1
|
Komeijani M, Bahri-Laleh N, Mirjafary Z, D’Alterio MC, Rouhani M, Sakhaeinia H, Moghaddam AH, Mirmohammadi SA, Poater A. PLA/PMMA Reactive Blending in the Presence of MgO as an Exchange Reaction Catalyst. Polymers (Basel) 2025; 17:845. [PMID: 40219236 PMCID: PMC11991274 DOI: 10.3390/polym17070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
To address the limitations of poly (lactic acid) (PLA), it was blended with poly (methyl methacrylate) (PMMA) as a toughening component, using MgO nanoparticles (NPs, 0.075-0.15 wt%) as a catalyst. SEM pictures confirmed the good miscibility of the blends. Mechanical tests showed a slight decrease in elastic modulus and tensile strength for the PLA/PMMA125 sample containing 0.125% MgO. Yet, elongation at break rose by over 60% and impact strength increased by over 400% compared to pure PLA. Also, MgO facilitated the shifting of the glass transition temperature (Tg) of both polymers in DSC curves. Additionally, the absence of cold crystallization in PLA, coupled with reductions in its melting temperature (Tm) and crystallinity, were identified as critical factors contributing to improved miscibility within the reactive blend. Melt flow index (MFI) evaluation indicated a decrease in viscosity, while water contact angle measurements revealed an increase in polar groups on the surfaces of the MgO-containing samples. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses confirmed the effective distribution and dispersion of NPs throughout the blend, along with a significant decrease in crystallinity. Moreover, DFT calculations were performed to better understand the role of MgO in the reaction. The findings offered key insights into the reaction mechanism, confirming that MgO plays a crucial role in facilitating the transesterification between PLA and PMMA. These findings underscore the enhanced performance of exchange reactions between the active groups of both polymers in the presence of MgO, leading to the formation of PLA-PMMA copolymers with superior miscibility and mechanical properties. Finally, a cell culture assay confirmed the blend's non-toxicity, showing its versatile potential.
Collapse
Affiliation(s)
- Masoud Komeijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.K.); (Z.M.); (M.R.)
| | - Naeimeh Bahri-Laleh
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan;
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.K.); (Z.M.); (M.R.)
| | - Massimo Christian D’Alterio
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy;
| | - Morteza Rouhani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.K.); (Z.M.); (M.R.)
| | - Hossein Sakhaeinia
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1496969191, Iran; (H.S.); (A.H.M.)
| | - Amin Hedayati Moghaddam
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1496969191, Iran; (H.S.); (A.H.M.)
| | - Seyed Amin Mirmohammadi
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1496969191, Iran; (H.S.); (A.H.M.)
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
2
|
Ranjbari F, Fathi F. Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy. Anticancer Agents Med Chem 2024; 24:733-744. [PMID: 38409708 DOI: 10.2174/0118715206295598240215112910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Semiconductor quantum dots (QD) are a kind of nanoparticle with unique optical properties that have attracted a lot of attention in recent years. In this paper, the characteristics of these nanoparticles and their applications in nanophototherapy have been reviewed. Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has gained special importance because of its high accuracy and local treatment due to the activation of the drug at the tumor site. PDT is a new way of cancer treatment that is performed by activating light-sensitive compounds named photosensitizers (PS) by light. PSs cause the destruction of diseased tissue through the production of singlet oxygen. PTT is another non-invasive method that induces cell death through the conversion of near-infrared light (NIR) into heat in the tumor situation by the photothermal agent (PA). Through using energy transfer via the FRET (Förster resonance energy transfer) process, QDs provide light absorption wavelength for both methods and cover the optical weaknesses of phototherapy agents.
Collapse
Affiliation(s)
- Faride Ranjbari
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
4
|
Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023; 14:1059343. [PMID: 37538179 PMCID: PMC10395100 DOI: 10.3389/fphar.2023.1059343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
Various nanoparticles are used in the discovery of new nanomedicine to overcome the shortages of conventional drugs. Therefore, this article presents a comprehensive and up-to-date review of the effects of nanoparticle-based drugs in the treatment of respiratory disorders, including both basic and clinical studies. Databases, including PubMed, Web of Knowledge, and Scopus, were searched until the end of August 2022 regarding the effect of nanoparticles on respiratory diseases. As a new tool, nanomedicine offered promising applications for the treatment of pulmonary diseases. The basic composition and intrinsic characteristics of nanomaterials showed their effectiveness in treating pulmonary diseases. The efficiency of different nanomedicines has been demonstrated in experimental animal models of asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer, lung infection, and other lung disorders, confirming their function in the improvement of respiratory disorders. Various types of nanomaterials, such as carbon nanotubes, dendrimers, polymeric nanomaterials, liposomes, quantum dots, and metal and metal oxide nanoparticles, have demonstrated therapeutic effects on respiratory disorders, which may lead to new possible remedies for various respiratory illnesses that could increase drug efficacy and decrease side effects.
Collapse
Affiliation(s)
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Litvinov I, Salova A, Aksenov N, Kornilova E, Belyaeva T. Microenvironmental Impact on InP/ZnS-Based Quantum Dots in In Vitro Models and in Living Cells: Spectrally- and Time-Resolved Luminescence Analysis. Int J Mol Sci 2023; 24:ijms24032699. [PMID: 36769021 PMCID: PMC9916881 DOI: 10.3390/ijms24032699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Quantum dots (QDs) have attracted great attention as tools for theranostics that combine the possibility of simultaneous biological target visualization and medicine delivery. Here, we address whether core/shell InP/ZnS QDs (InP-QDs) may be an alternative to toxic Cd-based QDs. We analyze InP-QD photophysical characteristics in cell culture medium, salt solutions, and directly in the cells. It was demonstrated that InP-QDs were internalized into endolysosomes in HeLa and A549 cells with dynamics similar to Cd-based QDs of the same design, but the two cell lines accumulated them with different efficiencies. InP-QDs were reliably detected in the endosomes despite their low quantum yields. Cell culture medium efficiently decreased the InP-QD photoluminescence lifetime by 50%, acidic pH (4.0) had a moderate effect (20-25% reduction), and quenching by salt solutions typical of intra-endosomal medium composition resulted in a decrease of about 10-15%. The single-vesicle fluorescence-lifetime imaging microscopy analysis of QDs inside and outside the cells shows that the scatter between endosomes in the same cell can be significant, which indicates the complex impact of the abovementioned factors on the state of InP-QDs. The PI test and MTT test demonstrate that InP-QDs are toxic for both cell lines at concentrations higher than 20 nM. Possible reasons for InP-QD toxicity are discussed.
