1
|
Hung YY, Tsai CY, Lee CT, Fu HC, Chou CK, Yang YC, Chen JF, Kang HY. Targeting TNIP1 as a new therapeutic avenue for major depressive disorder. Brain Behav Immun 2025; 126:214-224. [PMID: 39978697 DOI: 10.1016/j.bbi.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
TNFAIP3-interacting protein 1 (TNIP1) is a polyubiquitin-binding protein that functions as a negative regulator of NF-κB pathway and alleviates inflammation, but little is known about its role in major depressive disorder (MDD). After discovering an elevated TNIP1 expression in monocytes from individuals with MDD after antidepressant treatment, our analyses further uncovered a significant rise in TNIP1 mRNA expression among patients experiencing remission after antidepressant treatment, particularly in those who received duloxetine. We aimed to explore the potential of TNIP1 as a potential therapeutic target for treatment of MDD. In vitro cell line studies showed that TNIP1 is induced by duloxetine to suppress TNF-α through increasing PPAR-γ receptor expression as anti-inflammatory effects and combined treatment of PPAR-γ agonist pioglitazone and duloxetine exerts synergistic effects on TNIP1 expression. Furthermore, an animal study also demonstrated duloxetine-induced TNIP1 expression in CA3 region of hippocampus, suggesting the TNIP1 expression is up-regulated by antidepressants. We further investigated the potential effect of TNIP1 as a therapeutic target in alleviating depressive-like behavior in chronic mild stress model C57BL/6 mice overexpressing TNIP1 in the hippocampal CA3 region. The results showed that overexpression of TNIP1 in the CA3 region of the hippocampus through cerebral microdialysis significantly reduces depressive-like behavior in mice. In contrast, TNIP1 knockdown in the CA3 region of the hippocampus causes depressive-like behavior and Duloxetine failed to rescue depressive-like behavior in TNIP1-knockdown mice. Together, these data suggest targeting TNIP1 as a novel therapeutic regiment may provide a promising future for pharmacological development of antidepressants in remitting MDD.
Collapse
Affiliation(s)
- Yi-Yung Hung
- Department of Psychiatry, Kaohsiung Municipal Feng Shan Hospital - Under the Management of Chang Gung Medical Foundation, Kaohsiung, Taiwan
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng Shan Hospital - Under Management of Chang Gung Medical Foundation, Kaohsiung 83062, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hung-Chun Fu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chen-Kai Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Yi-Chien Yang
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jia-Feng Chen
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan City 83301, Taiwan; Department of Biological Science, National Sun Yat-sen University, 804959 Kaohsiung, Taiwan; Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
2
|
Alzarea S, Rahman S. The Alpha-7 Nicotinic Receptor Positive Allosteric Modulator PNU120596 Attenuates Lipopolysaccharide-Induced Depressive-Like Behaviors and Cognitive Impairment by Regulating the PPAR-α Signaling Pathway in Mice. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:234-244. [PMID: 39350553 DOI: 10.2174/0118715273311527240916050749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND AND OBJECTIVE The brain α7 nicotinic acetylcholine receptor (α7 nAChR) has a critical role in the pathophysiology of Major Depressive Disorder (MDD) involving neuroinflammation. The α7 nAChR stimulation has been shown to modulate the anti-inflammatory effects of nuclear peroxisome proliferator-activated receptor-α (PPAR-α) via its endogenous ligands in the brain. The present study determined the effects of α7 nAChR modulator PNU120596 on PPAR-α, an inhibitor of κB (IκB) and nuclear factor-κB (NF-κB) expression and interleukin-1β (IL-1β) level in the hippocampus and prefrontal cortex (PFC) in an inflammatory mouse model of MDD induced by lipopolysaccharide (LPS). We also evaluated the combined effects of PNU120596 and GW6471, a PPAR-α antagonist, on depressive-like and cognitive deficit-like behaviors in mice. MATERIALS AND METHODS Male C57BL/6J mice were treated with PNU120596, followed by systemic LPS (1 mg/kg, i.p.) administration. The effects of PNU120596 on the mRNA expression of PPAR-α and IκB were assessed in the hippocampus and PFC using qRT-PCR following LPS administration. Similarly, the effects of PNU120596 on the immunoreactivity of PPAR-α and NF-κB were measured in the hippocampus and PFC using an immunofluorescence assay. Furthermore, the effects of PNU120596 on pro-inflammatory cytokine IL-1β levels were measured in the hippocampus and PFC using ELISA. The combined effects of PNU120596 and GW6471 were also assessed against LPS-induced depressive-like and cognitive deficit-like behaviors using the Tail Suspension Test (TST), Forced Swim Test (FST), and Y-maze test. RESULTS PNU120596 (4 mg/kg) significantly prevented LPS-induced dysregulation of PPAR-α, IκB, p-NF-κB p65, and IL-1β in the hippocampus and PFC. Pretreatment with PNU120596 showed significant antidepressant-like effects by reducing immobility time in the TST and FST. Similarly, pretreatment with PNU120596 significantly reduced cognitive deficit-like behavior in the Y-maze test. The antidepressant and pro-cognitive-like effects of PNU120596 were reversed by PPAR-α antagonist GW6471 (2 mg/kg). CONCLUSION These results suggest that PNU120596 prevented LPS-induced MDD and cognitivelike behavior by regulating α7 nAChR/PPAR-α signaling pathway in the hippocampus and PFC.
