1
|
Chen S, Li Y, Kang J, Su C, Liu Y, Cheng Y, Wang Z, Li S, Li C. Evaluate the Effects of Different Processing Methods on Red Dragon Fruit ( Hylocereus species) Juice from the Perspective of Physicochemical Properties and Metabolic Profiles. Foods 2025; 14:793. [PMID: 40077495 PMCID: PMC11899162 DOI: 10.3390/foods14050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Red dragon fruit juice (RDFJ) is a common fruit processing product on the market, and different processing methods can affect its quality. This study selected traditional thermal processing methods such as pasteurization and novel non-thermal processing methods like ultrasonication and cold plasma to treat red dragon fruit juice. The effects of different processing methods on the quality of red dragon fruit juice were comprehensively evaluated through physicochemical properties, in vitro activity, metabolomics and flavoromics. The results indicate that the cloud stability of cold plasma (CP) treatment increased by 16.64%, the total polyphenol content increased by 13.76%, and its antioxidant capacity was higher than that of other treatments. Cold plasma significantly increased the content of L-tyrosine and affected the amino acid metabolic pathways of RDFJ, which can contribute to the total phenolic content of RDFJ and antioxidant activity. CP treatment effectively preserved the aroma components of RDFJ and decreased the content of harmful furan volatile compounds. The results suggest that cold plasma is a promising innovative non-thermal processing technique in RDFJ.
Collapse
Affiliation(s)
- Shuai Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.C.); (Y.L.); (J.K.); (C.S.); (Y.L.); (Y.C.); (Z.W.); (S.L.)
| | - Yansong Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.C.); (Y.L.); (J.K.); (C.S.); (Y.L.); (Y.C.); (Z.W.); (S.L.)
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.C.); (Y.L.); (J.K.); (C.S.); (Y.L.); (Y.C.); (Z.W.); (S.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Congyan Su
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.C.); (Y.L.); (J.K.); (C.S.); (Y.L.); (Y.C.); (Z.W.); (S.L.)
| | - Yuyi Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.C.); (Y.L.); (J.K.); (C.S.); (Y.L.); (Y.C.); (Z.W.); (S.L.)
| | - Yanfei Cheng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.C.); (Y.L.); (J.K.); (C.S.); (Y.L.); (Y.C.); (Z.W.); (S.L.)
| | - Zexin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.C.); (Y.L.); (J.K.); (C.S.); (Y.L.); (Y.C.); (Z.W.); (S.L.)
| | - Shuxian Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.C.); (Y.L.); (J.K.); (C.S.); (Y.L.); (Y.C.); (Z.W.); (S.L.)
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.C.); (Y.L.); (J.K.); (C.S.); (Y.L.); (Y.C.); (Z.W.); (S.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| |
Collapse
|
2
|
Fu Q, Yang Y, Tian Q, Zhu Y, Xu H, Wang J, Huang Q. Exploring the mechanism of Paotianxiong polysaccharide in the treatment of chronic kidney disease combining metabolomics and microbiomics technologies. Int J Biol Macromol 2025; 289:138629. [PMID: 39667450 DOI: 10.1016/j.ijbiomac.2024.138629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
A close relationship between the pathogenesis of chronic kidney disease (CKD) and abnormalities in the gut-kidney axis. Paotianxiong polysaccharides (PTXP) that have demonstrated therapeutic effects on CKD. However, the specific mechanism by which PTXP ameliorates CKD through the gut-kidney axis remains to be explored. In this study, the microbiomes and metabolomics were combined to investigate the impact of PTXP on intestinal flora structure and metabolism, further unveiling the relationship through correlation analysis. The results showed that PTXP intervention significantly modulated renal function abnormalities in CKD rats and significantly modulates gut microbial disorders, evidenced by an increased abundance of Lactobacillus murinus, Bacteroides fragilis, and a decreased abundance of Bifidobacterium pseudolongum. Furthermore, PTXP reversed the changes in intestinal metabolites, such as linoleic acid and docosahexaenoic acid, induced by CKD and identified unsaturated fatty acid metabolism as a key metabolic pathway. Correlation analyses also revealed associations among gut microorganisms, metabolites, and renal function indexes, confirming that PTXP alleviated CKD through the gut-kidney axis. Moreover, the above conclusions were verified by fecal bacteria transplantation experiments. These findings provide insights into the mechanism of PTXP for the treatment of CKD and provide new targets for the treatment of CKD.
Collapse
Affiliation(s)
- Qinwen Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Yu Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Qingqing Tian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Ying Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Huiyuan Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Jin Wang
- College of Ethnic Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Zhang R, Wang J, Wu C, Wang L, Liu P, Li P. Lipidomics-based natural products for chronic kidney disease treatment. Heliyon 2025; 11:e41620. [PMID: 39866478 PMCID: PMC11758422 DOI: 10.1016/j.heliyon.2024.e41620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Chronic kidney disease (CKD) is by far the most prevalent disease in the world and is now a major global public health problem because of the increase in diabetes, hypertension and obesity. Traditional biomarkers of kidney function lack sensitivity and specificity for early detection and monitoring of CKD progression, necessitating more sensitive biomarkers for early diagnostic intervention. Dyslipidemia is a hallmark of CKD. Advancements in mass spectrometry (MS)-based lipidomics platforms have facilitated comprehensive analysis of lipids in biological samples and have revealed changes in the lipidome that are associated with metabolic disorders, which can be used as new biomarkers for kidney diseases. It is also critical for the discovery of new therapeutic targets and drugs. In this article, we focus on lipids in CKD, lipidomics methodologies and their applications in CKD. Additionally, we introduce novel biomarkers identified through lipidomics approaches and natural products derived from lipidomics for the treatment of CKD. We believe that our study makes a significant contribution to literature by demonstrating that natural products can improve CKD from a lipidomic perspective.