Collapse
Affiliation(s)
- Ilia Litvinov
- Institute of Cytology, Russian Academy of Sciences,194064 Saint Petersburg, Russia
| | - Anna Salova
- Institute of Cytology, Russian Academy of Sciences,194064 Saint Petersburg, Russia
| | - Nikolay Aksenov
- Institute of Cytology, Russian Academy of Sciences,194064 Saint Petersburg, Russia
| | - Elena Kornilova
- Institute of Cytology, Russian Academy of Sciences,194064 Saint Petersburg, Russia
- Higher School of Biomedical Systems and Technologies, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-921-302-59-05
| | - Tatiana Belyaeva
- Institute of Cytology, Russian Academy of Sciences,194064 Saint Petersburg, Russia
| |
Collapse
|
6
|
Wang J, Feng S, Sheng Q, Liu R. Influence of InP/ZnS Quantum Dots on Thermodynamic Properties and Morphology of the DPPC/DPPG Monolayers at Different Temperatures. Molecules 2023; 28:molecules28031118. [PMID: 36770784 PMCID: PMC9920855 DOI: 10.3390/molecules28031118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
In this work, the effects of InP/ZnS quantum dots modified with amino or carboxyl group on the characteristic parameters in phase behavior, elastic modulus, relaxation time of the DPPC/DPPG mixed monolayers are studied by the Langmuir technology at the temperature of 37, 40 and 45 °C. Additionally, the information on the morphology and height of monolayers are obtained by the Langmuir-Bloggett technique and atomic force microscope technique. The results suggest that the modification of the groups can reduce the compressibility of monolayers at a higher temperature, and the most significant effect is the role of the amino group. At a high temperature of 45 °C, the penetration ability of InP/ZnS-NH2 quantum dots in the LC phase of the mixed monolayer is stronger. At 37 °C and 40 °C, there is no clear difference between the penetration ability of InP/ZnS-NH2 quantum dots and InP/ZnS-COOH quantum dots. The InP/ZnS-NH2 quantum dots can prolong the recombination of monolayers at 45 °C and accelerate it at 37 °C and 40 °C either in the LE phase or in the LC phase. However, the InP/ZnS-COOH quantum dots can accelerate it in the LE phase at all temperatures involved but only prolong it at 45 °C in the LC phase. This work provides support for understanding the effects of InP/ZnS nanoparticles on the structure and properties of cell membranes, which is useful for understanding the behavior about the ingestion of nanoparticles by cells and the cause of toxicity.
Collapse
Affiliation(s)
- Juan Wang
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi’an 710123, China
- Correspondence: (J.W.); (R.L.)
| | - Shun Feng
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Qingqing Sheng
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Ruilin Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- Correspondence: (J.W.); (R.L.)
| |
Collapse
|
7
|
Le N, Zhang M, Kim K. Quantum Dots and Their Interaction with Biological Systems. Int J Mol Sci 2022; 23:ijms231810763. [PMID: 36142693 PMCID: PMC9501347 DOI: 10.3390/ijms231810763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs’ toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots’ impacts, as well as QDs’ interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs’ cellular uptake and trafficking, and QDs’ general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
8
|
Das D, Saha M, Das AR. Synthesis, properties and catalysis of quantum dots in C–C and C-heteroatom bond formations. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Luminescent quantum dots (QDs) represent a new form of carbon nanomaterials which have gained widespread attention in recent years, especially in the area of chemical sensing, bioimaging, nanomedicine, solar cells, light-emitting diode (LED), and electrocatalysis. Their extremely small size renders some unusual properties such as quantum confinement effects, good surface binding properties, high surface‐to‐volume ratios, broad and intense absorption spectra in the visible region, optical and electronic properties different from those of bulk materials. Apart from, during the past few years, QDs offer new and versatile ways to serve as photocatalysts in organic synthesis. Quantum dots (QD) have band gaps that could be nicely controlled by a number of factors in a complicated way, mentioned in the article. Processing, structure, properties and applications are also reviewed for semiconducting quantum dots. Overall, this review aims to summarize the recent innovative applications of QD or its modified nanohybrid as efficient, robust, photoassisted redox catalysts in C–C and C-heteroatom bond forming reactions. The recent structural modifications of QD or its core structure in the development of new synthetic methodologies are also highlighted. Following a primer on the structure, properties, and bio-functionalization of QDs, herein selected examples of QD as a recoverable sustainable nanocatalyst in various green media are embodied for future reference.
Collapse
Affiliation(s)
- Dwaipayan Das
- Department of Chemistry , University of Calcutta , Kolkata 700009 , India
| | - Moumita Saha
- Department of Chemistry , University of Calcutta , Kolkata 700009 , India
| | - Asish. R. Das
- Department of Chemistry , University of Calcutta , Kolkata 700009 , India
| |
Collapse
|
9
|
Zhang M, Kim DS, Patel R, Wu Q, Kim K. Intracellular Trafficking and Distribution of Cd and InP Quantum Dots in HeLa and ML-1 Thyroid Cancer Cells. NANOMATERIALS 2022; 12:nano12091517. [PMID: 35564224 PMCID: PMC9104504 DOI: 10.3390/nano12091517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
The study of the interaction of engineered nanoparticles, including quantum dots (QDs), with cellular constituents and the kinetics of their localization and transport, has provided new insights into their biological consequences in cancers and for the development of effective cancer therapies. The present study aims to elucidate the toxicity and intracellular transport kinetics of CdSe/ZnS and InP/ZnS QDs in late-stage ML-1 thyroid cancer using well-tested HeLa as a control. Our XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) viability assay (Cell Proliferation Kit II) showed that ML-1 cells and non-cancerous mouse fibroblast cells exhibit no viability defect in response to these QDs, whereas HeLa cell viability decreases. These results suggest that HeLa cells are more sensitive to the QDs compared to ML-1 cells. To test the possibility that transporting rates of QDs are different between HeLa and ML-1 cells, we performed a QD subcellular localization assay by determining Pearson’s Coefficient values and found that HeLa cells showed faster QDs transporting towards the lysosome. Consistently, the ICP-OES test showed the uptake of CdSe/ZnS QDs in HeLa cells was significantly higher than in ML-1 cells. Together, we conclude that high levels of toxicity in HeLa are positively correlated with the traffic rate of QDs in the treated cells.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| | - Daniel S. Kim
- Emory College of Arts and Science, Emory University, 201 Dowman Dr., Atlanta, GA 30322, USA;
| | - Rishi Patel
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville Ave, Springfield, MO 65806, USA; (R.P.); (Q.W.)
| | - Qihua Wu
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville Ave, Springfield, MO 65806, USA; (R.P.); (Q.W.)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
10
|
Ren L, Wang L, Rehberg M, Stoeger T, Zhang J, Chen S. Applications and Immunological Effects of Quantum Dots on Respiratory System. Front Immunol 2022; 12:795232. [PMID: 35069577 PMCID: PMC8770806 DOI: 10.3389/fimmu.2021.795232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Quantum dots (QDs), are one kind of nanoscale semiconductor crystals with specific electronic and optical properties, offering near-infrared mission and chemically active surfaces. Increasing interest for QDs exists in developing theranostics platforms for bioapplications such as imaging, drug delivery and therapy. Here we summarized QDs' biomedical applications, toxicity, and immunological effects on the respiratory system. Bioapplications of QDs in lung include biomedical imaging, drug delivery, bio-sensing or diagnosis and therapy. Generically, toxic effects of nanoparticles are related to the generation of oxidative stresses with subsequent DNA damage and decreased lung cells viability in vitro and in vivo because of release of toxic metal ions or the features of QDs like its surface charge. Lastly, pulmonary immunological effects of QDs mainly include proinflammatory cytokines release and recruiting innate leukocytes or adaptive T cells.