Collapse
Affiliation(s)
- Sami Alzarea
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, 57007, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
3
|
Zhao P, Zhang W, Zhou X, Zhao Y, Li A, Sun Y. Gypenoside XLIX alleviates sepsis-associated encephalopathy by targeting PPAR-α. Exp Neurol 2024; 383:115027. [PMID: 39490624 DOI: 10.1016/j.expneurol.2024.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Sepsis-related systemic inflammation is a deadly condition with high rates of morbidity and mortality. There is evidence that sepsis affects the brain, and the most frequent organ dysfunction linked to sepsis is sepsis-associated encephalopathy. Sepsis-related brain damage can drastically reduce a patient's chances of survival. However, a specific treatment for sepsis-associated encephalopathy is not currently available. Consequently, to treat the brain damage caused by sepsis, investigating novel therapeutic strategies is imperative. After establishing the CLP-induced mouse SAE model, we treated the mice with Gyp-XLIX and evaluated apoptosis, neuroinflammation, brain damage, and oxidative stress in the brain tissue of each group of mice. Furthermore, the protective effects of Gyp-XLIX on LPS-treated BV-2 cells were assessed. We discovered that Gyp-XLIX treatment increased the survival rate of CLP-treated mice, alleviated SAE-related cerebral nerve abnormalities, and decreased blood-brain barrier breakdown, all of which could better preserve brain tissue in vivo. Furthermore, we identified associated proteins and found that Gyp-XLIX may reduce oxidative stress, cell apoptosis, and inflammation in the brain tissues of SAE mice. This observation was further validated in vitro. We established that Gyp-XLIX alleviates SAE by targeting PPAR-α. These findings may be important for the clinical applicability of Gyp-XLIX in SAE treatment. We found that Gyp-XLIX can alleviate brain injury in SAE by targeting PPAR-α and is a potential protective agent for SAE.
Collapse
Affiliation(s)
- Panpan Zhao
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Wei Zhang
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinyu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China
| | - Yikun Zhao
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Aimin Li
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Yong Sun
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| |
Collapse
|
4
|
Żulińska S, Strosznajder AK, Strosznajder JB. Current View on PPAR-α and Its Relation to Neurosteroids in Alzheimer's Disease and Other Neuropsychiatric Disorders: Promising Targets in a Therapeutic Strategy. Int J Mol Sci 2024; 25:7106. [PMID: 39000217 PMCID: PMC11241121 DOI: 10.3390/ijms25137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sylwia Żulińska
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| | - Anna K. Strosznajder
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska St. 27, 00-665 Warsaw, Poland;
| | - Joanna B. Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
5
|
McWhirter M, Bugarcic A, Steel A, Schloss J. Endocannabinoid levels in female-sexed individuals with diagnosed depression: a systematic review. BMC Womens Health 2024; 24:350. [PMID: 38886733 PMCID: PMC11181673 DOI: 10.1186/s12905-024-03168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly prevalent mental health disorder with females experiencing higher rates of depression (11.6%), anxiety (15.7%) and physiological distress (14.5%) than males. Recently, the Endocannabinoid system (ECS) has been proposed to be a key contributing factor in the pathogenesis and symptom severity of MDD due to its role in neurotransmitter production, inflammatory response and even regulation of the female reproductive cycle. This review critically evaluates evidence regarding ECS levels in female-sexed individuals with depressive disorders to further understand ECS role. MATERIALS AND METHODS A systematic literature review of available research published prior to April 2022 was identified using PubMed (U.S. National Library of Medicine), CINAHL (EBSCO), Web of Science, AMED and Scopus (Elsevier). Studies were included if they reported ECS analysis of female-sexed individuals with depression and were excluded if they did not differentiate results between sexes, assessed mental health conditions other than depression, tested efficacy of endocannabinoid/n-acylethanolamine/cannabis or marijuana administration and that were unable to be translated. Critical appraisal of each included study was undertaken using the Joanna Briggs Institute Critical Appraisal Tool for Systematic Reviews. RESULTS The 894 located citations were screened for duplicates (n = 357) and eligibility by title and abstract (n = 501). The full text of 33 studies were reviewed, and 7 studies were determined eligible for inclusion. These studies indicated that depressed female-sexed individuals have altered levels of ECS however no significant pattern was identified due to variability of study outcomes and measures, limiting overall interpretation. DISCUSSION This review suggests potential involvement of ECS in underlying mechanisms of MDD in female sexed-individuals, however no pattern was able to be determined. A major contributor to the inability to attain reliable and valid understanding of the ECS levels in female-sexed individuals with depression was the inconsistency of depression screening tools, inclusion criteria's and analysis methods used to measure eCBs. Future studies need to implement more standardised methodology to gain a deeper understanding of ECS in female-sexed individuals with depressive disorders. TRIAL REGISTRATION : This review was submitted to PROSPERO for approval in April 2022 (Registration #CRD42022324212).
Collapse
Affiliation(s)
- Meagan McWhirter
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore, NSW, 2480, Australia.
