1
|
Sun Z, Fu H, Zhang R, Wang H, Shen S, Zhao C, Li X, Sun Y, Li Y, Li Y. Advances in chemically modified HSA as a multifunctional carrier for transforming cancer therapy regimens. Int J Biol Macromol 2025; 305:141373. [PMID: 39988174 DOI: 10.1016/j.ijbiomac.2025.141373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Human serum albumin (HSA) is a versatile, biodegradable, biocompatible, non-toxic, and non-immunogenic protein nanocarrier, making it an ideal platform for developing advanced drug delivery systems. These properties have garnered significant attention in utilizing HSA nanoparticles for the safe and efficient delivery of chemotherapeutic agents. HSA-based nanoparticles can be surface-modified with various ligands to enable tumor-targeted drug delivery, enhancing therapeutic specificity and efficacy. Furthermore, the multifunctionality of HSA nanoparticles offers promising strategies to overcome challenges in cancer therapy, including poor bioavailability, off-target toxicity, and drug resistance. This review highlights the structural features of HSA, explores its diverse modifications to improve drug-binding affinity and targeting ability, and discusses its potential as a multifunctional carrier in oncology. By summarizing the latest advances in HSA modification techniques and applications, this review provides a comprehensive perspective on the future of protein-based drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Zheng Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruixuan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyang Shen
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiuyan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yujiao Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yunfei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yingpeng Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Kedir WM, Li L, Tan YS, Bajalovic N, Loke DK. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. J Mater Chem B 2024; 12:12141-12173. [PMID: 39502031 DOI: 10.1039/d4tb01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review explores the potential of biomolecule-based nanomaterials, i.e., protein, peptide, nucleic acid, and polysaccharide-based nanomaterials, in cancer nanomedicine. It highlights the wide range of design possibilities for creating multifunctional nanomedicines using these biomolecule-based nanomaterials. This review also analyzes the primary obstacles in cancer nanomedicine that can be resolved through the usage of nanomaterials based on biomolecules. It also examines the unique in vivo characteristics, programmability, and biological functionalities of these biomolecule-based nanomaterials. This summary outlines the most recent advancements in the development of two-dimensional semiconductor-based nanomaterials for cancer theranostic purposes. It focuses on the latest developments in molecular simulations and modelling to provide a clear understanding of important uses, techniques, and concepts of nanomaterials in drug delivery and synthesis processes. Finally, the review addresses the challenges in molecular simulations, and generating, analyzing, and developing biomolecule-based and two-dimensional semiconductor-based nanomaterials, and highlights the barriers that must be overcome to facilitate their application in clinical settings.
Collapse
Affiliation(s)
- Welela M Kedir
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
3
|
Gowtham P, Arumugam VA, Harini K, Pallavi P, Thirumalai A, Girigoswami K, Girigoswami A. Nanostructured proteins for delivering drugs to diseased tissues. BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS 2023; 12:115-129. [DOI: 10.1680/jbibn.23.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
During the last few years, nanostructures based on proteins have been playing a vital role in revolutionizing the nanomedicine era. Since protein nanoparticles are smaller and have a greater surface area, they retain a better capacity to interact with other molecules, resulting in carrying payloads efficiently to diseased tissues. Besides having attractive biocompatibility and biodegradability, protein nanoparticles can also be modified on their surfaces. For the fabrication of these nanostructures, there are several processes involved, including emulsification, desolvation, a combination of complex coacervation and electrospray. This can be achieved by using different proteins such as albumin, gelatin, elastin, gliadin, collagen, legumin and zein, as well as a combination of these proteins. It is possible to functionalize protein nanoparticles by altering their internal and external interfaces so that they can encapsulate drugs, release them in a controlled manner, disassemble them systematically and target tumors. This review highlights the physicochemical properties and engineering of several proteins to nano-dimensions used to deliver drugs to diseased tissues.