Collapse
Affiliation(s)
- Laibin Ren
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lingwei Wang
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Markus Rehberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg and Member of the German Center for Lung Research, Munich, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg and Member of the German Center for Lung Research, Munich, Germany
| | - Jianglin Zhang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Shanze Chen
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Xue D, Zou W, Liu D, Li L, Chen T, Yang Z, Chen Y, Wang X, Lu W, Lin G. Cytotoxicity and transcriptome changes triggered by CuInS 2/ZnS quantum dots in human glial cells. Neurotoxicology 2021; 88:134-143. [PMID: 34785253 DOI: 10.1016/j.neuro.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 01/27/2023]
Abstract
As a newly developed cadmium-free quantum dot (QD), CuInS2/ZnS has great application potential in many fields, but its biological safety has not been fully understood. In this study, the in vitro toxicity of CuInS2/ZnS QDs on U87 human glioma cell line was explored. The cells were treated with different concentrations of QDs (12.5, 25, 50 and 100 μg/mL), and the uptake of QDs by the U87 cells was detected by fluorescence imaging and flow cytometry. The cell viability was observed by MTT assay, and the gene expression profile was analyzed by transcriptome sequencing. These results showed that QDs could enter the cells and mainly located in the cytoplasm. The uptake rate was over 90 % when the concentration of QDs reached 25 μg/mL. The cell viability (50 and 100 μg/mL) increased at 24 h (P < 0.05), but no significant difference after 48 h and 72 h treatment. The results of differential transcription showed that coding RNA accounted for the largest proportion (62.15 %), followed by long non-coding RNA (18.65 %). Total 220 genes were up-regulated and 1515 genes were down-regulated, and significantly altered gene functions included nucleosome, chromosome-DNA binding, and chromosome assembly. In conclusion, CuInS2/ZnS QDs could enter U87 cells, did not reduce the cell viability, but would obviously alter the gene expression profile. These findings provide valuable information for a proper understanding of the toxicity risk of CuInS2/ZnS QD and promote the rational utilization of QDs in the future.
Collapse
Affiliation(s)
- Dahui Xue
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wenyi Zou
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Dongmeng Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Li Li
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Tingting Chen
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhiwen Yang
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yajing Chen
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaomei Wang
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wencan Lu
- Department of Spine Surgery, Shenzhen University General Hospital, Shenzhen, 518060, China.
| | - Guimiao Lin
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
12
|
Liu YY, Chang Q, Sun ZX, Liu J, Deng X, Liu Y, Cao A, Wang H. Fate of CdSe/ZnS quantum dots in cells: Endocytosis, translocation and exocytosis. Colloids Surf B Biointerfaces 2021; 208:112140. [PMID: 34597939 DOI: 10.1016/j.colsurfb.2021.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Semiconductor quantum dots (QDs) have been extensively explored for extensive bioapplications, yet their cellular fate, especially exocytosis, has not been thoroughly investigated. Herein, we systematically investigated the whole cellular process from the endocytosis, intercellular trafficking, to the exocytosis of a typical QD, core/shell CdSe/ZnS QD. Using confocal laser scanning microscopy and flow cytometry, and after carefully eliminating the effect of cell division, we found that the QDs were internalized by HeLa cells with a time-, dose-, and serum-dependent manner. The cellular uptake was inhibited by serum, but eventually peaked after 4-6 h incubation with or without serum. The primary endocytosis pathway was clathrin-mediated, and actin- and microtubule-dependent in the medium with serum, while the caveolae-mediated endocytosis and macropinocytosis were more important for the QDs in the serum-free medium. Inside cells, most QDs distributed in lysosomes, and some entered mitochondria, endoplasmic reticulum, and Golgi apparatus. The translocation of the QDs from other organelles to Golgi apparatus was observed. The exocytosis of QDs was faster than the endocytosis, reaching the maximum in about one hour after cultured in fresh culture medium, with around 60% of the internalized QDs remained undischarged. The exocytosis process was energy- and actin-dependent, and the lysosome exocytosis and endoplasmic reticulum/Golgi pathway were the main routes. This study provides a full picture of behavior and fate of QDs in cells, which may facilitate the design of ideal QDs applied in biomedical and other fields.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Zao-Xia Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
13
|
Wang J, Feng S, Liu J, Liu RL. Effects of Carboxyl or Amino Group Modified InP/ZnS Nanoparticles Toward Simulated Lung Surfactant Membrane. Front Bioeng Biotechnol 2021; 9:714922. [PMID: 34490224 PMCID: PMC8417309 DOI: 10.3389/fbioe.2021.714922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Quantum dots (QDs) as a promising optical probe have been widely used for in vivo biomedical imaging; especially enormous efforts recently have focused on the potential toxicity of QDs to the human body. The toxicological effects of the representative InP/ZnS QDs as a cadmium-free emitter are still in the early stage and have not been fully unveiled. In this study, the DPPC/DPPG mixed monolayer was used to simulate the lung surfactant monolayer. The InP/ZnS-COOH QDs and InP/ZnS-NH2 QDs were introduced to simulate the lung surfactant membrane's environment in the presence of InP/ZnS QDs. The effects of InP/ZnS QDs on the surface behavior, elastic modulus, and stability of DPPC/DPPG mixed monolayer were explored by the surface pressure-mean molecular area isotherms and surface pressure-time curves. The images observed by Brewster angle microscope and atomic force microscope showed that the InP/ZnS QDs affected the morphology of the monolayer. The results further demonstrated that the InP/ZnS QDs coated with different surface groups can obviously adjust the mean molecular area, elastic modulus, stability, and microstructure of DPPC/DPPG mixed monolayer. Overall, this work provided useful information for in-depth understanding of the effects of the -COOH or -NH2 group coated InP/ZnS QDs on the surface of lung surfactant membrane, which will help scientists to further study the physiological toxicity of InP/ZnS QDs to lung health.