Collapse
Affiliation(s)
- Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Yang Q, Su S, Luo N, Cao G. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail 2024; 46:2336128. [PMID: 38575340 PMCID: PMC10997364 DOI: 10.1080/0886022x.2024.2336128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.
Collapse
Affiliation(s)
- Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songya Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Zeng X, Li J, Pei L, Yang Y, Chen Y, Wang X, Zhang T, Zhou T. Didang decoction attenuates cancer-associated thrombosis by inhibiting PAD4-dependent NET formation in lung cancer. Pulm Circ 2024; 14:e12454. [PMID: 39386377 PMCID: PMC11462072 DOI: 10.1002/pul2.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
This research aims to investigate the impact of Didang decoction (DD) on the formation of neutrophil extracellular traps (NETs) and cancer-associated thrombosis in lung cancer. BALB/c nude mice were used to establish xenograft models for inducing deep vein thrombosis. Tumor growth and thrombus length were assessed. The impact of DD on NET generation was analyzed using enzyme-linked immunosorbent assay, immunofluorescence staining, quantitative real-time PCR, and western blot analysis, both in vivo and in vitro. CI-amidine, a PAD4 inhibitor, was employed to evaluate the role of PAD4 in the generation of NETs. In vivo studies demonstrated that treatment with DD reduced tumor growth, inhibited thrombus formation, and decreased the levels of NET markers in the serum, tumor tissues, neutrophils, and thrombus tissues of mice. Additional data indicated that DD could suppress neutrophil counts, the release of tissue factor (TF), and the activation of thrombin-activated platelets, all of which contributed to increased formation of NETs in mouse models. In vitro, following incubation with conditioned medium (CM) derived from Lewis lung carcinoma cells, the expression of NET markers in neutrophils was significantly elevated, and an extracellular fibrous network structure was observed. Nevertheless, these NET-associated changes were partially counteracted by DD. Additionally, CI-amidine reduced the expression of NET markers in CM-treated neutrophils, consistent with the effects of DD. Collectively, DD inhibits cancer-associated thrombosis in lung cancer by decreasing PAD4-dependent NET formation through the regulation of TF-mediated thrombin-platelet activation. This presents a promising therapeutic strategy for preventing and treating venous thromboembolism in lung cancer.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Department of Clinical Chinese Pharmacy, College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Jiuxi Li
- College of Acupuncture, Massage and RehabilitationHunan University of Chinese MedicineChangshaHunanChina
| | - Liyuan Pei
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Yaping Yang
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Ya Chen
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Xuejing Wang
- College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Ting Zhang
- Cardiovascular DepartmentHunan Provincial Hospital of Integrated Traditional Chinese and Western MedicineChangshaHunanChina
| | - Ting Zhou
- Department of Clinical Chinese Pharmacy, College of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| |
Collapse
|
6
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
7
|
Nusinovici S, Li H, Chong C, Yu M, Sørensen IMH, Bisgaard LS, Christoffersen C, Bro S, Liu S, Liu JJ, Chi LS, Wong TY, Tan GSW, Cheng CY, Sabanayagam C. Blood biomarkers improve the prediction of prevalent and incident severe chronic kidney disease. J Nephrol 2024; 37:1007-1016. [PMID: 38308753 DOI: 10.1007/s40620-023-01872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/26/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND The prevalence of chronic kidney disease (CKD) is high. Identification of cases with CKD or at high risk of developing it is important to tailor early interventions. The objective of this study was to identify blood metabolites associated with prevalent and incident severe CKD, and to quantify the corresponding improvement in CKD detection and prediction. METHODS Data from four cohorts were analyzed: Singapore Epidemiology of Eye Diseases (SEED) (n = 8802), Copenhagen Chronic Kidney Disease (CPH) (n = 916), Singapore Diabetic Nephropathy (n = 714), and UK Biobank (UKBB) (n = 103,051). Prevalent CKD (stages 3-5) was defined as estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2; incident severe CKD as CKD-related mortality or kidney failure occurring within 10 years. We used multivariable regressions to identify, among 146 blood metabolites, those associated with CKD, and quantify the corresponding increase in performance. RESULTS Chronic kidney disease prevalence (stages 3-5) and severe incidence were 11.4% and 2.2% in SEED, and 2.3% and 0.2% in UKBB. Firstly, phenylalanine (Odds Ratio [OR] 1-SD increase = 1.83 [1.73, 1.93]), tyrosine (OR = 0.75 [0.71, 0.79]), docosahexaenoic acid (OR = 0.90 [0.85, 0.95]), citrate (OR = 1.41 [1.34, 1.47]) and triglycerides in medium high density lipoprotein (OR = 1.07 [1.02, 1.13]) were associated with prevalent stages 3-5 CKD. Mendelian randomization analyses suggested causal relationships. Adding these metabolites beyond traditional risk factors increased the area under the curve (AUC) by 3% and the sensitivity by 7%. Secondly, lactate (HR = 1.33 [1.08, 1.64]) and tyrosine (HR = 0.74 [0.58, 0.95]) were associated with incident severe CKD among individuals with eGFR < 90 mL/min/1.73 m2 at baseline. These metabolites increased the c-index by 2% and sensitivity by 5% when added to traditional risk factors. CONCLUSION The performance improvements of CKD detection and prediction achieved by adding metabolites to traditional risk factors are modest and further research is necessary to fully understand the clinical implications of these findings.
