in one generation can produce altered behavioral and neurobiological phenotypes in descendants. Recent work has shown that parental exposure to cannabinoids alters the rewarding properties of other abused drugs in the subsequent generation. However, whether preconception Δ9-tetrahydrocannabinol (THC) administration modifies the affective properties of nicotine in offspring is unknown. To address this question, male and female rats (F0) received THC (0 or 1.5 mg/kg) throughout the adolescent window and were bred on PND 65. In Experiment 1, adult F1-THC and F1-Veh progeny (males and females) underwent nicotine locomotor sensitization procedures during which nicotine (0 or 0.4 mg/kg) was administered every other day for five exposures, and locomotor activity was recorded on each exposure followed by a final nicotine challenge. There was no cross-generational effect of THC on nicotine locomotor sensitization, although acute exposure to nicotine produced greater activity in females relative to males independent of THC history. In Experiment 2, adult F1-THC and F1-Veh progeny (males and females) were implanted with jugular catheters and trained to self-administer nicotine (0.03 mg/kg/infusion). Following acquisition, all subjects were allowed to self-administer nicotine on a number of reinforcement schedules, e.g., FR2, FR5 and PR, followed by dose response and extinction procedures. Across all indices, F1-THC and F1-Veh subjects displayed similar IVSA of nicotine with no sex differences. The fact that there was no evidence of cross-generational effects of THC on nicotine suggests that such effects are drug-specific.
Collapse
Affiliation(s)
- Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA.
| | - Mariam Melkumyan
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Madeline E Crissman
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Chloe A Winston
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Jacob Madar
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA.
| |
Collapse
|
18
|
Wu R, Liu J, Wang K, Huang Y, Zhang Y, Li JX. Effects of a trace amine-associated receptor 1 agonist RO 5263397 on ethanol-induced behavioral sensitization. Behav Brain Res 2020; 390:112641. [PMID: 32407821 DOI: 10.1016/j.bbr.2020.112641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alcohol dependence is a chronic and severe health problem which puts a heavy burden on society. Alcohol activates mesolimbic dopamine circuity to achieve its reinforcing effect. While TAAR1 is critically involved in the modulation of dopamine, there is little evidence indicating that TAAR1 could play a role in behavioral effects of ethanol. METHODS By using the animal model of behavioral sensitization induced by ethanol in mice, the present study was performed to investigate whether the activation of TAAR1 would affect the behavioral plasticity of ethanol. RESULTS Repeated administration with ethanol induced a significant increased locomotion in WT mice with females showing higher level of sensitization to ethanol than male mice. The TAAR1 agonist RO5263397 significantly decreased the expression of ethanol-induced behavioral sensitization both in male and female WT mice (0.1 and 0.32 mg/kg). Repeated RO5263397 exposure also prevented the development of behavioral sensitization to ethanol both in male and female WT mice. Moreover, while TAAR1-KO mice developed normal levels of ethanol-induced behavioral sensitization, RO5263397 did not affect this behavior in TAAR1-KO mice. CONCLUSIONS These results indicated that the TAAR1 agonist RO5263397 negatively regulated the expression and development of ethanol-elicited behavioral sensitization in WT but not in TAAR1-KO mice. The present study suggests that TAAR1 is probably involved in certain addiction-like effects of alcohol and could be a useful drug target for the development of new medications to treat alcohol dependence.