Collapse
Affiliation(s)
- Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Anbazhagan Thirumalai
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| |
Collapse
|
4
|
Gonsalves A, Sorkhdini P, Bazinet J, Ghumman M, Dhamecha D, Zhou Y, Menon JU. Development and characterization of lung surfactant-coated polymer nanoparticles for pulmonary drug delivery. BIOMATERIALS ADVANCES 2023; 150:213430. [PMID: 37104963 PMCID: PMC10187589 DOI: 10.1016/j.bioadv.2023.213430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Lung cancer is often diagnosed at an advanced stage where tumors are usually inoperable and first-line therapies are inefficient and have off-targeted adverse effects, resulting in poor patient survival. Here, we report the development of an inhalable poly lactic-co-glycolic acid polymer-based nanoparticle (PLGA-NP) formulation with a biomimetic Infasurf® lung surfactant (LS) coating, for localized and sustained lung cancer drug delivery. The nanoparticles (188 ± 7 nm) were stable in phosphate buffered saline, serum and Gamble's solution (simulated lung fluid), and demonstrated cytocompatibility up to 1000 μg/mL concentration and dose-dependent uptake by lung cancer cells. The LS coating significantly decreased nanoparticle (NP) uptake by NR8383 alveolar macrophages in vitro compared to uncoated NPs. The coating, however, did not impair NP uptake by A549 lung adenocarcinoma cells. The anti-cancer drug gemcitabine hydrochloride encapsulated in the PLGA core was released in a sustained manner while the paclitaxel loaded in the LS shell demonstrated a rapid or burst release profile over 21 days. The drug-loaded NPs significantly decreased cancer cell survival and colony formation in vitro compared to free drugs and single drug-loaded NPs. In vivo studies confirmed greater retention of LS-coated NPs in the lungs of C57BL/6 WT mice compared to uncoated NPs, at 24 h and 72 h following intranasal administration. The overall results confirm that LS coating is a unique strategy for cloaking polymeric NPs to potentially prevent their rapid lung clearance and facilitate prolonged pulmonary drug delivery.
Collapse
Affiliation(s)
- Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Jasmine Bazinet
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Moez Ghumman
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
5
|
Prasanthan P, Kishore N. HSA nanoparticles in drug recognition: mechanistic insights with naproxen, diclofenac and methimazole. J Biomol Struct Dyn 2022; 40:11057-11069. [PMID: 34296662 DOI: 10.1080/07391102.2021.1953605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Protein-based nanoparticles offer a suitable targeted delivery platform to drugs in terms of biocompatibility, biodegradability and abundance in nature. Physicochemical understanding of drug encapsulation by protein nanoparticles and their impact on protein aggregation is essential. In this work, we have examined quantitative aspects of encapsulation of non-steroidal anti-inflammatory drugs naproxen and diclofenac sodium, and anti-thyroid drug methimazole in nanoparticles of human serum albumin (HSA NPs) by using ultrasensitive calorimetry. Thermodynamic signatures accompanying the interactions revealed that the partitioning of all these drugs in HSA NPs is primarily driven via contributions from desolvation of highly hydrated nanoparticles surface. Furthermore, the effect of these nanoparticles on fibrillation of HSA has also been studied. HSA NPs are determined to be ineffective towards inhibition of fibrillation under employed conditions. However, the extent of inhibition by HSA NPs varies depending upon the structural characteristics of the drugs. Such studies help to gain mechanistic aspects on drug loading into protein-based nanoparticles and are expected to provide useful insights into improving existing nano-drug carriers and their efficiency in preventing protein fibrillation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
6
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Molecular modeling prediction of albumin-based nanoparticles and experimental preparation, characterization, and in-vitro release kinetics of prednisolone from the nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021; 18:1862-1894. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Albumin is an appealing carrier in nanomedicine because of its unique features. First, it is the most abundant protein in plasma, endowing high biocompatibility, biodegradability, nonimmunogenicity, and safety for its clinical application. Second, albumin chemical structure and conformation allows interaction with many different drugs, potentially protecting them from elimination and metabolism in vivo, thus improving their pharmacokinetic properties. Finally, albumin can interact with receptors overexpressed in many diseased tissues and cells, providing a unique feature for active targeting of the disease site without the addition of specific ligands to the nanocarrier. For this reason, albumin, characterized by an extended serum half-life of around 19 days, has the potential of promoting half-life extension and targeted delivery of drugs. Therefore, this article focuses on the importance of albumin as a nanodrug delivery carrier for hydrophobic drugs, taking advantage of the passive as well as active targeting potential of this nanocarrier. Particular attention is paid to the breakthrough NAB-Technology, with emphasis on the advantages of Nab-Paclitaxel (Abraxane), compared to the solvent-based formulations of Paclitaxel, i.e., CrEL-paclitaxel (Taxol) in a clinical setting. Finally, the role of albumin in carrying anticancer compounds is depicted, with a particular focus on the albumin-based formulations that are currently undergoing clinical trials. The article sheds light on the power of an endogenous substance, such as albumin, as a drug delivery system, signifies the importance of the drug vehicle in drug performance in the biological systems, and highlights the possible future trends in the use of this drug delivery system.
Collapse
Affiliation(s)
- Alessandra Spada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jaber Emami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
9
|
Albumin-stabilized layered double hydroxide nanoparticles synergized combination chemotherapy for colorectal cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102369. [PMID: 33636347 DOI: 10.1016/j.nano.2021.102369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/19/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Combination chemotherapy with two or more complimentary drugs has been widely used for clinical cancer treatment. However, the efficacy and side effects of combination chemotherapy still remain a challenge. Here, we constructed an albumin-stabilized layered double hydroxide nanoparticle (BLDH) system to simultaneously load and deliver two widely used anti-tumor drugs, i.e. 5-fluorouracil (5FU) and albumin-bound PTX (Abraxane, ABX) for colorectal cancer treatment. The cellular uptake test has revealed that 5FU-ABX encapsulated BLDH (BLDH/5FU-ABX) nanoparticles were efficiently internalized by the colorectal cancer cell (HCT-116), synergistically inducing apoptosis of colon cancer cells. The in vivo test has demonstrated that BLDH/5FU-ABX nanomedicine significantly inhibited the tumor growth after three intravenous injections, without any detectable side effects. The enhanced therapeutic effectiveness is attributed to efficient accumulation of BLDH/5FU-ABX at tumor sites and acid-sensitive release of co-loaded drugs. Thus, combination chemotherapy based on BLDH/5FU-ABX nanomedicine would be a new strategy for colorectal cancer treatment.
Collapse
|
10
|
Esim O, Hascicek C. Albumin-based Nanoparticles as Promising Drug Delivery Systems for Cancer Treatment. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200421142008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Albumin is an ideal material for the production of drug carrier nanoparticular systems since
it is a versatile and functional protein that has been proven to be biodegradable and biocompatible,
non-toxic, and immunogenic. Albumin nanoparticles are of great interest as they have the high binding
capacity to many drugs with different physicochemical and structural properties and are well tolerated
without any side effects. In this review, different types of albumin, special nanotechnological techniques
for the production of albumin nanoparticles, such as desolvation, emulsification, thermal gelation,
nano-spray drying, and self-assembly, as well as the characterization of albumin nanoparticles,
such as particle size, surface charge, morphological properties, drug content, and release profile have
been discussed. In addition, the in vitro and in vivo studies of albumin nanoparticles intended both diagnostic
and therapeutic usage have been investigated.
Collapse
Affiliation(s)
- Ozge Esim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Canan Hascicek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Zhang W, Song C, Ren X. Circ_0003998 Regulates the Progression and Docetaxel Sensitivity of DTX-Resistant Non-Small Cell Lung Cancer Cells by the miR-136-5p/CORO1C Axis. Technol Cancer Res Treat 2021; 20:1533033821990040. [PMID: 33511909 PMCID: PMC7871354 DOI: 10.1177/1533033821990040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Drug resistance in cancer cells is a major challenge for anti-cancer therapy.