Collapse
Affiliation(s)
- Simon Nusinovici
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Singapore, 169856, Singapore.
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore.
| | - Hengtong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Singapore, 169856, Singapore
| | - Crystal Chong
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Singapore, 169856, Singapore
| | - Marco Yu
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Singapore, 169856, Singapore
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
| | | | - Line Stattau Bisgaard
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Bro
- Department of Nephrology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Sylvia Liu
- Clinical Research Unit, Diabetes Centre, Department of Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Diabetes Centre, Department of Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Lim Su Chi
- Clinical Research Unit, Diabetes Centre, Department of Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
- Saw Swee Hock School of Public Heath, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Singapore, 169856, Singapore
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gavin S W Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Singapore, 169856, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Singapore, 169856, Singapore
- Eye-ACP, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Singapore, 169856, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Li Y, Zhao Y, Niu X, Zhu Q, Wang X, Li S, Sun J, Hua S, Yang L, Yao W. Distinguishment of different varieties of rhubarb based on UPLC fingerprints and chemometrics. J Pharm Biomed Anal 2024; 241:116003. [PMID: 38301576 DOI: 10.1016/j.jpba.2024.116003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Rhubarb, a widely used traditional Chinese medicine (TCM), is primarily used for purging in practice. It is derived from the dried roots and rhizomes of R. tanguticum Maxim. ex Balf. (RT), Rheum officinale Baill. (RO) and R. palmatum L. (RP). To date, although the three varieties of rhubarb have been used as the same medicine in clinical, studies have found that they have different chemical compositions and pharmacological effects. To ensure the stability of rhubarb for clinical use, a simple and effective method should be built to compare and discriminate three varieties of rhubarb. Here, ultra-performance liquid chromatography-diode array detection (UPLC-DAD) fingerprints combined with chemometric methods were developed to evaluate and discriminate 29 batches of rhubarb. Similarity evaluation, hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that the chemical constituents of the three varieties of rhubarb were significantly different, and the three varieties could be effectively distinguished. Finally, all the 14 common peaks were identified by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In this research, the developed UPLC fingerprints offer a simple, reliable and specific approach for distinguishing different varieties of rhubarb. This research aims to promote the scientific and appropriate clinical application of rhubarb from three varieties.
Collapse
Affiliation(s)
- Yuan Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuan Niu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qianqian Zhu
- Jiangyin Tianjiang Pharmaceutical Co., Ltd., Wuxi 214400, China
| | - Xiehe Wang
- Jiangyin Tianjiang Pharmaceutical Co., Ltd., Wuxi 214400, China
| | - Song Li
- Jiangyin Tianjiang Pharmaceutical Co., Ltd., Wuxi 214400, China
| | - Jun Sun
- Jiangsu Food and Drug Administration Certification Review Center, Nanjing 210002, China
| | - Su Hua
- Jiangsu Food and Drug Administration Certification Review Center, Nanjing 210002, China
| | - Liwei Yang
- Jiangsu Food and Drug Administration Certification Review Center, Nanjing 210002, China.
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Li J, Qin X, Xu W, Zhang H, Huang S, Yang Y, Qin M, Mi Z, Zhong X. Herb pair of Rhubarb-Astragalus mitigates renal interstitial fibrosis through downregulation of autophagy via p38-MAPK/TGF-β1 and p38-MAPK/smad2/3 pathways. Int J Biochem Cell Biol 2024; 169:106549. [PMID: 38340950 DOI: 10.1016/j.biocel.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) has a high incidence and poor prognosis; however, no effective treatment is currently available. Our previous study found that the improvement effect of the herb pair of Rhubarb-Astragalus on CKD is likely related to the inhibition of the TGF-β1/p38-MAPK pathway. In the present study, a p38-MAPK inhibitor was used to further investigate the inhibitory effect of Rhubarb-Astragalus on the TGF-β1/p38-MAPK pathway and its relationship with autophagy. METHODS A rat model of unilateral ureteral obstruction (UUO) was established, and a subgroup of rats was administered Rhubarb-Astragalus. Renal function and renal interstitial fibrosis (RIF) were assessed 21 d after UUO induction. In vitro, HK-2 cells were treated with TGF-β1 and a subset of cells were treated with Rhubarb-Astragalus or p38-MAPK inhibitor. Western blotting, immunohistochemistry, and qRT-PCR analyses were used to detect the relevant protein and mRNA levels. Transmission electron microscopy was used to observe autophagosomes. RESULTS Rhubarb-Astragalus treatment markedly decreased the elevated levels of blood urea nitrogen, serum creatinine, and urinary N-acetyl-β-D-glucosaminidase; attenuated renal damage and RIF induced by UUO; and reduced the number of autophagosomes and lysosomes in UUO-induced renal tissues. Additionally, Rhubarb-Astragalus reduced the protein and mRNA levels of α-SMA, collagen I, LC3, Atg3, TGF-β1, p38-MAPK, smad2/3, and TAK1 in renal tissues of UUO rats. Rhubarb-Astragalus also reduced protein and mRNA levels of these indicators in vitro. Importantly, the effect of the p38-MAPK inhibitor was similar to that of Rhubarb-Astragalus. CONCLUSIONS Rhubarb-Astragalus improves CKD possibly by downregulating autophagy via the p38-MAPK/TGF-β1 and p38-MAPK/smad2/3 pathways.