Collapse
Affiliation(s)
- Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States; School of Medicine, Yangzhou University, Yangzhou, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States
| | - Kaixuan Wang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States
| | - Yufei Huang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States
| | - Yanan Zhang
- Research Triangle Institute, NC, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
19
|
Liu J, Johnson B, Wu R, Seaman R, Vu J, Zhu Q, Zhang Y, Li JX. TAAR1 agonists attenuate extended-access cocaine self-administration and yohimbine-induced reinstatement of cocaine-seeking. Br J Pharmacol 2020; 177:3403-3414. [PMID: 32246467 DOI: 10.1111/bph.15061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 03/06/2020] [Accepted: 03/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The trace amine-associated receptor 1 (TAAR1) negatively modulates dopamine transmission. Our previous studies demonstrated that TAAR1 agonists attenuated cue- and drug-induced cocaine-seeking and increased the elasticity of the cocaine demand curve, in the short-access cocaine self-administration model. Compulsive use of cocaine, which is an essential criterion of cocaine use disorder, can be induced by extended access to cocaine self-administration. EXPERIMENTAL APPROACH To characterize the role of TAAR1 in compulsive cocaine use, we evaluated the effects of activation of TAAR1 on cocaine intake, cocaine binge and cue-induced cocaine-seeking using the extended-access cocaine self-administration model in adult male Sprague-Dawley rats. We also investigated the role of TAAR1 in stress-triggered cocaine relapse by using the α2 -adrenoceptor antagonist yohimbine-induced reinstatement of cocaine-seeking. KEY RESULTS The selective TAAR1 partial agonist RO5263397 attenuated cocaine intake and did not develop tolerance during the 10-day extended-access cocaine self-administration. RO5263397 reduced a 12-h binge intake of cocaine after forced abstinence. RO5263397 also decreased cue-induced cocaine-seeking after prolonged abstinence from extended-access cocaine self-administration. Furthermore, RO5263397 and the selective TAAR1 full agonist RO5166017 reduced yohimbine-induced reinstatement of cocaine-seeking behaviour. CONCLUSION AND IMPLICATIONS Activation of TAAR1 attenuated extended-access cocaine self-administration and stress-induced cocaine reinstatement. These results suggest that TAAR1 agonists are promising pharmacological interventions to treat cocaine use disorder and relapse.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Bernard Johnson
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA.,School of Medicine, Yangzhou University, Yangzhou, China
| | - Robert Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Jimmy Vu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, China
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
20
|
Dorotenko A, Tur M, Dolgorukova A, Bortnikov N, Belozertseva IV, Zvartau EE, Gainetdinov RR, Sukhanov I. The Action of TAAR1 Agonist RO5263397 on Executive Functions in Rats. Cell Mol Neurobiol 2020; 40:215-228. [PMID: 31734895 PMCID: PMC11448851 DOI: 10.1007/s10571-019-00757-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a widely recognized new perspective target for the neuropsychiatric pharmacological treatment. Despite a growing number of studies investigating TAAR1 role in the animal models of different pathologies, information of TAAR1 agonists impact on executive cognitive functions is limited. The goal of the present study was to evaluate the activity of highly selective partial TAAR1 agonist RO5263397 on various executive cognitive functions. The results of the present study demonstrated that the pretreatment with RO5263397 was able to increase attention and decrease cognitive flexibility in rats. The analysis of the RO5263397 action on impulsivity demonstrated that the TAAR1 activation failed to affect premature responding but was able to slightly modify impulsive choice. Problem solving was resistant to the pharmacological intervention.
Collapse
Affiliation(s)
- Artem Dorotenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Margarita Tur
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Antonina Dolgorukova
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Nikita Bortnikov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Irina V Belozertseva
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Edwin E Zvartau
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Emb. 7-9, St. Petersburg, Russia, 199034
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, St. Petersburg, Russia, 199034
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022.