Collapse
Affiliation(s)
- Juan Wang
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an, China
| | - Shun Feng
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an, China
| | - Jie Liu
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an, China
| | - Rui-Lin Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Ding Y, Yang Y, Chen J, Chen H, Wu Y, Jin L. Toxic effects of ZnSe/ZnS quantum dots on the reproduction and genotoxiticy of rare minnow (Gobiocypris rarus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109065. [PMID: 33915279 DOI: 10.1016/j.cbpc.2021.109065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
ZnSe/ZnS quantum dots (QDs) have excellent optical properties, but researchers have not clearly determined whether they cause harm to organisms. In the present study, the effect of ZnSe/ZnS QDs on the parents and offspring of rare minnow were evaluated for the first time. Exposure to ZnSe/ZnS QDs altered the testicular structure, caused sperm DNA damage and decreased sperm motility in males. They also suppressed the expression of reproduction-related genes, such as androgen receptor (Ar), DM-related transcription factor 1 (Dmrt1), estrogen receptor (Er), and X-ray repair cross complementing gene 1 (Xrcc1). Continued monitoring of the F1 generation revealed that the embryonic development of the F1 generation was abnormal and the growth index of the F1 generation of adult fish showed hormesis. A comet assay showed that the F1 generation still had DNA damage in the 400 and 800 nmol/L groups at 96 h post-fertilization (hpf). Thus, ZnSe/ZnS QDs damaged the reproductive system of the rare minnow, and this effect continued to the F1 generation.
Collapse
Affiliation(s)
- Yanhong Ding
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yang Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
15
|
McCollum CR, Bertram JR, Nagpal P, Chatterjee A. Photoactivated Indium Phosphide Quantum Dots Treat Multidrug-Resistant Bacterial Abscesses In Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30404-30419. [PMID: 34156817 DOI: 10.1021/acsami.1c08306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing prevalence of drug-resistant bacterial strains is causing illness and death in an unprecedented number of people around the globe. Currently implemented small-molecule antibiotics are both increasingly less efficacious and perpetuating the evolution of resistance. Here, we propose a new treatment for drug-resistant bacterial infection in the form of indium phosphide quantum dots (InP QDs), semiconductor nanoparticles that are activated by light to produce superoxide. We show that the superoxide generated by InP QDs is able to effectively kill drug-resistant bacteria in vivo to reduce subcutaneous abscess infection in mice without being toxic to the animal. Our InP QDs are activated by near-infrared wavelengths with high transmission through skin and tissues and are composed of biocompatible materials. Body weight and organ tissue histology show that the QDs are nontoxic at a macroscale. Inflammation and oxidative stress markers in serum demonstrate that the InP QD treatment did not result in measurable effects on mouse health at concentrations that reduce drug-resistant bacterial viability in subcutaneous abscesses. The InP QD treatment decreased bacterial viability by over 3 orders of magnitude in subcutaneous abscesses formed in mice. These InP QDs thus provide a promising alternative to traditional small-molecule antibiotics, with the potential to be applied to a wide variety of infection types, including wound, respiratory, and urinary tract infections.
Collapse
Affiliation(s)
- Colleen R McCollum
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John R Bertram
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Prashant Nagpal
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
- Quantum Biology, Inc., Boulder, Colorado 80301, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
| |
Collapse
|
16
|
Karatum O, Aria MM, Eren GO, Yildiz E, Melikov R, Srivastava SB, Surme S, Dogru IB, Bahmani Jalali H, Ulgut B, Sahin A, Kavakli IH, Nizamoglu S. Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons. Front Neurosci 2021; 15:652608. [PMID: 34248476 PMCID: PMC8260855 DOI: 10.3389/fnins.2021.652608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022] Open
Abstract
Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (∼0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | | | - Guncem Ozgun Eren
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| | - Erdost Yildiz
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey
| | - Rustamzhon Melikov
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | | | - Saliha Surme
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Itir Bakis Dogru
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| | | | - Burak Ulgut
- Department of Chemistry, Bilkent University, Ankara, Turkey
| | - Afsun Sahin
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey
- Department of Ophthalmology, Medical School, Koc University, Istanbul, Turkey
| | | | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
17
|
Dussert F, Wegner KD, Moriscot C, Gallet B, Jouneau PH, Reiss P, Carriere M. Evaluation of the Dermal Toxicity of InZnP Quantum Dots Before and After Accelerated Weathering: Toward a Safer-By-Design Strategy. FRONTIERS IN TOXICOLOGY 2021; 3:636976. [PMID: 35295141 PMCID: PMC8915823 DOI: 10.3389/ftox.2021.636976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Quantum dots (QDs) are colloidal fluorescent semiconductor nanocrystals with exceptional optical properties. Their widespread use, particularly in light-emitting diodes (LEDs), displays, and photovoltaics, is questioning their potential toxicity. The most widely used QDs are CdSe and CdTe QDs, but due to the toxicity of cadmium (Cd), their use in electrical and electronic equipment is now restricted in the European Union through the Restriction of hazardous substances in electrical and electronic equipment (RoHS) directive. This has prompted the development of safer alternatives to Cd-based QDs; among them, InP QDs are the most promising ones. We recently developed RoHS-compliant QDs with an alloyed core composed of InZnP coated with a Zn(Se,S) gradient shell, which was further coated with an additional ZnS shell to protect the QDs from oxidative surface degradation. In this study, the toxicity of single-shelled InZnP/Zn(Se,S) core/gradient shell and of double-shelled InZnP/Zn(Se,S)/ZnS core/shell/shell QDs was evaluated both in their pristine form and after aging in a climatic chamber, mimicking a realistic environmental weathering. We show that both pristine and aged QDs, whatever their composition, accumulate in the cytoplasm of human primary keratinocytes where they form agglomerates at the vicinity of the nucleus. Pristine QDs do not show overt toxicity to cells, while aged QDs show cytotoxicity and genotoxicity and significantly modulate the mRNA expression of proteins involved in zinc homeostasis, cell redox response, and inflammation. While the three aged QDs show similar toxicity, the toxicity of pristine gradient-shell QD is higher than that of pristine double-shell QD, confirming that adding a second shell is a promising safer-by-design strategy. Taken together, these results suggest that end-of-life degradation products from InP-based QDs are detrimental to skin cells in case of accidental exposure and that the mechanisms driving this effect are oxidative stress, inflammation, and disturbance of cell metal homeostasis, particularly Zn homeostasis. Further efforts to promote safer-by-design formulations of QDs, for instance by reducing the In and Zn content and/or implementing a more robust outer shell, are therefore warranted.