| | - Andrea Bugarcic
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Amie Steel
- ACCRIM, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Janet Schloss
- National Centre for Naturopathic Medicine, Faculty of Health, Southern Cross University, Lismore, NSW, 2480, Australia
| |
Collapse
|
6
|
Chang SH, Chang YM, Chen HY, Shaw FZ, Shyu BC. Time-course analysis of frontal gene expression profiles in the rat model of posttraumatic stress disorder and a comparison with the conditioned fear model. Neurobiol Stress 2023; 27:100569. [PMID: 37771408 PMCID: PMC10522909 DOI: 10.1016/j.ynstr.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex disorder that involves physiological, emotional, and cognitive dysregulation that may occur after exposure to a life-threatening event. In contrast with the condition of learned fear with resilience to extinction, abnormal fear with impaired fear extinction and exaggeration are considered crucial factors for the pathological development of PTSD. The prefrontal cortex (mPFC) is considered a critical region of top-down control in fear regulation, which involves the modulation of fear expression and extinction. The pathological course of PTSD is usually chronic and persistent; a number of studies have indicated temporal progression in gene expression and phenotypes may be involved in PTSD pathology. In the current study, we use a well-established modified single-prolonged stress (SPS&FS) rat model to feature PTSD-like phenotypes and compared it with a footshock fear conditioning model (FS model); we collected the frontal tissue after extreme stress exposure or fear conditioning and extracted RNA for transcriptome-level gene sequencing. We compared the genetic profiling of the mPFC at early (<2 h after solely FS or SPS&FS exposure) and late (7 days after solely FS or SPS&FS exposure) stages in these two models. First, we identified temporal differences in the expressional patterns between these two models and found pathways such as protein synthesis factor eukaryotic initiation factor 2 (EIF2), transcription factor NF-E2-related factor 2 (NRF2)-mediated oxidative stress response, and acute phase responding signaling enriched in the early stage in both models with significant p-values. Furthermore, in the late stage, the sirtuin signaling pathway was enriched in both models; other pathways such as STAT3, cAMP, lipid metabolism, Gα signaling, and increased fear were especially enriched in the late stage of the SPS&FS model. However, pathways such as VDR/RXR, GP6, and PPAR signaling were activated significantly in the FS model's late stage. Last, the network analysis revealed the temporal dynamics of psychological disorder, the endocrine system, and also genes related to increased fear in the two models. This study could help elucidate the genetic temporal alteration and stage-specific pathways in these two models, as well as a better understanding of the transcriptome-level differences between them.
Collapse
Affiliation(s)
- Shao-Han Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Yuan Chen
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Nisbett KE, Gonzalez LA, Teruel M, Carter CS, Vendruscolo LF, Ragozzino ME, Koob GF. Sex and hormonal status influence the anxiolytic-like effect of oxytocin in mice. Neurobiol Stress 2023; 26:100567. [PMID: 37706061 PMCID: PMC10495655 DOI: 10.1016/j.ynstr.2023.100567] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Anxiety and depression are highly prevalent psychiatric disorders, affecting approximately 18% of the United States population. Evidence indicates that central oxytocin mediates social cognition, social bonding, and social anxiety. Although it is well-established that oxytocin ameliorates social deficits, less is known about the therapeutic effects of oxytocin in non-social contexts. We hypothesized that positive effects of oxytocin in social contexts are attributable to intrinsic effects of oxytocin on neural systems that are related to emotion regulation. The present study investigated the effect of intracerebroventricular (ICV) oxytocin administration (i.e., central action) on anxiety- and depression-like behavior in C57Bl/6J mice using non-social tests. Male and female mice received an ICV infusion of vehicle or oxytocin (100, 200, or 500 ng), then were tested in the elevated zero maze (for anxiety-like behavior) and the tail suspension test (for depression-like behavior). Oxytocin dose-dependently increased open zone occupancy and entries in the elevated zero maze and reduced immobility duration in the tail suspension test in both sexes. Oxytocin decreased anxiety and depression-like behavior in male and female mice. The observed effect of oxytocin on anxiolytic-like behavior appeared to be driven by the males. Given the smaller anxiolytic-like effect of oxytocin in the female mice and the established interaction between oxytocin and reproductive hormones (estrogen and progesterone), we also explored whether oxytocin sensitivity in females varies across estrous cycle phases and in ovariectomized females that were or were not supplemented with estrogen or progesterone. Oxytocin reduced anxiety-like behavior in female mice in proestrus/estrus, ovariectomized females (supplemented or not with estrogen or progesterone), but not females in metestrus/diestrus. Additionally, oxytocin reduced depression-like behavior in all groups tested with slight differences across the various hormonal statuses. These results suggest that the effect of oxytocin in depression- and anxiety-like behavior in mice can be influenced by sex and hormonal status.
Collapse
Affiliation(s)
- Khalin E. Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL 60607, USA
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luis A. Gonzalez
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marina Teruel
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - C. Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Leandro F. Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael E. Ragozzino
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - George F. Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Bai Y, Mi W, Meng X, Dong B, Jiang Y, Lu Y, Yu Y. Hydrogen alleviated cognitive impairment and blood‒brain barrier damage in sepsis-associated encephalopathy by regulating ABC efflux transporters in a PPARα-dependent manner. BMC Neurosci 2023; 24:37. [PMID: 37474902 PMCID: PMC10360271 DOI: 10.1186/s12868-023-00795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/30/2023] [Indexed: 07/22/2023] Open
Abstract
Hydrogen (H2) can protect against blood‒brain barrier (BBB) damage in sepsis-associated encephalopathy (SAE), but the mechanism is still unclear. We examined whether it is related to PPARα and its regulatory targets, ABC efflux transporters. After injection with DMSO/GW6471 (a PPARα inhibitor), the mice subjected to sham/caecal ligation and puncture (CLP) surgery were treated with H2 for 60 min postoperation. Additionally, bEnd.3 cells were grown in DMSO/GW6471-containing or saline medium with LPS. In addition to the survival rates, cognitive function was assessed using the Y-maze and fear conditioning tests. Brain tissues were stained with TUNEL and Nissl staining. Additionally, inflammatory mediators (TNF-α, IL-6, HMGB1, and IL-1β) were evaluated with ELISA, and PPARα, ZO-1, occludin, VE-cadherin, P-gp, BCRP and MRP2 were detected using Western blotting. BBB destruction was assessed by brain water content and Evans blue (EB) extravasation. Finally, we found that H2 improved survival rates and brain dysfunction and decreased inflammatory cytokines. Furthermore, H2 decreased water content in the brain and EB extravasation and increased ZO-1, occludin, VE-cadherin and ABC efflux transporters regulated by PPARα. Thus, we concluded that H2 decreases BBB permeability to protect against brain dysfunction in sepsis; this effect is mediated by PPARα and its regulation of ABC efflux transporters.