Circular RNA (circRNA) circ_0003998 has been identified as an important
regulator in the chemoresistance development of non-small cell lung cancer
(NSCLC). The purpose of this study was to investigate the molecular basis
underlying the resistance control of circ_0003998 in NSCLC. Methods: The levels of circ_0003998, miR-136-5p and coronin 1C (CORO1C) were gauged by
the quantitative real-time polymerase chain reaction (qRT-PCR) or western
blot. Cell viability, colony formation and apoptosis were evaluated by the
Cell Counting Kit-8 (CCK-8), colony formation and flow cytometry assays,
respectively. Targeted relationships among circ_0003998, miR-136-5p and
CORO1C were confirmed by the dual-luciferase reporter and RNA
immunoprecipitation (RIP) assays. Animal studies were performed to evaluate
the function of circ_0003998 in vivo. Results: Our data indicated that circ_0003998 expression was associated with NSCLC
resistance to docetaxel (DTX). The knockdown of circ_0003998 promoted DTX
sensitivity, suppressed cell colony formation, and enhanced cell apoptosis
of A549/DTX and H1299/DTX cells in vitro. Moreover,
circ_0003998 knockdown hampered tumor growth and enhanced DTX sensitivity
in vivo. Mechanistically, circ_0003998 directly
targeted miR-136-5p, and miR-136-5p was a molecular mediator of circ_0003998
function in vitro. Furthermore, CORO1C was a functionally
important target of miR-136-5p in regulating DTX-resistant NSCLC cell colony
formation, apoptosis and DTX sensitivity in vitro.
Additionally, circ_0003998 modulated CORO1C expression by working as a
miR-136-5p sponge. Conclusion: Our present work identified that circ_0003998 regulated DTX-resistant NSCLC
cell colony formation, apoptosis and DTX sensitivity at least partially by
controlling CORO1C expression by sponging miR-136-5p, illuminating a
rationale for developing circ_0003998 as a therapeutic target of
chemoresistant NSCLC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Chao Song
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xiaona Ren
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
12
|
Du Y, Shang B, Yi H, Yuan Y, Zhen Y, Xu J. Albumin‐Mediated Delivery of Bioactive Peptides for Pancreatic Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yue Du
- Department of Pharmacy the First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College No. 1 Tiantanxili Beijing 100050 China
| | - Boyang Shang
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College No. 1 Tiantanxili Beijing 100050 China
| | - Hongfei Yi
- West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Yongliang Yuan
- Department of Pharmacy the First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
| | - Yongsu Zhen
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College No. 1 Tiantanxili Beijing 100050 China
| | - Jian Xu
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College No. 1 Tiantanxili Beijing 100050 China
| |
Collapse
|
13
|
Tong Q, Qiu N, Ji J, Ye L, Zhai G. Research Progress in Bioinspired Drug Delivery Systems. Expert Opin Drug Deliv 2020; 17:1269-1288. [PMID: 32543953 DOI: 10.1080/17425247.2020.1783235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION To tackle challenges associated with traditional drug carriers, investigators have explored cells, cellular membrane, and macromolecular components including proteins and exosomes for the fabrication of delivery vehicles, owing to their excellent biocompatibility, lower toxicity, lower immunogenicity and similarities with the host. Biomacromolecule- and biomimetic nanoparticle (NP)-based drug/gene carriers are drawing immense attention, and biomimetic drug delivery systems (BDDSs) have been conceived and constructed. AREAS COVERED This review focuses on BDDS based on mammalian cells, including blood cells, cancer cells, adult stem cells, endogenous proteins, pathogens and extracellular vesicles (EVs). EXPERT OPINION Compared with traditional drug delivery systems (DDSs), BDDSs are based on biological nanocarriers, exhibiting superior biocompatibility, fewer side effects, natural targeting, and diverse modifications. In addition to directly employing natural biomaterials such as cells, proteins, pathogens and EVs as carriers, BDDSs offer these advantages by mimicking the structure of natural nanocarriers through bioengineering technologies. Furthermore, BDDSs demonstrate fewer limitations and irregularities than natural materials and can overcome several shortcomings associated with natural carriers. Although research remains ongoing to resolve these limitations, it is anticipated that BDDSs possess the potential to overcome challenges associated with traditional DDS, with a promising future in the treatment of human diseases.