Collapse
Affiliation(s)
- Jinxiu Li
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiping Qin
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weimin Xu
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongliang Zhang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Songqing Huang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufang Yang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Mengyuan Qin
- Student Affairs Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengcheng Mi
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaobin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Qi M, Hu X, Zhu W, Ren Y, Dai C. Study on effects and relevant mechanisms of Mudan granules on renal fibrosis in streptozotocin-induced diabetes rats. Ren Fail 2024; 46:2310733. [PMID: 38357745 PMCID: PMC10877650 DOI: 10.1080/0886022x.2024.2310733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
AIMS The effects and relevant mechanisms of Mudan granules in the renal fibrosis of diabetic rats were explored through in vivo experiments, which provided a scientific basis for expanding their clinical indications. METHODS Male SD rats were given a single intraperitoneal injection of STZ (65 mg/kg) to induce diabetes rat models. After treatment with Mudan granules, the general condition of rats was recorded. Blood glucose, blood lipids, and renal function-related indicators were detected, renal tissue morphological changes and fibrosis-related indicators were observed, and the expression of pathway-related proteins were examined. RESULTS The general condition of diabetes rats was improved after the treatment of Mudan granules, the 24-h urinary protein and urinary albumin to creatinine ratio were reduced, and the renal function and lipid results were modified. The tissue damage to the rat kidney has been repaired. Expression of TGF-β1/Smad-related pathway proteins was suppressed in kidney tissues, and the fibrosis factor CO-IV, FN, and LN were reduced in serum. CONCLUSION Mudan granules may inhibit of TGF-β1/Smad pathway, inhibit the production of ECM, reduce the levels of fibrosis factors CO-IV, FN, and LN, to have a protective effect on kidney in diabetes rats.
Collapse
Affiliation(s)
- Mushuang Qi
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiangka Hu
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wanjun Zhu
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ying Ren
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunmei Dai
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
11
|
Ghafouri‐Fard S, Askari A, Shoorei H, Seify M, Koohestanidehaghi Y, Hussen BM, Taheri M, Samsami M. Antioxidant therapy against TGF-β/SMAD pathway involved in organ fibrosis. J Cell Mol Med 2024; 28:e18052. [PMID: 38041559 PMCID: PMC10826439 DOI: 10.1111/jcmm.18052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Fibrosis refers to excessive build-up of scar tissue and extracellular matrix components in different organs. In recent years, it has been revealed that different cytokines and chemokines, especially Transforming growth factor beta (TGF-β) is involved in the pathogenesis of fibrosis. It has been shown that TGF-β is upregulated in fibrotic tissues, and contributes to fibrosis by mediating pathways that are related to matrix preservation and fibroblasts differentiation. There is no doubt that antioxidants protect against different inflammatory conditions by reversing the effects of nitrogen, oxygen and sulfur-based reactive elements. Oxidative stress has a direct impact on chronic inflammation, and as results, prolonged inflammation ultimately results in fibrosis. Different types of antioxidants, in the forms of vitamins, natural compounds or synthetic ones, have been proven to be beneficial in the protection against fibrotic conditions both in vitro and in vivo. In this study, we reviewed the role of different compounds with antioxidant activity in induction or inhibition of TGF-β/SMAD signalling pathway, with regard to different fibrotic conditions such as gastro-intestinal fibrosis, cardiac fibrosis, pulmonary fibrosis, skin fibrosis, renal fibrosis and also some rare cases of fibrosis, both in animal models and cell lines.