Collapse
Affiliation(s)
- Yuanyuan Bai
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Wen Mi
- Department of Anesthesiology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China
| | - Xiaoyin Meng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Yuechun Lu
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China.
| |
Collapse
|
9
|
Xiang G, Liu X, Wang J, Lu S, Yu M, Zhang Y, Sun B, Huang B, Lu XY, Li X, Zhang D. Peroxisome proliferator-activated receptor-α activation facilitates contextual fear extinction and modulates intrinsic excitability of dentate gyrus neurons. Transl Psychiatry 2023; 13:206. [PMID: 37322045 DOI: 10.1038/s41398-023-02496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The dentate gyrus (DG) of the hippocampus encodes contextual information associated with fear, and cell activity in the DG is required for acquisition and extinction of contextual fear. However, the underlying molecular mechanisms are not fully understood. Here we show that mice deficient for peroxisome proliferator-activated receptor-α (PPARα) exhibited a slower rate of contextual fear extinction. Furthermore, selective deletion of PPARα in the DG attenuated, while activation of PPARα in the DG by local infusion of aspirin facilitated extinction of contextual fear. The intrinsic excitability of DG granule neurons was reduced by PPARα deficiency but increased by activation of PPARα with aspirin. Using RNA-Seq transcriptome we found that the transcription level of neuropeptide S receptor 1 (Npsr1) was tightly correlated with PPARα activation. Our results provide evidence that PPARα plays an important role in regulating DG neuronal excitability and contextual fear extinction.
Collapse
Affiliation(s)
- Guo Xiang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Xia Liu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Jiangong Wang
- Institute of Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, 256600, China
| | - Shunshun Lu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Meng Yu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Yuhan Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Bin Sun
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China.
| |
Collapse
|
10
|
Liu T, Chen X, Wei Z, Han X, Liu Y, Ma Z, Xia T, Gu X. PPARα agonist fenofibrate prevents postoperative cognitive dysfunction by enhancing fatty acid oxidation in mice. Transl Neurosci 2023; 14:20220317. [PMID: 38023298 PMCID: PMC10656729 DOI: 10.1515/tnsci-2022-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Due to high rates of incidence and disability, postoperative cognitive dysfunction (POCD) currently receives a lot of clinical attention. Disturbance of fatty acid oxidation is a potential pathophysiological manifestation underlying POCD. Peroxisome proliferator-activated receptor α (PPARα) is a significant transcription factor of fatty acid oxidation that facilitates the transfer of fatty acids into the mitochondria for oxidation. The potential role of PPARα intervention in POCD warrants consideration. Objective The present study is aimed to investigate whether PPARα agonist fenofibrate (FF) could protect long-term isoflurane anesthesia-induced POCD model and to explore the potential underlying function of fatty acid oxidation in the process. Methods We established the POCD model via 6 h long-term isoflurane anesthesia in vivo with C57BL/6J mice and in vitro with N2a cells. Cells and mice were pretreated with PPARα agonist FF before anesthesia, after which fatty acid oxidation and cognitive function were assessed. The level of fatty acid oxidation-related proteins was determined using western blotting. The contextual fear conditioning test was utilized to evaluate mice's learning and memory. Results Our results showed that 6 h long-term isoflurane anesthesia induced contextual memory damage in mice, accompanied by decreases of fatty acid oxidation-related proteins (peroxisome proliferator-activated receptor γ coactivator 1α, carnitine palmitoyltransferase 1A, and PPARα) both in the hippocampus of POCD mice and in N2a cells. In the N2a cell model, pretreatment of PPARα agonist FF led to the upregulation of fatty acid oxidation-related proteins. In vivo results showed that preconditioned FF reached similar effects. More crucially, FF has been shown to reduce cognitive damage in mice after long-term isoflurane anesthesia. Additionally, our data showed that after blocking fatty acid oxidation by Etomoxir, FF failed to protect cognitive function from long-term isoflurane anesthesia. Conclusions Pretreatment of PPARα agonist FF can protect against long-term isoflurane anesthesia-induced POCD by enhancing fatty acid oxidation.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing210008, China
- Medical School, Nanjing University, Nanjing210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xinlu Chen
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing210008, China
- Medical School, Nanjing University, Nanjing210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ziqi Wei
- Medical School, Nanjing University, Nanjing210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xue Han
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing210008, China
- Medical School, Nanjing University, Nanjing210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yujia Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing210008, China
- Medical School, Nanjing University, Nanjing210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing210008, China
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing210008, China
| |
Collapse
|
11
|
Matrisciano F, Pinna G. The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:513-535. [PMID: 36949324 DOI: 10.1007/978-981-19-7376-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
PPARα Signaling: A Candidate Target in Psychiatric Disorder Management. Biomolecules 2022; 12:biom12050723. [PMID: 35625650 PMCID: PMC9138493 DOI: 10.3390/biom12050723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Peroxisome proliferator-activator receptors (PPARs) regulate lipid and glucose metabolism, control inflammatory processes, and modulate several brain functions. Three PPAR isoforms have been identified, PPARα, PPARβ/δ, and PPARγ, which are expressed in different tissues and cell types. Hereinafter, we focus on PPARα involvement in the pathophysiology of neuropsychiatric and neurodegenerative disorders, which is underscored by PPARα localization in neuronal circuits involved in emotion modulation and stress response, and its role in neurodevelopment and neuroinflammation. A multiplicity of downstream pathways modulated by PPARα activation, including glutamatergic neurotransmission, upregulation of brain-derived neurotrophic factor, and neurosteroidogenic effects, encompass mechanisms underlying behavioral regulation. Modulation of dopamine neuronal firing in the ventral tegmental area likely contributes to PPARα effects in depression, anhedonia, and autism spectrum disorder (ASD). Based on robust preclinical evidence and the initial results of clinical studies, future clinical trials should assess the efficacy of PPARα agonists in the treatment of mood and neurodevelopmental disorders, such as depression, schizophrenia, and ASD.