Collapse
Affiliation(s)
- Fanny Dussert
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, Grenoble, France
| | - Karl David Wegner
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, France
| | - Christine Moriscot
- Integrated Structural Biology Grenoble (ISBG), UMS 3518, CNRS, CEA, Université Grenoble Alpes, Grenoble, France
| | - Benoit Gallet
- Université Grenoble-Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Peter Reiss
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, STEP, Grenoble, France
| | - Marie Carriere
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, Grenoble, France
- *Correspondence: Marie Carriere
| |
Collapse
|
18
|
Mosselhy DA, Virtanen J, Kant R, He W, Elbahri M, Sironen T. COVID-19 Pandemic: What about the Safety of Anti-Coronavirus Nanoparticles? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:796. [PMID: 33808934 PMCID: PMC8003598 DOI: 10.3390/nano11030796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023]
Abstract
Every day, new information is presented with respect to how to best combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This manuscript sheds light on such recent findings, including new co-factors (i.e., neuropilin-1) and routes (i.e., olfactory transmucosal) allowing cell entry of SARS-CoV-2 and induction of neurological symptoms, as well as the new SARS-CoV-2 variants. We highlight the SARS-CoV-2 human-animal interfaces and elaborate containment strategies using the same vaccination (i.e., nanoparticle "NP" formulations of the BNT162b2 and mRNA-1273 vaccines) for humans, minks, raccoon dogs, cats, and zoo animals. We investigate the toxicity issues of anti-CoV NPs (i.e., plasmonic NPs and quantum dots) on different levels. Namely, nano-bio interfaces (i.e., protein corona), in vitro (i.e., lung cells) and in vivo (i.e., zebrafish embryos) assessments, and impacts on humans are discussed in a narrative supported by original figures. Ultimately, we express our skeptical opinion on the comprehensive administration of such antiviral nanotheranostics, even when integrated into facemasks, because of their reported toxicities and the different NP parameters (e.g., size, shape, surface charge, and purity and chemical composition of NPs) that govern their end toxicity. We believe that more toxicity studies should be performed and be presented, clarifying the odds of the safe administration of nanotoxocological solutions and the relief of a worried public.
Collapse
Affiliation(s)
- Dina A. Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; (J.V.); (R.K.); (T.S.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, Dokki, Giza 12618, Egypt
| | - Jenni Virtanen
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; (J.V.); (R.K.); (T.S.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; (J.V.); (R.K.); (T.S.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China;
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd., Suzhou 215123, China
| | - Mady Elbahri
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Center for Nanotechnology, Zewail City of Science and Technology, Sheikh Zayed District, Giza 12588, Egypt
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; (J.V.); (R.K.); (T.S.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
19
|
Horstmann C, Kim K. Comparing Transcriptome Profiles of Saccharomyces Cerevisiae Cells Exposed to Cadmium Selenide/Zinc Sulfide and Indium Phosphide/Zinc Sulfide. Genes (Basel) 2021; 12:genes12030428. [PMID: 33802854 PMCID: PMC8002743 DOI: 10.3390/genes12030428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023] Open
Abstract
The primary focus of our research was to obtain global gene expression data in baker’s yeast exposed to sub-lethal doses of quantum dots (QDs), such as green-emitting CdSe/ZnS and InP/ZnS, to reveal novel insights on their unique mechanisms of toxicity. Despite their promising applications, their toxicity and long-lasting effects on the environment are not well understood. To assess toxicity, we conducted cell viability assays, ROS detection assays, and assessed their effects on the trafficking of Vps10-GFP toward the trans-Golgi network with confocal microscopy. Most notably, we used RNA-sequencing (RNA-seq) to obtain gene expression profiles and gene identities of differentially expressed genes (DEGs) in QD-treated yeast. We found CdSe/ZnS QDs significantly altered genes implicated in carboxylic acid, amino acid, nitrogen compounds, protein metabolic processes, transmembrane transport, cellular homeostasis, cell wall organization, translation, and ribosomal biogenesis. Additionally, we found InP/ZnS QDs to alter genes associated with oxidation-reduction, transmembrane transport, metal ion homeostasis, cellular component organization, translation, and protein and nitrogen compound metabolic processes. Interestingly, we observed an increase in reactive oxygen species (ROS) in CdSe/ZnS-treated cells and a decrease in ROS levels in InP/ZnS-treated cells. Nevertheless, we concluded that both QDs modestly contributed cytotoxic effects on the budding yeast.
Collapse
Affiliation(s)
- Cullen Horstmann
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
- Jordan Valley Innovation Center, Missouri State University, 542 N Boonville, Springfield, MO 65806, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
- Correspondence:
| |
Collapse
|
20
|
Zheng N, Yan J, Qian W, Song C, Zuo Z, He C. Comparison of developmental toxicity of different surface modified CdSe/ZnS QDs in zebrafish embryos. J Environ Sci (China) 2021; 100:240-249. [PMID: 33279036 DOI: 10.1016/j.jes.2020.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 06/12/2023]
Abstract
Quantum dots (QDs) are new types of nanomaterials. Few studies have focused on the effect of different surface modified QDs on embryonic development. Herein, we compared the in vivo toxicity of CdSe/ZnS QDs with carboxyl (-COOH) and amino (-NH2) modification using zebrafish embryos. After exposure, the two CdSe/ZnS QDs decreased the survival rate, hatching rate, and embryo movement of zebrafish. Moreover, we found QDs attached to the embryo membrane before hatching and the eyes, yolk and heart after hatching. The attached amount of carboxyl QDs was more. Consistently, the Cd content in embryos and larvae was higher in carboxyl QD-treatment. We further observed that the two QDs caused zebrafish pericardial edema and cardiac dysfunction. In line with it, both carboxyl and amino QDs up-regulated the transcription levels of cardiac development-related genes, and the levels were higher in carboxyl QD-treated groups. Furthermore, the chelator of Cd2+ diethylene triamine pentacetate acid could partially rescued the developmental toxicity caused by the two types of QDs suggesting that both the nature of QDs and the release of Cd2+ contribute to the developmental toxicity. In conclusion, the two CdSe/ZnS QDs have developmental toxicity and affect the cardiac development, and the carboxyl QDs is more toxic possibly due to the higher affinity and more release to embryos and larvae. Our study provides new knowledge that the surface functional modification of QDs is critical on the development on aquatic species, which is beneficial to develop and applicate QDs more safely and environment-friendly.
Collapse
Affiliation(s)
- Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Jinhui Yan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Wang Qian
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
21
|
|
22
|
An Assessment of InP/ZnS as Potential Anti-Cancer Therapy: Quantum Dot Treatment Increases Apoptosis in HeLa Cells. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
InP/ZnS quantum dots (QDs) are an emerging option in QD technologies for uses of fluorescent imaging as well as targeted drug and anticancer therapies based on their customizable properties. In this study we explored effects of InP/ZnS when treated with HeLa cervical cancer cells. We employed XTT viability assays, reactive oxygen species (ROS) analysis, and apoptosis analysis to better understand cytotoxicity extents at different concentrations of InP/ZnS. In addition, we compared the transcriptome profile from the QD-treated HeLa cells with that of untreated HeLa cells to identify changes to the transcriptome in response to the QD. RT-qPCR assay was performed to confirm the findings of transcriptome analysis, and the QD mode of action was illustrated. Our study determined both IC50 concentration of 69 µg/mL and MIC concentration of 167 µg/mL of InP/ZnS. It was observed via XTT assay that cell viability was decreased significantly at the MIC. Production of superoxide, measured by ROS assay with flow cytometry, was decreased, whereas levels of nitrogen radicals increased. Using analysis of apoptosis, we found that induced cell death in the QD-treated samples was shown to be significantly increased when compared to untreated cells. We conclude InP/ZnS QD to decrease cell viability by inducing stress via ROS levels, apoptosis induction, and alteration of transcriptome.