Collapse
Affiliation(s)
- Soudeh Ghafouri‐Fard
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Arian Askari
- Phytochemistry Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Shoorei
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
- Clinical Research Development Unit of Tabriz Valiasr HospitalTabriz University of Medical SciencesTabrizIran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences InstituteShahid Sadoughi University of Medical SciencesYazdIran
| | - Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences InstituteShahid Sadoughi University of Medical SciencesYazdIran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of PharmacyHawler Medical UniversityErbilIraq
| | - Mohammad Taheri
- Institute of Human GeneticsJena University HospitalJenaGermany
- Urology and Nephrology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Majid Samsami
- Cancer Research Center, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Zhang F, Wu R, Liu Y, Dai S, Xue X, Li Y, Gong X. Nephroprotective and nephrotoxic effects of Rhubarb and their molecular mechanisms. Biomed Pharmacother 2023; 160:114297. [PMID: 36716659 DOI: 10.1016/j.biopha.2023.114297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Rhubarb, in the form of a traditional Chinese medicine, is used in the treatment of chronic kidney disease (CKD). Previous studies have demonstrated that Rhubarb possesses a good nephroprotective effect, which primarily protects the kidneys from fibrosis, oxidation, inflammation, autophagy, and apoptosis. However, studies have shown that the long-term inappropriate use of Rhubarb may cause damage to renal function. Therefore, how to correctly understand and scientifically evaluate the pharmacodynamics and toxicity of Rhubarb with regard to CKD is a scientific question that urgently needs to be answered. In this review, we explain and illustrate how Rhubarb exerts its nephroprotective effect against CKD. We also describe the mechanisms of action that may cause its nephrotoxicity. Valuable and practical clinical guidance is proposed with regard to methods for mitigating the nephrotoxicity of Rhubarb.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaohong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation. Int J Mol Sci 2023; 24:ijms24044004. [PMID: 36835428 PMCID: PMC9963026 DOI: 10.3390/ijms24044004] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
Most chronic inflammatory illnesses include fibrosis as a pathogenic characteristic. Extracellular matrix (ECM) components build up in excess to cause fibrosis or scarring. The fibrotic process finally results in organ malfunction and death if it is severely progressive. Fibrosis affects nearly all tissues of the body. The fibrosis process is associated with chronic inflammation, metabolic homeostasis, and transforming growth factor-β1 (TGF-β1) signaling, where the balance between the oxidant and antioxidant systems appears to be a key modulator in managing these processes. Virtually every organ system, including the lungs, heart, kidney, and liver, can be affected by fibrosis, which is characterized as an excessive accumulation of connective tissue components. Organ malfunction is frequently caused by fibrotic tissue remodeling, which is also frequently linked to high morbidity and mortality. Up to 45% of all fatalities in the industrialized world are caused by fibrosis, which can damage any organ. Long believed to be persistently progressing and irreversible, fibrosis has now been revealed to be a very dynamic process by preclinical models and clinical studies in a variety of organ systems. The pathways from tissue damage to inflammation, fibrosis, and/or malfunction are the main topics of this review. Furthermore, the fibrosis of different organs with their effects was discussed. Finally, we highlight many of the principal mechanisms of fibrosis. These pathways could be considered as promising targets for the development of potential therapies for a variety of important human diseases.
Collapse
|
14
|
Huang W, Rao Y, Li L, Li C, An Y. Clinical effect of rhubarb on the treatment of chronic renal failure: A meta-analysis. Front Pharmacol 2023; 14:1108861. [PMID: 37153797 PMCID: PMC10157189 DOI: 10.3389/fphar.2023.1108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023] Open
Abstract
Objective: 1) To evaluate the effificacy of rhubarb in the treatment of chronic renal failure (CRF); 2) To explore the safety for rhubarb-based therapy on chronic renal failure. Methods: The randomized and semi randomized controlled trials of Rhubarb in the treatment of chronic renal failure in medical electronic databases (up to September 2021) were searched, and meta-analysis was carried out by revman 5.3 software. Results: A total of 2,786 patients were included in 34 literatures, including 1,474 cases in the treatment group and 1,312 cases in the control group. The results of meta-analysis showed that Serum creatinine (SCR) [MD = 123.57, 95% Cl (111.59, 131.96)], Blood urea nitrogen (BUN) [MD = -3.26, 95% Cl (-4.22,-2.31)], Creatinine clearance rate (CCR) [MD = 3.95, 95% Cl (-0.03, 7.93)], Hemoglobin (Hb) [MD = 7.70, 95% Cl (-0.18, 15.58)] and Uric acid (UA) [MD = -42.79, 95% CI (-66.29, -19.29)]. The total effective rate of improving symptoms and signs in chronic renal failure patients [Peto or = 4.14, 95% Cl (3.32, 5.16)]. Conclusion: This systematic review and meta-analysis demonstrated that rhubarb has a positive therapeutic effect, which may provide confifidence and some theoretical reference for clinical application to a certain extent. Compared with the control group, rhubarb alone or traditional Chinese medicine compound containing Rhubarb can significantly reduce Serum creatinine, Blood urea nitrogen and Uric acid, increase Creatinine clearance rate, and improve the total effective rate of symptoms and signs. However, there is no evidence that rhubarb is more effective than the control group in increasing hemoglobin. In addition, due to the low quality of research methodology in the included literature, it is necessary to further study high-quality literature to evaluate its efficacy and safety. Systematic Review Registration: https://inplasy.com/inplasy-2021-10-0052/, identifier INPLASY2021100052.