Collapse
|
13
|
Lee D, Tomita Y, Allen W, Tsubota K, Negishi K, Kurihara T. PPARα Modulation-Based Therapy in Central Nervous System Diseases. Life (Basel) 2021; 11:life11111168. [PMID: 34833044 PMCID: PMC8622664 DOI: 10.3390/life11111168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
The burden of neurodegenerative diseases in the central nervous system (CNS) is increasing globally. There are various risk factors for the development and progression of CNS diseases, such as inflammatory responses and metabolic derangements. Thus, curing CNS diseases requires the modulation of damaging signaling pathways through a multitude of mechanisms. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors (PPARα, PPARβ/δ, and PPARγ), and they work as master sensors and modulators of cellular metabolism. In this regard, PPARs have recently been suggested as promising therapeutic targets for suppressing the development of CNS diseases and their progressions. While the therapeutic role of PPARγ modulation in CNS diseases has been well reviewed, the role of PPARα modulation in these diseases has not been comprehensively summarized. The current review focuses on the therapeutic roles of PPARα modulation in CNS diseases, including those affecting the brain, spinal cord, and eye, with recent advances. Our review will enable more comprehensive therapeutic approaches to modulate PPARα for the prevention of and protection from various CNS diseases.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (Y.T.); (T.K.); Tel.: +1-617-919-2533 (Y.T.); +81-3-5636-3204 (T.K.)
| | - William Allen
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Correspondence: (Y.T.); (T.K.); Tel.: +1-617-919-2533 (Y.T.); +81-3-5636-3204 (T.K.)
| |
Collapse
|
14
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Budde H, Imperatori C, Machado S, Yamamoto T, Yadollahpour A, Torterolo P. In vivo brain levels of acetylcholine and 5-hydroxytryptamine after oleoylethanolamide or palmitoylethanolamide administrations are mediated by PPARα engagement. Eur J Neurosci 2021; 54:5932-5950. [PMID: 34396611 DOI: 10.1111/ejn.15409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
The peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that has been linked to the modulation of several physiological functions, including the sleep-wake cycle. The PPARα recognizes as endogenous ligands the lipids oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), which in turn, if systemically injected, they exert wake-promoting effects. Moreover, the activation of PPARα by the administration of OEA or PEA increases the extracellular contents of neurotransmitters linked to the control of wakefulness; however, the role of PPARα activated by OEA or PEA on additional biochemicals related to waking regulation, such as acetylcholine (ACh) and 5-hydroxytryptamine (5-HT), has not been fully studied. Here, we have investigated the effects of treatments of OEA or PEA on the contents of ACh and 5-HT by using in vivo microdialysis techniques coupled to HPLC means. For this purpose, OEA or PEA were systemically injected (5, 10 or 30 mg/kg; i.p.), and the levels of ACh and 5-HT were collected from the basal forebrain, a wake-related brain area. These pharmacological treatments significantly increased the contents of ACh and 5-HT as determined by HPLC procedures. Interestingly, PPARα antagonist MK-886 (30 mg/kg; i.p.) injected before the treatments of OEA or PEA blocked these outcomes. Our data suggest that the activation of PPARα by OEA or PEA produces significant changes on ACh and 5-HT levels measured from the basal forebrain and support the conclusion that PPARα is a suitable molecular element involved in the regulation of wake-related neurotransmitters.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Henning Budde
- Intercontinental Neuroscience Research Group.,Institute for Systems Medicine, Faculty of Human Sciences, MSH Medical School Hamburg, Hamburg, Germany
| | - Claudio Imperatori
- Intercontinental Neuroscience Research Group.,Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group.,Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil.,Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados, Brazil
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Ali Yadollahpour
- Intercontinental Neuroscience Research Group.,Department of Psychology, University of Sheffield, Sheffield, UK
| | - Pablo Torterolo
- Intercontinental Neuroscience Research Group.,Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Madadzadeh M, Abbasnejad M, Mollashahi M, Pourrahimi AM, Esmaeili-Mahani S. Phytohormone abscisic acid boosts pentobarbital-induced sleep through activation of GABA-A, PPARβ and PPARγ receptor signaling. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:216-221. [PMID: 33886795 DOI: 10.1590/0004-282x-anp-2019-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sleep disorders induce anxiety and forgetfulness and change habits. The chemical hypnotic drugs currently used have serious side effects and, therefore, people are drawn towards using natural compounds such as plant-based healing agents. Abscisic acid (ABA) is produced in a variety of mammalian tissues and it is involved in many neurophysiological functions. OBJECTIVE To investigate the possible effect of ABA on pentobarbital-induced sleep and its possible signaling through GABA-A and PPAR (γ and β) receptors, in male Wistar rats. METHODS The possible effect of ABA (5 and 10 µg/rat, intracerebroventricularly) on sleep onset latency time and duration was evaluated in a V-maze model of sleep. Pentobarbital sodium (40 mg/kg, intraperitoneally) was injected to induce sleep 30 min after administration of ABA. PPARβ (GSK0660, 80 nM/rat), PPARγ (GW9662, 3 nM/rat) or GABA-A receptor (bicuculline, 6 µg/rat) antagonists were given 15 min before ABA injection. Diazepam (2 mg/kg, intraperitoneally) was used as a positive control group. RESULTS ABA at 5 µg significantly boosted the pentobarbital-induced subhypnotic effects and promoted induction of sleep onset in a manner comparable to diazepam treatment. Furthermore, pretreatment with bicuculline significantly abolished the ABA effects on sleep parameters, while the amplifying effects of ABA on the induction of sleep onset was not significantly affected by PPARβ or PPARγ antagonists. The sleep prolonging effect of ABA was significantly prevented by both PPAR antagonists. CONCLUSIONS The data showed that ABA boosts pentobarbital-induced sleep and that GABA-A, PPARβ and PPARγ receptors are, at least in part, involved in ABA signaling.