Collapse
|
23
|
Yang Z, Zou W, Pan Y, Yong KT, Li L, Wang X, Liu D, Chen T, Xue D, Lin G. PEGylated CuInS 2/ZnS quantum dots inhibit neurite outgrowth by downregulating the NGF/p75 NTR/MAPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111378. [PMID: 33022524 DOI: 10.1016/j.ecoenv.2020.111378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
The widespread application of cadmium-free CuInS2/ZnS QDs has raised great concern regarding their potential toxicity to humans. To date, toxicological data related to CuInS2/ZnS QDs are scarce. Neurons play extraordinary roles in regulating the activities of organs and systems, and serious consequences occur when neurons are damaged. Currently, the potential toxicity of CuInS2/ZnS QDs on neurons has not been fully elucidated. Here, we investigate the neurotoxicity of PEGylated CuInS2/ZnS (CuInS2/ZnS-PEG) QDs on neuron-like PC12 cells. We found that CuInS2/ZnS-PEG QDs were taken up by PC12 cells, but at a concentration range from 0 to 100 μg/mL, they did not affect the survival rate of the PC12 cells. In addition, we found that CuInS2/ZnS-PEG QDs significantly inhibited neurite outgrowth from and the differentiation of PC12 cells in the presence of NGF, while COOH-modified CuInS2/ZnS QDs or free PEG did not have a similar effect. Further studies showed that CuInS2/ZnS-PEG QDs obviously downregulated the expression of low-affinity NGF receptor (p75NTR) and subsequently negatively regulated the downstream MAPK cascade by dephosphorylating ERK1/2 and AKT. Taken together, these results suggest that CuInS2/ZnS-PEG QDs disturb NGF signal transduction from external stimuli to relevant internal signals, thus affecting normal biological processes such as neurite outgrowth and cell differentiation.
Collapse
Affiliation(s)
- Zhiwen Yang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Wenyi Zou
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Yongning Pan
- Department of Disease Prevention and Control, Shenzhen Baoan District Health Bureau, Shenzhen, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Li Li
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Dongmeng Liu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Tingting Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Dahui Xue
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Guimiao Lin
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
24
|
Kubicek-Sutherland JZ, Makarov NS, Stromberg ZR, Lenz KD, Castañeda C, Mercer AN, Mukundan H, McDaniel H, Ramasamy K. Exploring the Biocompatibility of Near-IR CuInSe xS 2-x/ZnS Quantum Dots for Deep-Tissue Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:8567-8574. [PMID: 35019627 DOI: 10.1021/acsabm.0c00939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Near-infrared (NIR) emitting quantum dots (QDs) with emission in the biological transparency windows (NIR-I: 650-950 nm and NIR-II: 1000-1350 nm) are promising candidates for deep-tissue bioimaging. However, they typically contain toxic heavy metals such as cadmium, mercury, arsenic, or lead. We report on the biocompatibility of high brightness CuInSexS2-x/ZnS (CISeS/ZnS) QDs with a tunable emission covering the visible to NIR (550-1300 nm peak emission) and quantify the transmission of their photoluminescence through multiple biological components to evaluate their use as imaging agents. In general, CISeS/ZnS QDs were less cytotoxic to mouse fibroblast cells when compared with commercial CdSe/ZnS and InP/ZnS QDs. Surprisingly, InP/ZnS QDs significantly upregulated expression of apoptotic genes in mouse fibroblast cells, while cells exposed to CISeS/ZnS QDs did not. These findings provide insight into biocompatibility and cytotoxicity of CISeS/ZnS QDs that could be used for bioimaging.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Zachary R Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Amanda N Mercer
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | | |
Collapse
|
25
|
A Study on an Organic Semiconductor-Based Indirect X-ray Detector with Cd-Free QDs for Sensitivity Improvement. SENSORS 2020; 20:s20226562. [PMID: 33212877 PMCID: PMC7698411 DOI: 10.3390/s20226562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
In this paper, we studied the optimized conditions for adding inorganic quantum dots (QD) to the P3HT:PC70BM organic active layer to increase the sensitivity of the indirect X-ray detector. Commonly used QDs are composed of hazardous substances with environmental problems, so indium phosphide (InP) QDs were selected as the electron acceptor in this experiment. Among the three different sizes of InP QDs (4, 8, and 12 nm in diameter), the detector with 4 nm InP QDs showed the highest sensitivity, of 2.01 mA/Gy·cm2. To further improve the sensitivity, the QDs were fixed to 4 nm in diameter and then the amount of QDs added to the organic active layer was changed from 0 to 5 mg. The highest sensitivity, of 2.26 mA/Gy·cm2, was obtained from the detector with a P3HT:PC70BM:InP QDs (1 mg) active layer. In addition, the highest mobility, of 1.69 × 10−5 cm2/V·s, was obtained from the same detector. Compared to the detector with the pristine P3HT:PC70BM active layer, the detector with a P3HT:PC70BM:InP QDs (1 mg) active layer had sensitivity that was 61.87% higher. The cut-off frequency of the P3HT:PC70BM detector was 21.54 kHz, and that of the P3HT:PC70BM:InP QDs (1 mg) detector was 26.33 kHz, which was improved by 22.24%.
Collapse
|
26
|
Huang X, Tang M. Research advance on cell imaging and cytotoxicity of different types of quantum Dots. J Appl Toxicol 2020; 41:342-361. [DOI: 10.1002/jat.4083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| |
Collapse
|
27
|
Li L, Chen T, Yang Z, Chen Y, Liu D, Xiao H, Liu M, Liu K, Xu J, Liu S, Wang X, Lin G, Xu G. Nephrotoxicity Evaluation of Indium Phosphide Quantum Dots with Different Surface Modifications in BALB/c Mice. Int J Mol Sci 2020; 21:ijms21197137. [PMID: 32992627 PMCID: PMC7582660 DOI: 10.3390/ijms21197137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
InP QDs have shown a great potential as cadmium-free QDs alternatives in biomedical applications. It is essential to understand the biological fate and toxicity of InP QDs. In this study, we investigated the in vivo renal toxicity of InP/ZnS QDs terminated with different functional groups—hydroxyl (hQDs), amino (aQDs) and carboxyl (cQDs). After a single intravenous injection into BALB/c mice, blood biochemistry, QDs distribution, histopathology, inflammatory response, oxidative stress and apoptosis genes were evaluated at different predetermined times. The results showed fluorescent signals from QDs could be detected in kidneys during the observation period. No obvious changes were observed in histopathological detection or biochemistry parameters. Inflammatory response and oxidative stress were found in the renal tissues of mice exposed to the three kinds of QDs. A significant increase of KIM-1 expression was observed in hQDs and aQDs groups, suggesting hQDs and aQDs could cause renal involvement. Apoptosis-related genes (Bax, Caspase 3, 7 and 9) were up-regulated in hQDs and aQDs groups. The above results suggested InP/ZnS QDs with different surface chemical properties would cause different biological behaviors and molecular actions in vivo. The surface chemical properties of QDs should be fully considered in the design of InP/ZnS QDs for biomedical applications.