| |
Collapse
|
21
|
Abstract
Trace amine-associated receptor 1 is one of the best-characterized receptors of trace amines. Growing evidence shows that TAAR1 negatively regulates the monoaminergic activity, including dopamine transmission in the mesocorticolimbic system. Neurochemical assays demonstrated that selective TAAR1 full and partial agonists were effective to prevent psychostimulants-induced dopamine transmission in vitro and in vivo. In the last decade, many preclinical models of psychostimulant addiction such as drug-induced behavioral sensitization, drug-induced conditioned place preference, drug self-administration, drug discrimination, and relapse models were used to assess the effects of TAAR1 agonists on psychostimulants' behavioral effects. In general, activation of TAAR1 attenuated while knockout of TAAR1 potentiated psychostimulant abuse-related behaviors. Here, we review the advances in TAAR1 and its agonists in modulating psychostimulant addiction. We discuss the similarities and differences between the neurochemical and behavioral effects of TAAR1 full and partial agonists. We also discuss several concerns including the abuse liability, sleep reduction, and species-dependent effects that might affect the successful translation of TAAR1 agonists from preclinical studies to clinical application. In conclusion, although further investigations are in need to address certain concerns and the underlying neural mechanisms, TAAR1 agonists appear to be a promising pharmacotherapy to treat psychostimulant addiction and prevent relapse.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Pharmacology and Toxicology, University At Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.
| | - Ruyan Wu
- Department of Pharmacology and Toxicology, University At Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University At Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
22
|
Loftis JM, Lasarev M, Shi X, Lapidus J, Janowsky A, Hoffman WF, Huckans M. Trace amine-associated receptor gene polymorphism increases drug craving in individuals with methamphetamine dependence. PLoS One 2019; 14:e0220270. [PMID: 31600226 PMCID: PMC6786581 DOI: 10.1371/journal.pone.0220270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Methamphetamine (MA) is a potent agonist at the trace amine-associated receptor 1 (TAAR1). This study evaluated a common variant (CV) in the human TAAR1 gene, synonymous single nucleotide polymorphism (SNP) V288V, to determine the involvement of TAAR1 in MA dependence. METHODS Participants (n = 106) with active MA dependence (MA-ACT), in remission from MA dependence (MA-REM), with active polysubstance dependence, in remission from polysubstance dependence, and with no history of substance dependence completed neuropsychiatric symptom questionnaires and provided blood samples. In vitro expression and function of CV and wild type TAAR1 receptors were also measured. RESULTS The V288V polymorphism demonstrated a 40% increase in TAAR1 protein expression in cell culture, but message sequence and protein function were unchanged, suggesting an increase in translation efficiency. Principal components analysis resolved neuropsychiatric symptoms into four components, PC1 (depression, anxiety, memory, and fatigue), PC2 (pain), PC3 (drug and alcohol craving), and PC4 (sleep disturbances). Analyses of study group and TAAR1 genotype revealed a significant interaction for PC3 (craving response) (p = 0.003). The control group showed no difference in PC3 associated with TAAR1, while adjusted mean craving for the MA-ACT and MA-REM groups, among those with at least one copy of V288V, was estimated to be, respectively, 1.55 (p = 0.036) and 1.77 (p = 0.071) times the adjusted mean craving for those without the TAAR1 SNP. CONCLUSIONS Neuroadaptation to chronic MA use may be altered by TAAR1 genotype and result in increased dopamine signaling and craving in individuals with the V288V genotype.
Collapse
Affiliation(s)
- Jennifer M. Loftis
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
| | - Michael Lasarev
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Oregon Health & Science University and Portland State University School of Public Health, Portland, OR, United States of America
| | - Xiao Shi
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
| | - Jodi Lapidus
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Oregon Health & Science University and Portland State University School of Public Health, Portland, OR, United States of America
| | - Aaron Janowsky
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States of America
| | - William F. Hoffman
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States of America
- Mental Health and Clinical Neurosciences Division, VA Portland Health Care System, Portland, OR, United States of America
| | - Marilyn Huckans
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Mental Health and Clinical Neurosciences Division, VA Portland Health Care System, Portland, OR, United States of America
| |
Collapse
|
23
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
24
|
Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR. Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 2018; 22:513-526. [DOI: 10.1080/14728222.2018.1480723] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Juan J. Canales
- Division of Psychology, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | | | - Stefano Espinoza
- Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Dept., Genoa, Italy
| | - Ilya Sukhanov
- Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Center for Translational Biomedicine, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|