Collapse
Affiliation(s)
- Mohammad Madadzadeh
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| | - Mehdi Abbasnejad
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| | - Mahtab Mollashahi
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| | - Ali Mohammad Pourrahimi
- Kerman University of Medical Sciences, Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Shahid Bahonar University of Kerman, Faculty of Sciences, Department of Biology, Kerman, Iran
| |
Collapse
|
16
|
Barhwal KK, Biswal S, Chandra Nag T, Chaurasia OP, Hota SK. Class switching of carbonic anhydrase isoforms mediates remyelination in CA3 hippocampal neurons during chronic hypoxia. Free Radic Biol Med 2020; 161:102-114. [PMID: 33035636 DOI: 10.1016/j.freeradbiomed.2020.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
Chronic exposure to hypoxia results in cerebral white matter hyperintensities, increased P300 latency, delayed response and impairment in working memory. Despite burgeoning evidence on role of myelination in nerve conduction, the effect of chronic hypoxia on myelination of hippocampal neurons has been less studied. The present study provides novel evidence on alterations in myelination of hippocampal CA3 neurons following chronic hypoxic exposure. Sprague Dawley rats exposed to global hypobaric hypoxia simulating altitude of 25,000 ft showed progressive demyelination in CA3 hippocampal neurons on 14 days followed by remyelination on 21 and 28 days. The demyelination of CA3 neurons was associated with increased apoptosis of both oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (OLs), peroxidation of myelin lipids, and nitration induced reduced expression of Carbonic Anhydrase II (CAII). Prolonged hypoxic exposure of 21 and 28 days on the other hand resulted in peroxisome proliferator-activated receptor alpha (PPARα) induced upregulation of Carbonic Anhydrase IV (CAIV) expression in mature oligodendrocytes through iNOS mediated mechanisms along with reduction in lipid peroxidation and remyelination. Inhibition of carbonic anhydrase activity on the other hand prevented remyelination of CA3 neurons. Based on these findings we propose a novel iNOS mediated mechanism for regulation of myelination in hypoxic hippocampal neurons through class switching of carbonic anhydrases.
Collapse
Affiliation(s)
- Kalpana Kumari Barhwal
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India.
| | - Suryanarayan Biswal
- Centre for Brain Development and Repair, Institute of Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India; Defence Institute of High Altitude Research, DRDO, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Om Prakash Chaurasia
- Defence Institute of High Altitude Research, DRDO, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Sunil Kumar Hota
- O/o Director General (Life Sciences), DRDO Head Quarters, Rajaji Marg, New Delhi, 110011, India
| |
Collapse
|
17
|
Klement W, Oliviero F, Gangarossa G, Zub E, De Bock F, Forner-Piquer I, Blaquiere M, Lasserre F, Pascussi JM, Maurice T, Audinat E, Ellero-Simatos S, Gamet-Payrastre L, Mselli-Lakhal L, Marchi N. Life-long Dietary Pesticide Cocktail Induces Astrogliosis Along with Behavioral Adaptations and Activates p450 Metabolic Pathways. Neuroscience 2020; 446:225-237. [PMID: 32736067 DOI: 10.1016/j.neuroscience.2020.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Exposure to environmental contaminants is a public health concern. However, pre-clinical studies that examine the impact of pesticides at low-dose and the long-term consequences are uncommon. Here, C57BL6/j male and female mice were daily fed from weaning and up to 12 months, corresponding to early-childhood into middle-age in humans, using chow pellets containing a cocktail of pesticides at tolerable daily intake levels. We found that 12 months of dietary exposure to pesticides was associated with a moderate perenchymal or perivascular astrogliosis in specific hippocampal sub-regions. The expression of platelet-derived growth factor receptor beta was modified at the perivascular level. Examination of Iba1+ microglial cells did not reveal sizeable changes. Concomitantly to astrogliosis, spontaneous spatial memory and sociability were modified in males at 12 months of dietary exposure to pesticides. Telemetry electrocorticograhic explorations ruled out the presence of epileptiform activity or theta-gamma wave modifications in these conditions. Long-term pesticides impacted the periphery where the hepatic P450 metabolic cytochromes Cyp4a14 and Cyp4a10 were significantly upregulated in male and female mice during the 12 months of exposure. The expression of β-oxidation genes, such as Acox1, Cpt1a and Eci, was also significantly increased in male and female mice in response to pesticides. Collectively, our results indicate that a life-long exposure to a pesticide cocktail elicits sex-dependent, spatio-temporally restricted brain modifications and significant activation of P450 pathways in the periphery. These brain-peripheral adjustments are discussed as time or age-dependent vulnerability elements.