Collapse
Affiliation(s)
- Wei Huang
- Hubei University of Chinese Medicine, Wuhan, China
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | | | - Liang Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Chengyin Li
- Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
- *Correspondence: Chengyin Li, ; Yi An,
| | - Yi An
- TCM Department, Second Wuhan University of Science and Technology Hospital, Wuhan, China
- *Correspondence: Chengyin Li, ; Yi An,
| |
Collapse
|
15
|
Ta W, Yang X, Wang J, Han C, Hua R, Lu W. Comparison of intestinal absorption characteristics between rhubarb traditional Chinese medicine preparation and activity ingredients using in situ and in vitro model. CHINESE HERBAL MEDICINES 2023; 15:117-122. [PMID: 36875442 PMCID: PMC9975633 DOI: 10.1016/j.chmed.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 09/19/2022] [Indexed: 12/12/2022] Open
Abstract
Objective The intestinal absorption characteristics of active ingredients are very important for oral administration of traditional Chinese medicine (TCM) to achieve the desired therapeutic effect. However, a deeper understanding about active ingredients absorption characteristics is still lack. The aim of this study was to investigate the absorption properties and mechanism of rhubarb active ingredients in TCM preparation and pure form. Methods The intestinal absorption behavior of active ingredients in Shenkang extract (SKE) and rhubarb anthraquinone ingredients (RAI) were investigated by in situ single-pass intestinal perfusion model. And the bidirectional transport characteristics of these active ingredients were assessed by in vitro Caco-2 cell monolayer model. Results In situ experiment on Sprague-Dawley rats, the effective permeability coefficient values of aloe-emodin, emodin and chrysophanol in RAI were higher than those in SKE, and the value of rhein in RAI was lower than that in SKE. But the easily absorbed segments of intestine were consistent for all ingredients, whether in SKE or in RAI. In vitro experiment, the apparent permeability coefficient values of rhein, emodin and chrysophanol in RAI were higher than those in SKE, and this value of aloe-emodin in RAI was lower than that in SKE. But their efflux ratio (ER) values in SKE and RAI were all similar. Conclusion Four rhubarb anthraquinone ingredients in SKE and RAI have similar absorption mechanism and different absorption behavior, and the microenvironment of the study models influenced their absorption behavior. The results may provide an aid for understanding of the absorption characteristics of the TCM active ingredients in complex environments and the complementarities of different research models.
Collapse
Affiliation(s)
- Wenjing Ta
- Health Science Center, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoying Yang
- Shaanxi Regional Center, National Anti-Drug Laboratory, Xi'an 710000, China
| | - Jie Wang
- Health Science Center, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chengkun Han
- Health Science Center, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruochen Hua
- Health Science Center, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wen Lu
- Health Science Center, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
16
|
Du H, Le G, Hou L, Mao X, Liu S, Huang K. Nontoxic Concentration of Ochratoxin A Aggravates Renal Fibrosis Induced by Adriamycin/Cyclosporine A Nephropathy via TGF-β1/SMAD2/3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14005-14014. [PMID: 36278938 DOI: 10.1021/acs.jafc.2c03577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is the most common contaminant in food and feed, which causes nephrotoxicity. Studies revealed that a low level of OTA contamination could also cause physiological dysfunction. Chronic kidney disease (CKD) has become an important public health problem with increasing morbidity. However, the potential effect of nontoxic OTA on CKD remains uncertain. In this study, adriamycin (ADR) and cyclosporine A (CSA) were used to stimulate glomerular nephropathy and tubular nephropathy, respectively. Renal injury was aggravated due to OTA (0.25 mg/kg) exposure in the mouse nephropathy models, assessing by renal histomorphology and the detection of blood urea nitrogen (BUN) and serum creatine (SCr) levels. We noticed that nontoxic dosage of OTA increased the expression of fibrotic factors, α-smooth muscle actin (α-SMA), and Vimentin in a nephropathic mouse, which indicated the exacerbation of ADR/CSA-induced renal fibrosis. We conducted in vitro experiments in glomerular mesangial cells and renal tubular epithelial cells. Nontoxic concentration of OTA was found to exacerbate the cytotoxicity of ADR/CSA and intensify renal fibrosis by activating TGF-β1/SMAD2/3. Thus, this study may provide convincing evidence for the prevention of CKD aggravation and the renewal of food hygiene standards in mycotoxin contamination.
Collapse
Affiliation(s)
- Heng Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xinru Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
17
|
Metabolomics reveal the mechanism for anti-renal fibrosis effects of an n-butanol extract from Amygdalus mongolica. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:437-448. [PMID: 36651545 DOI: 10.2478/acph-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 01/26/2023]
Abstract
To reveal the mechanism of anti-renal fibrosis effects of an n-butanol extract from Amygdalus mongolica, renal fibrosis was induced with unilateral ureteral obstruction (UUO) and then treated with an n-butanol extract (BUT) from Amygdalus mongolica (Rosaceae). Sixty male Sprague-Dawley rats were randomly divided into the sham-operated, renal fibrosis (RF) model, benazepril hydrochloride-treated model (1.5 mg kg-1) and BUT-treated (1.75, 1.5 and 1.25 g kg-1) groups and the respective drugs were administered intragastrically for 21 days. Related biochemical indices in rat serum were determined and histopathological morphology observed. Serum metabolomics was assessed with HPLC-Q-TOF-MS. The BUT reduced levels of blood urea nitrogen, serum creatinine and albumin and lowered the content of malondialdehyde and hydroxyproline in tissues. The activity of superoxide dismutase in tissues was increased and an improvement in the severity of RF was observed. Sixteen possible biomarkers were identified by metabolomic analysis and six key metabolic pathways, including the TCA cycle and tyrosine metabolism, were analyzed. After treatment with the extract, 8, 12 and 9 possible biomarkers could be detected in the high-, medium- and low-dose groups, respectively. Key biomarkers of RF, identified using metabolomics, were most affected by the medium dose. A. mongolica BUT extract displays a protective effect on RF in rats and should be investigated as a candidate drug for the treatment of the disease.