Collapse
Affiliation(s)
- Li Li
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Tingting Chen
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
- Shenzhen Institute for Drug Control, Shenzhen 518000, China;
| | - Zhiwen Yang
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Yajing Chen
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Dongmeng Liu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Huiyu Xiao
- Shenzhen Institute for Drug Control, Shenzhen 518000, China;
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Maixian Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Kan Liu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Jiangyao Xu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Shikang Liu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Guimiao Lin
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
- Correspondence: (G.L.); (G.X.)
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
- Correspondence: (G.L.); (G.X.)
| |
Collapse
|
28
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
29
|
Nikazar S, Sivasankarapillai VS, Rahdar A, Gasmi S, Anumol PS, Shanavas MS. Revisiting the cytotoxicity of quantum dots: an in-depth overview. Biophys Rev 2020; 12:703-718. [PMID: 32140918 PMCID: PMC7311601 DOI: 10.1007/s12551-020-00653-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, medical research has been shifting its focus to nanomedicine and nanotherapeutics in the pursuit of drug development research. Quantum dots (QDs) are a critical class of nanomaterials due to their unique properties, which include optical, electronic, and engineered biocompatibility in physiological environments. These properties have made QDs an attractive biomedical resource such that they have found application as both in vitro labeling and in vivo theranostic (therapy-diagnostic) agents. Considerable research has been conducted exploring the suitability of QDs in theranostic applications, but the cytotoxicity of QDs remains an obstacle. Several types of QDs have been investigated over the past decades, which may be suitable for use in biomedical applications if the barrier of cytotoxicity can be resolved. This review attempts to report and analyze the cytotoxicity of the major QDs along with relevant related aspects.
Collapse
Affiliation(s)
- Sohrab Nikazar
- Chemical Engineering Faculty, Engineering College, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Salim Gasmi
- Cellular and Applied Toxicology, Larbi Tebessi University, Tebessa, Algeria
| | - P S Anumol
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | | |
Collapse
|
30
|
Li L, Chen Y, Xu G, Liu D, Yang Z, Chen T, Wang X, Jiang W, Xue D, Lin G. In vivo Comparison of the Biodistribution and Toxicity of InP/ZnS Quantum Dots with Different Surface Modifications. Int J Nanomedicine 2020; 15:1951-1965. [PMID: 32256071 PMCID: PMC7093098 DOI: 10.2147/ijn.s241332] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Indium phosphide (InP) quantum dots (QDs) have shown a broad application prospect in the fields of biophotonics and nanomedicine. However, the potential toxicity of InP QDs has not been systematically evaluated. In particular, the effects of different surface modifications on the biodistribution and toxicity of InP QDs are still unknown, which hinders their further developments. The present study aims to investigate the biodistribution and in vivo toxicity of InP/ZnS QDs. METHODS Three kinds of InP/ZnS QDs with different surface modifications, hQDs (QDs-OH), aQDs (QDs-NH2), and cQDs (QDs-COOH) were intravenously injected into BALB/c mice at the dosage of 2.5 mg/kg BW or 25 mg/kg BW, respectively. Biodistribution of three QDs was determined through cryosection fluorescence microscopy and ICP-MS analysis. The subsequent effects of InP/ZnS QDs on histopathology, hematology and blood biochemistry were evaluated at 1, 3, 7, 14 and 28 days post-injection. RESULTS These types of InP/ZnS QDs were rapidly distributed in the major organs of mice, mainly in the liver and spleen, and lasted for 28 days. No abnormal behavior, weight change or organ index were observed during the whole observation period, except that 2 mice died on Day 1 after 25 mg/kg BW hQDs treatment. The results of H&E staining showed that no obvious histopathological abnormalities were observed in the main organs (including heart, liver, spleen, lung, kidney, and brain) of all mice injected with different surface-functionalized QDs. Low concentration exposure of three QDs hardly caused obvious toxicity, while high concentration exposure of the three QDs could cause some changes in hematological parameters or biochemical parameters related to liver function or cardiac function. More attention needs to be paid on cQDs as high-dose exposure of cQDs induced death, acute inflammatory reaction and slight changes in liver function in mice. CONCLUSION The surface modification and exposure dose can influence the biological behavior and in vivo toxicity of QDs. The surface chemistry should be fully considered in the design of InP-based QDs for their biomedical applications.
Collapse
Affiliation(s)
- Li Li
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Laboratory of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen518055, People’s Republic of China
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen518060, People’s Republic of China
| | - Yajing Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Laboratory of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen518060, People’s Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Dongmeng Liu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Laboratory of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Zhiwen Yang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Laboratory of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Tingting Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Laboratory of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Laboratory of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Wenxiao Jiang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Laboratory of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Dahui Xue
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Laboratory of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Guimiao Lin
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Laboratory of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen518055, People’s Republic of China
| |
Collapse
|
31
|
Ray A, Bhattacharya S. Study of alloyed quantum dots-porphyrazine interaction in solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Lv X, Gao P. An optical sensor for selective detection of phenol via double cross-linker precipitation polymerization. RSC Adv 2020; 10:25402-25407. [PMID: 35517451 PMCID: PMC9055332 DOI: 10.1039/d0ra03708g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/27/2020] [Indexed: 11/21/2022] Open
Abstract
Based on the electron-transfer mechanism between the template and quantum dots (QDs), an optical sensor was structured.