Collapse
Affiliation(s)
- Qirong Tong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, PR China
| |
Collapse
|
14
|
Martínez-López AL, Pangua C, Reboredo C, Campión R, Morales-Gracia J, Irache JM. Protein-based nanoparticles for drug delivery purposes. Int J Pharm 2020; 581:119289. [PMID: 32243968 DOI: 10.1016/j.ijpharm.2020.119289] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
15
|
Yazdani H, Kaul E, Bazgir A, Maysinger D, Kakkar A. Telodendrimer-Based Macromolecular Drug Design using 1,3-Dipolar Cycloaddition for Applications in Biology. Molecules 2020; 25:E857. [PMID: 32075239 PMCID: PMC7071137 DOI: 10.3390/molecules25040857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
An architectural polymer containing hydrophobic isoxazole-based dendron and hydrophilic polyethylene glycol linear tail is prepared by a combination of the robust ZnCl2 catalyzed alkyne-nitrile oxide 1,3-dipolar cycloaddition and esterification chemistry. This water soluble amphiphilic telodendrimer acts as a macromolecular biologically active agent and shows concentration dependent reduction of glioblastoma (U251) cell survival.
Collapse
Affiliation(s)
- Hossein Yazdani
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada;
- Department of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran;
| | - Esha Kaul
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada;
| | - Ayoob Bazgir
- Department of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran;
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada;
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada;
| |
Collapse
|
16
|
Gonda A, Zhao N, Shah JV, Calvelli HR, Kantamneni H, Francis NL, Ganapathy V. Engineering Tumor-Targeting Nanoparticles as Vehicles for Precision Nanomedicine. MED ONE 2019; 4:e190021. [PMID: 31592196 PMCID: PMC6779336 DOI: 10.20900/mo.20190021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a nascent and emerging field that holds great potential for precision oncology, nanotechnology has been envisioned to improve drug delivery and imaging capabilities through precise and efficient tumor targeting, safely sparing healthy normal tissue. In the clinic, nanoparticle formulations such as the first-generation Abraxane® in breast cancer, Doxil® for sarcoma, and Onivyde® for metastatic pancreatic cancer, have shown advancement in drug delivery while improving safety profiles. However, effective accumulation of nanoparticles at the tumor site is sub-optimal due to biological barriers that must be overcome. Nanoparticle delivery and retention can be altered through systematic design considerations in order to enhance passive accumulation or active targeting to the tumor site. In tumor niches where passive targeting is possible, modifications in the size and charge of nanoparticles play a role in their tissue accumulation. For niches in which active targeting is required, precision oncology research has identified targetable biomarkers, with which nanoparticle design can be altered through bioconjugation using antibodies, peptides, or small molecule agonists and antagonists. This review is structured to provide a better understanding of nanoparticle engineering design principles with emphasis on overcoming tumor-specific biological barriers.