Collapse
|
18
|
Wang Y, Feng Y, Li M, Yang M, Shi G, Xuan Z, Yin D, Xu F. Traditional Chinese Medicine in the Treatment of Chronic Kidney Diseases: Theories, Applications, and Mechanisms. Front Pharmacol 2022; 13:917975. [PMID: 35924053 PMCID: PMC9340222 DOI: 10.3389/fphar.2022.917975] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic kidney disease (CKD) is a common and progressive disease that has become a major public health problem on a global scale. Renal fibrosis is a common feature in the pathogenesis of CKD, which is mainly related to the excessive accumulation and deposition of extracellular matrix caused by various inflammatory factors. No ideal treatment has yet been established. In recent years, based on the traditional Chinese medicine (TCM) theory of CKD and its molecular mechanism, clinical evidence or experimental studies have confirmed that a variety of Chinese materia medica (CMM) and their effective components can delay the progress of CKD. TCM believes that the pathogenesis of CKD is the deficiency in the root and excess in the branch, and the deficiency and excess are always accompanied by the disease. The strategies of TCM in treating CKD are mainly based on invigorating Qi, tonifying the kidneys, promoting blood circulation, removing stasis, eliminating heat and dampness, removing turbidity, and eliminating edema, and these effects are multitargeted and multifunctional. This review attempts to summarize the theories and treatment strategies of TCM in the treatment of CKD and presents the efficacy and mechanisms of several CMMs supported by clinical evidence or experimental studies. In addition, the relationship between the macroscopic of TCM and the microscopic of modern medicine and the problems faced in further research were also discussed.
Collapse
Affiliation(s)
- Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Ye Feng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Manman Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mo Yang
- Scientific Research and Technology Center, Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Dengke Yin, ; Fan Xu,
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Dengke Yin, ; Fan Xu,
| |
Collapse
|
19
|
Zhao YY. Recent advances of gut microbiota in chronic kidney disease patients. EXPLORATION OF MEDICINE 2022:260-274. [DOI: 10.37349/emed.2022.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/21/2022] [Indexed: 01/23/2025] Open
Abstract
Chronic kidney disease (CKD) is a worldwide public health issue and has ultimately progressed to an end-stage renal disease that requires life-long dialysis or renal transplantation. However, the underlying molecular mechanism of these pathological development and progression remains to be fully understood. The human gut microbiota is made up of approximately 100 trillion microbial cells including anaerobic and aerobic species. In recent years, more and more evidence has indicated a clear association between dysbiosis of gut microbiota and CKD including immunoglobulin A (IgA) nephropathy, diabetic kidney disease, membranous nephropathy, chronic renal failure and end-stage renal disease. The current review describes gut microbial dysbiosis and metabolites in patients with CKD thus helping to understand human disease. Treatment with prebiotics, probiotics and natural products can attenuate CKD through improving dysbiosis of gut microbiota, indicating a novel intervention strategy in patients with CKD. This review also discusses therapeutic options, such as prebiotics, probiotics and natural products, for targeting dysbiosis of gut microbiota in patients to provide more specific concept-driven therapy strategy for CKD treatment.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an 710069, Shaanxi, China
| |
Collapse
|
20
|
Liu XY, Zhang XB, Zhao YF, Qu K, Yu XY. Research Progress of Chinese Herbal Medicine Intervention in Renal Interstitial Fibrosis. Front Pharmacol 2022; 13:900491. [PMID: 35770077 PMCID: PMC9235922 DOI: 10.3389/fphar.2022.900491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney diseases usually cause renal interstitial fibrosis, the prevention, delay, and treatment of which is a global research hotspot. However, no definite treatment options are available in modern medicine. Chinese herbal medicine has a long history, rich varieties, and accurate treatment effects. Hitherto, many Chinese herbal medicine studies have emerged to improve renal interstitial fibrosis. This paper reviews the mechanisms of renal interstitial fibrosis and recent studies on the disease intervention with Chinese herbal medicine through literature search, intend to reveal the importance of Chinese herbal medicine in renal interstitial fibrosis. The results show that Chinese herbal medicine can improve renal interstitial fibrosis, and the effects of Chinese herbal medicine on specific pathological mechanisms underlying renal interstitial fibrosis have been explored. Additionally, the limitations and advantages of Chinese herbal medicine in the treatment of renal interstitial fibrosis, possible research directions, and new targets of Chinese herbal medicine are discussed to provide a basis for studies of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Xiao-Yuan Liu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xu-Bin Zhang
- Department of Orthopaedic, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ya-Feng Zhao
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Kai Qu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
- *Correspondence: Xiao-Yong Yu,
| |
Collapse
|
21
|
Wang R, Hu B, Ye C, Zhang Z, Yin M, Cao Q, Ba Y, Liu H. Stewed Rhubarb Decoction Ameliorates Adenine-Induced Chronic Renal Failure in Mice by Regulating Gut Microbiota Dysbiosis. Front Pharmacol 2022; 13:842720. [PMID: 35392552 PMCID: PMC8979777 DOI: 10.3389/fphar.2022.842720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the protective effect of Stewed Rhubarb (SR) decoction on chronic renal failure (CRF) through the regulation of gut microbiota. Using a CRF mouse model induced by a 0.2% adenine diet, we proved that SR decoction (2.0 g crude SR/kg) significantly reduced the levels of urea and creatinine in plasma of CRF mice, accompanied by the improvement of renal fibrosis and tubular atrophy, amelioration of inflammation, and inhibition of aquaporins damage. Also, SR decoction alleviated gut barrier damage, indicative of the elevated mRNA expression of intestinal mucins and tight junctions. By 16S rDNA sequencing, SR decoction reshaped the imbalanced gut microbiota in CRF mice by statistically reversing the abundance changes of a wide range of intestinal bacteria at family and genus levels, which further led to balance in the production of intestinal metabolites, including short-chain fatty acids (acetic acid, propionic acid, and valeric acid), indole, and bile acids (TUDCA and CDCA). Inversely, SR decoction failed to repress the occurrence of CRF in mice with gut microbiota depletion, confirming the essential role of gut microbiota in SR decoction-initiated protection against CRF. In summary, SR decoction can improve adenine-induced CRF in mice by remolding the structure of destructed gut microbiota community. Our findings shed light on the clinical application of SR decoction in nephropathy treatment.