Collapse
Affiliation(s)
- Xiaodong Lv
- School of Electrical Engineering and Control Science
- Nanjing Tech University
- Nanjing 211899
- China
| | - Peng Gao
- School of Electrical Engineering
- Tongling University
- Tongling 244000
- China
| |
Collapse
|
33
|
Li L, Tian J, Wang X, Xu G, Jiang W, Yang Z, Liu D, Lin G. Cardiotoxicity of Intravenously Administered CdSe/ZnS Quantum Dots in BALB/c Mice. Front Pharmacol 2019; 10:1179. [PMID: 31649542 PMCID: PMC6791919 DOI: 10.3389/fphar.2019.01179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Since CdSe quantum dots (QDs) are increasingly used in electronics, medical, and pharmaceutical science due to their excellent optical properties, it is necessary to carry out thorough and systematic studies on their biosafety. Numerous studies have reported the toxicity of QDs on liver, kidney, immune system, and reproductive system. However, few studies have been done on the cardiotoxicity of QDs. In this study, we administered carboxylated CdSe/ZnS QDs in BALB/c mice via the tail vein and analyzed the in vivo cardiotoxicity of CdSe/ZnS QDs. The body weight, hematology, serum biochemistry, histology, heart elements concentration, echocardiography, and heart oxidative stress markers were carried out at different time. There were no significant differences in body weight and heart organ index between QDs group and the control group. Hematology results showed the platelet (PLT) counts on Day 1 and Day 42 in both high dose QDs group and low dose QDs group, and the PLT counts on Day1 in the high dose group were significantly higher than that in control group. Serum biochemistry results showed that lactate dehydrogenase (LDH), creatine kinase (CK), and creatine kinase isoenzyme (CK-MB) of mice exposed to CdSe/ZnS QDs were significantly higher than that of the control group on Day 1, and CK-MB levels still remained high on Day 7. A higher concentration of Cd was observed in the heart of CdSe/ZnS QDs exposed mice on Day 42, whereas no Cd was detected in the control group, which suggested that QDs can accumulate in heart. No significant histopathological changes and cardiac function were observed in all mice at different time after treatment. Increased level of glutathione peroxidase (GPx) and malondialdehyde (MDA) was observed in mice administered with high dose QDs on Day 1, and increased level of total antioxidant capacity (T-AOC) and MDA activities was observed on Day 42. These results indicated that CdSe/ZnS QDs could accumulate in heart, cause some biochemical indicators change, induce oxidative damage, and have cardiotoxicity. Our findings might provide valuable information on the biological safety evaluation of the cardiovascular system of QDs.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jinglin Tian
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China
| | - Wenxiao Jiang
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Zhiwen Yang
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Dongmeng Liu
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Guimiao Lin
- Department of Physiology, School of Basic Medical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
34
|
Ye X, Li L, Wu J, Ma M, Lin G, Wang X, Xu G. Evaluation for Adverse Effects of InP/ZnS Quantum Dots on the in Vitro Cultured Oocytes of Mice. ACS APPLIED BIO MATERIALS 2019; 2:4193-4201. [DOI: 10.1021/acsabm.9b00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xianqi Ye
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- National Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, P. R. China
| | - Li Li
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, P. R. China
| | - Juanjie Wu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- National Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, P. R. China
| | - Mingze Ma
- National Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, P. R. China
| | - Guimiao Lin
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, P. R. China
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- National Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
35
|
Zou W, Li L, Chen Y, Chen T, Yang Z, Wang J, Liu D, Lin G, Wang X. In Vivo Toxicity Evaluation of PEGylated CuInS 2/ZnS Quantum Dots in BALB/c Mice. Front Pharmacol 2019; 10:437. [PMID: 31080414 PMCID: PMC6497768 DOI: 10.3389/fphar.2019.00437] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years, quantum dots (QDs) have emerged as a potential contrast agent for bioimaging due to their bright luminescence and excellent photostability. However, the wide use of QDs in vivo has been limited due to underlying toxicity caused by leakage of heavy metals. Although non-cadmium QDs have been developed to resolve this issue, a comprehensive understanding of the toxicity of these newly developed QDs remains elusive. In this study, we administered PEGylated copper indium sulfide/zinc sulfide (CuInS2/ZnS), which are typical non-cadmium QDs, and analyzed the long-term effects of these nanoparticles in BALB/c mice. Body weight, hematology, blood biochemistry, organ histology, and biodistribution were examined at different time points. We found no significant difference in body weight after injection of CuInS2/ZnS QDs. These CuInS2/ZnS QDs entered and were accumulated in major organs for 90 days post-injection. The majority of biochemical indicators were not significantly different between the QDs-treated group and the control group. In addition, no significant histopathological abnormalities were observed in the treated mice compared with the control mice. CuInS2/ZnS QDs did not lead to observable toxicity in vivo following either the administration of a high or low dose. Our research not only provides direct evidence of the bio-safety of CuInS2/ZnS QDs, but also a feasible method for evaluating nanoparticle toxicity.
Collapse
Affiliation(s)
- Wenyi Zou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Li Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Yajing Chen
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Tingting Chen
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhiwen Yang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Jie Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Dongmeng Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Guimiao Lin
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaomei Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
36
|
Mirnajafizadeh F, Ramsey D, McAlpine S, Wang F, Stride JA. Nanoparticles for Bioapplications: Study of the Cytotoxicity of Water Dispersible CdSe(S) and CdSe(S)/ZnO Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E465. [PMID: 30897752 PMCID: PMC6474084 DOI: 10.3390/nano9030465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022]
Abstract
Semiconductor nanocrystals or quantum dots (QDs) have unique optical and physical properties that make them potential imaging tools in biological and medical applications. However, concerns over the aqueous dispersivity, toxicity to cells, and stability in biological environments may limit the use of QDs in such applications. Here, we report an investigation into the cytotoxicity of aqueously dispersed CdSe(S) and CdSe(S)/ZnO core/shell QDs in the presence of human colorectal carcinoma cells (HCT-116) and a human skin fibroblast cell line (WS1). The cytotoxicity of the precursor solutions used in the synthesis of the CdSe(S) QDs was also determined in the presence of HCT-116 cells. CdSe(S) QDs were found to have a low toxicity at concentrations up to 100 µg/mL, with a decreased cell viability at higher concentrations, indicating a highly dose-dependent response. Meanwhile, CdSe(S)/ZnO core/shell QDs exhibited lower toxicity than uncoated QDs at higher concentrations. Confocal microscopy images of HCT-116 cells after incubation with CdSe(S) and CdSe(S)/ZnO QDs showed that the cells were stable in aqueous concentrations of 100 µg of QDs per mL, with no sign of cell necrosis, confirming the cytotoxicity data.
Collapse
Affiliation(s)
| | - Deborah Ramsey
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Shelli McAlpine
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Fan Wang
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia.
| | - John Arron Stride
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
37
|
Kulkarni NS, Guererro Y, Gupta N, Muth A, Gupta V. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
An In Vitro Investigation of Cytotoxic Effects of InP/Zns Quantum Dots with Different Surface Chemistries. NANOMATERIALS 2019; 9:nano9020135. [PMID: 30678192 PMCID: PMC6409980 DOI: 10.3390/nano9020135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
Indium phosphide quantum dots (QDs) passivated with zinc sulphide in a core/shell architecture (InP/ZnS) with different surface chemistries were introduced to RAW 264.7 murine “macrophage-like” cells to understand their potential toxicities. The InP/ZnS quantum dots were conjugated with an oligonucleotide, a carboxylic acid, or an amino-polyethylene glycol ligand, and cell viability and cell proliferation were investigated via a metabolic assay. Membrane integrity was measured through the production of lactate dehydrogenase. Fluorescence microscopy showed cellular uptake. All quantum dots exhibited cytotoxic behaviour less than that observed from cadmium- or lead-based quantum dots; however, this behaviour was sensitive to the ligands used. In particular, the amino-polyethylene glycol conjugated quantum dots proved to possess the highest cytotoxicity examined here. This provides quantitative evidence that aqueous InP/ZnS quantum dots can offer a safer alternative for bioimaging or in therapeutic applications.
Collapse
|