Collapse
Affiliation(s)
- Wendy Klement
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | | | - Emma Zub
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic De Bock
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Isabel Forner-Piquer
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Marine Blaquiere
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic Lasserre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Jean-Marc Pascussi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Nicola Marchi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France.
| |
Collapse
|
18
|
Lin L, Metherel AH, Di Miceli M, Liu Z, Sahin C, Fioramonti X, Cummins CL, Layé S, Bazinet RP. Tetracosahexaenoylethanolamide, a novel N-acylethanolamide, is elevated in ischemia and increases neuronal output. J Lipid Res 2020; 61:1480-1490. [PMID: 32826272 DOI: 10.1194/jlr.ra120001024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO2-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO2 + microwave, or CO2 only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled (P < 0.05) following ischemia/hypercapnia (CO2 euthanization) and up to 12 times higher (P < 0.001) in the FAAH-KO compared with wild-type. THEA did not increase (P > 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased (P < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Di Miceli
- Université de Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Zhen Liu
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cigdem Sahin
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Xavier Fioramonti
- Université de Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sophie Layé
- Université de Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Morsanuto V, Galla R, Molinari C, Uberti F. A New Palmitoylethanolamide Form Combined with Antioxidant Molecules to Improve Its Effectivess on Neuronal Aging. Brain Sci 2020; 10:brainsci10070457. [PMID: 32708932 PMCID: PMC7408069 DOI: 10.3390/brainsci10070457] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022] Open
Abstract
Palmitoylethanolamide is a nutraceutical compound naturally produced in many plants and animal source foods, but the natural form is poorly water-soluble. It has demonstrated an anti-inflammatory role as a neuroprotective mediator, acting on several molecular targets of the central nervous system involved on brain aging process. In healthy adults, palmitoylethanolamide is an endogenous PPAR-α (peroxisome proliferator-activated receptor α) agonist through which it performs anti-inflammatory activity and provides its effects by activating the cannabinoid receptor. The different formulations of palmitoylethanolamide (micronized palmitoylethanolamide, FM-LipoMatrix® palmitoylethanolamide and FM-LipoMatrix® palmitoylethanolamide plus lipoic acid and vitamin D3) were analyzed starting from intestinal barrier, to verify their bioavailability, to in primary astrocytes in which cell viability, reactive oxygen species (ROS) and nitric oxide (NO) production, NFKB activity, MAPK, p53 and PPARα activities were investigated. Additionally, cannabinoid and estrogen receptors were analyzed using the western blot technique. The combination of palmitoylethanolamide in FM-LipoMatrix®, lipoic acid and vitamin D3 shows better absorption predicting an improvement on plasma concentration; this formulation also shows a reduction in ROS and NO production and the data show the interaction of palmitoylethanolamide with cannabinoids and estrogen receptors inhibiting neuroinflammatory markers. All these data support the hypothesis of a new potential strategy to restore brain function and slow down brain aging in humans.
Collapse
|
20
|
Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB. The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer's Disease and Other Neurodegenerative Disorders. Neurochem Res 2020; 45:972-988. [PMID: 32170673 PMCID: PMC7162839 DOI: 10.1007/s11064-020-02993-5] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator activated receptor alpha (PPAR-α) belongs to the family of ligand-regulated nuclear receptors (PPARs). These receptors after heterodimerization with retinoid X receptor (RXR) bind in promotor of target genes to PPAR response elements (PPREs) and act as a potent transcription factors. PPAR-α and other receptors from this family, such as PPAR-β/δ and PPAR-γ are expressed in the brain and other organs and play a significant role in oxidative stress, energy homeostasis, mitochondrial fatty acids metabolism and inflammation. PPAR-α takes part in regulation of genes coding proteins that are involved in glutamate homeostasis and cholinergic/dopaminergic signaling in the brain. Moreover, PPAR-α regulates expression of genes coding enzymes engaged in amyloid precursor protein (APP) metabolism. It activates gene coding of α secretase, which is responsible for non-amyloidogenic pathway of APP degradation. It also down regulates β secretase (BACE-1), the main enzyme responsible for amyloid beta (Aβ) peptide release in Alzheimer Diseases (AD). In AD brain expression of genes of PPAR-α and PPAR-γ coactivator-1 alpha (PGC-1α) is significantly decreased. PPARs are altered not only in AD but in other neurodegenerative/neurodevelopmental and psychiatric disorder. PPAR-α downregulation may decrease anti-oxidative and anti-inflammatory processes and could be responsible for the alteration of fatty acid transport, lipid metabolism and disturbances of mitochondria function in the brain of AD patients. Specific activators of PPAR-α may be important for improvement of brain cells metabolism and cognitive function in neurodegenerative and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sylwia Wójtowicz
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego st., 02-106, Warsaw, Poland.
| | - Anna K Strosznajder
- Faculty of Medicine, Medical University of Bialystok, 1 Kilinskiego st., 15-089, Białystok, Poland
| | - Mieszko Jeżyna
- Faculty of Medicine, Medical University of Bialystok, 1 Kilinskiego st., 15-089, Białystok, Poland
| | - Joanna B Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego st., 02-106, Warsaw, Poland.