Collapse
Affiliation(s)
- Amber Gonda
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Jay V. Shah
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Hannah R. Calvelli
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Harini Kantamneni
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Nicola L. Francis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Alessandri G, Coccè V, Pastorino F, Paroni R, Dei Cas M, Restelli F, Pollo B, Gatti L, Tremolada C, Berenzi A, Parati E, Brini AT, Bondiolotti G, Ponzoni M, Pessina A. Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy. J Control Release 2019; 302:2-18. [DOI: 10.1016/j.jconrel.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
|
18
|
Zhang J, Wang L, You X, Xian T, Wu J, Pang J. Nanoparticle Therapy for Prostate Cancer: Overview and Perspectives. Curr Top Med Chem 2019; 19:57-73. [PMID: 30686255 DOI: 10.2174/1568026619666190125145836] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/27/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Traditional prostate cancer therapy and especially chemotherapy has faced many challenges. Low accumulation levels, rapid clearance or drug resistance at the tumor site have been central to why the effect of chemotherapy drugs has declined. Applications of nanotechnology to biomedicine have enabled the development of nanoparticle therapeutic carriers suited for the delivery of chemotherapeutics in cancer therapy. This review describes the current nature of nanoparticle therapeutic carriers for prostate cancer. It describes typical nanocarriers commonly used for the delivery of chemotherapy or for imaging examination. Targeting strategies and related influencing factors are investigated to find ways of enhancing treatment effects of nanoparticles. The overall purpose of this review is to further understanding and to offer recommendations on the design and development of therapeutic nanoparticles for prostate cancer.
Collapse
Affiliation(s)
- Junfu Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.,Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Liying Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinru You
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Tuzeng Xian
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
19
|
Yi T, Huang J, Chen X, Xiong H, Kang Y, Wu J. Synthesis, characterization, and formulation of poly-puerarin as a biodegradable and biosafe drug delivery platform for anti-cancer therapy. Biomater Sci 2019; 7:2152-2164. [PMID: 30896685 DOI: 10.1039/c9bm00111e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly-puerarin, a novel biodegradable biomaterial as a drug delivery platform in anti-tumour therapy.
Collapse
Affiliation(s)
- Tianqi Yi
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Jun Huang
- Department of Colorectal Surgery
- The Sixth Affiliated Hospital
- Sun Yat-sen University
- Guangzhou
- China
| | - Xuewen Chen
- Agriculture and Forestry Yan Jiaxian Innovative Class
- Plant Protection
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Haiyun Xiong
- The Seventh Affiliated Hospital
- Sun Yat-sen University
- Shenzhen
- China
| | - Yang Kang
- The Seventh Affiliated Hospital
- Sun Yat-sen University
- Shenzhen
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
20
|
Tao C, Chuah YJ, Xu C, Wang DA. Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. J Mater Chem B 2018; 7:357-367. [PMID: 32254722 DOI: 10.1039/c8tb02477d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the most abundant plasma protein, serum albumin has been extensively studied and employed for therapeutic applications. Despite its direct clinical use for the maintenance of blood homeostasis in various medical conditions, this review exclusively summarizes and discusses albumin-based bio-conjugates and assemblies as versatile bio-functional additives and carriers in biomedical applications. As one of the smallest-sized proteins in the human body, albumin is physiochemically stable and biochemically inert. Moreover, albumin is also endowed with abundant specific binding sites for numerous therapeutic compounds, which also endow it with superior bioactivities. Firstly, due to its small size and binding specificity, albumin alone or its derived assemblies can be utilized as competent drug carriers, which can deliver drugs through the enhanced permeability and retention (EPR) effect or actively target lesion sites through binding with gp60 and secreted protein acidic and rich in cysteine (SPARC) in tumor sites. Furthermore, its biochemical stability and inertness make it a safe and biocompatible coating material for use in biomedical applications. Albumin-based surface modifying additives can be used to functionalize both macro substrates (e.g. surfaces of medical devices or implants) and nanoparticle surfaces (e.g. drug carriers and imaging contrast agents). In this review, we elaborate on the synthesis and applications of albumin-based bio-functional coatings and drug carriers, respectively.
Collapse
Affiliation(s)
- Chao Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore, Singapore.
| | | | | | | |
Collapse
|