| |
Collapse
|
21
|
Tufano M, Pinna G. Is There a Future for PPARs in the Treatment of Neuropsychiatric Disorders? Molecules 2020; 25:molecules25051062. [PMID: 32120979 PMCID: PMC7179196 DOI: 10.3390/molecules25051062] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, peroxisome proliferator-activated receptor (PPAR)-α and γ isoforms have been gaining consistent interest in neuropathology and treatment of neuropsychiatric disorders. Several studies have provided evidence that either the receptor expression or the levels of their endogenously-produced modulators are downregulated in several neurological and psychiatric disorders and in their respective animal models. Remarkably, administration of these endogenous or synthetic ligands improves mood and cognition, suggesting that PPARs may offer a significant pharmacological target to improve several neuropathologies. Furthermore, various neurological and psychiatric disorders reflect sustained levels of systemic inflammation. Hence, the strategy of targeting PPARs for their anti-inflammatory role to improve these disorders is attracting attention. Traditionally, classical antidepressants fail to be effective, specifically in patients with inflammation. Non-steroidal anti-inflammatory drugs exert potent antidepressant effects by acting along with PPARs, thereby strongly substantiating the involvement of these receptors in the mechanisms that lead to development of several neuropathologies. We reviewed running findings in support of a role for PPARs in the treatment of neurological diseases, including Alzheimer's disease or psychiatric disorders, such as major depression. We discuss the opportunity of targeting PPARs as a future pharmacological approach to decrease neuropsychiatric symptoms at the same time that PPAR ligands resolve neuroinflammatory processes.
Collapse
Affiliation(s)
| | - Graziano Pinna
- Correspondence: or ; Tel.: +1-312-355-1464; Fax: +1-312-413-4569
| |
Collapse
|
22
|
Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci 2019; 20:E5055. [PMID: 31614690 PMCID: PMC6834327 DOI: 10.3390/ijms20205055] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. Pemafibrate, due to its high selectivity, is likely to replace other PPARα agonists for dyslipidemia and cardiovascular diseases. PPARγ agonist pioglitazone showed tremendous promises in many non-metabolic disorders like chronic kidney disease, depression, inflammation, and autoimmune diseases. The clinical niche of PPARβ/δ agonists is less well-explored. Interestingly, dual- or pan-PPAR agonists, namely chiglitazar, saroglitazar, elafibranor, and lanifibranor, are gaining momentum with their optimistic outcomes in many diseases including type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease, and primary biliary cholangitis. Notably, the preclinical and clinical development for PPAR antagonists remains unacceptably deficient. We anticipate the future design of better PPAR modulators with minimal off-target effects, high selectivity, superior bioavailability, and pharmacokinetics. This will open new possibilities for PPAR ligands in medicine.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Charlie Marvalim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Justin Yin Hao Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
23
|
Nogueira-Recalde U, Lorenzo-Gómez I, Blanco FJ, Loza MI, Grassi D, Shirinsky V, Shirinsky I, Lotz M, Robbins PD, Domínguez E, Caramés B. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine 2019; 45:588-605. [PMID: 31285188 PMCID: PMC6642320 DOI: 10.1016/j.ebiom.2019.06.049] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Ageing-related failure of homeostasis mechanisms contributes to articular cartilage degeneration and osteoarthritis (OA), for which disease-modifying treatments are not available. Our objective was to identify molecules to prevent OA by regulating chondrocyte senescence and autophagy. Methods Human chondrocytes with IL-6 induced senescence and autophagy suppression and SA-β-gal as a reporter of senescence and LC3 as reporter of autophagic flux were used to screen the Prestwick Chemical Library of approved drugs. Preclinical cellular, tissue and blood from OA and blood from OA and ageing models were used to test the efficacy and relevance of activating PPARα related to cartilage degeneration. Findings Senotherapeutic molecules with pro-autophagic activity were identified. Fenofibrate (FN), a PPARα agonist used for dyslipidaemias in humans, reduced the number of senescent cells via apoptosis, increased autophagic flux, and protected against cartilage degradation. FN reduced both senescence and inflammation and increased autophagy in both ageing human and OA chondrocytes whereas PPARα knockdown conferred the opposite effect. Moreover, PPARα expression was reduced through both ageing and OA in mice and also in blood and cartilage from knees of OA patients. Remarkably, in a retrospective study, fibrate treatment improved OA clinical conditions in human patients from the Osteoarthritis Initiative (OAI) Cohort. Interpretation These results demonstrate that FDA-approved fibrate drugs targeting lipid metabolism protect against cartilage degeneration seen with ageing and OA. Thus, these drugs could have immediate clinically utility for age-related cartilage degeneration and OA treatment. Fund This study was supported by Instituto de Salud Carlos III- Ministerio de Ciencia, Innovación y Universidades, Spain, Plan Estatal 2013–2016 and Fondo Europeo de Desarrollo Regional (FEDER), “Una manera de hacer Europa”, PI14/01324 and PI17/02059, by Innopharma Pharmacogenomics platform applied to the validation of targets and discovery of drugs candidates to preclinical phases, Ministerio de Economía y Competitividad, by grants of the National Instiutes of Health to PDR (P01 AG043376 and U19 AG056278). We thank FOREUM Foundation for Research in Rheumatology for their support.
Collapse
Affiliation(s)
- Uxía Nogueira-Recalde
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - Irene Lorenzo-Gómez
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - Francisco J Blanco
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - María I Loza
- Eduardo Domínguez: Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Spain
| | - Diego Grassi
- Institute for Interdisciplinary Neuroscience (IINS), Bordeaux, Nouvelle-Aquitaine, France
| | - Valery Shirinsky
- Scientific Research Institute of Clinical immunology, Novosibirsk, Russia
| | - Ivan Shirinsky
- Scientific Research Institute of Clinical immunology, Novosibirsk, Russia
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Eduardo Domínguez
- Eduardo Domínguez: Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Spain.
| | - Beatriz Caramés
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain.
| |
Collapse
|