Collapse
Affiliation(s)
- Rui Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China.,Nephrology Department, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Cheng Ye
- Technology Center of Wuhan Customs, Wuhan, China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiushi Cao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuanming Ba
- Nephrology Department, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Nephrology Department, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
22
|
Samynathan R, Subramanian U, Venkidasamy B, Shariati MA, Chung IM, Thiruvengadam M. S-Allylcysteine (SAC) Exerts Renoprotective Effects via Regulation of TGF-
β1/Smad3 Pathway Mediated Matrix Remodeling in Chronic Renal Failure. Curr Pharm Des 2022; 28:661-670. [DOI: 10.2174/1381612828666220401114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Background: S-Allylcysteine (SAC), an organosulfur phytochemical sourced from aged garlic extract,
is well known for its varied biomedical applications, such as anti-oxidant, anti-inflammatory, and detoxification
mechanisms. Despite this, the scientific findings on the defensive impact of SAC against kidney failure
(KF) are still unclear. Therefore, in the current investigation, the animal model of KF was induced by adenine
in Wistar rats, and the animals were divided into four groups as control, KF induction using adenine, SAC treated
KF rats for an experimental duration of 8 weeks.
Methods: KF progression was assessed by various serum and tissue markers, and the results demonstrated that
the renal functions’ markers, KIM-1 (kidney injury molecule-1), cystatin, NGAL (neutrophil gelatinase-associated
lipocalin), were found increased in adenine-treated rats compared to control. In addition, the inflammatory
markers, matrix proteins, and fibrosis signatures explicated by RT-PCR, ELISA demonstrated a profound increase.
On the other hand, rats received SAC mitigated KF considerably (p < 0.001) with restored cellular functions.
Besides, SAC pre-treatment abrogated the cytokines and pro-inflammatory signals (COX-2 and PGE2) in
a dose-dependent manner.
Conclusion: Furthermore, the fibrosis signaling markers mediators, such as SMAD-2,-3 were increased with associated
matrix proteins. Thus, the present study substantiated that SAC possesses a significant renoprotective
effect that might have been demonstrated by the inhibition of the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Ramkumar Samynathan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk
Colony, Chennai 600051, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow, 109004, Russian Federation
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
23
|
Moskalev A, Guvatova Z, Lopes IDA, Beckett CW, Kennedy BK, De Magalhaes JP, Makarov AA. Targeting aging mechanisms: pharmacological perspectives. Trends Endocrinol Metab 2022; 33:266-280. [PMID: 35183431 DOI: 10.1016/j.tem.2022.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/12/2022]
Abstract
Geroprotectors slow down aging and promote healthy longevity in model animals. Although hundreds of compounds have been shown to extend the life of laboratory model organisms, clinical studies on potential geroprotectors are exceedingly rare, especially in healthy elders. This review aims to classify potential geroprotectors based on the mechanisms by which they influence aging. These pharmacological interventions can be classified into the following groups: those that prevent oxidation; proteostasis regulators; suppressors of genomic instability; epigenetic drugs; those that preserve mitochondrial function; inhibitors of aging-associated signaling pathways; hormetins; senolytics/senostatics; anti-inflammatory drugs; antifibrotic agents; neurotrophic factors; factors preventing the impairment of barrier function; immunomodulators; and prebiotics, metabiotics, and enterosorbents.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; Institute of Biology of the Federal Research Center of Komi Science Center, Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya Street, Syktyvkar 167982, Russia.
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ines De Almeida Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Charles W Beckett
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Singapore Institute of Clinical Sciences, A*STAR, Singapore
| | - Joao Pedro De Magalhaes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
24
|
Yu XY, Sun Q, Zhang YM, Zou L, Zhao YY. TGF-β/Smad Signaling Pathway in Tubulointerstitial Fibrosis. Front Pharmacol 2022; 13:860588. [PMID: 35401211 PMCID: PMC8987592 DOI: 10.3389/fphar.2022.860588] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) was a major public health problem worldwide. Renal fibrosis, especially tubulointerstitial fibrosis, is final manifestation of CKD. Many studies have demonstrated that TGF-β/Smad signaling pathway plays a crucial role in renal fibrosis. Therefore, targeted inhibition of TGF-β/Smad signaling pathway can be used as a potential therapeutic measure for tubulointerstitial fibrosis. At present, a variety of targeting TGF-β1 and its downstream Smad proteins have attracted attention. Natural products used as potential therapeutic strategies for tubulointerstitial fibrosis have the characteristics of acting on multiple targets by multiple components and few side effects. With the continuous research and technique development, more and more molecular mechanisms of natural products have been revealed, and there are many natural products that inhibited tubulointerstitial fibrosis via TGF-β/Smad signaling pathway. This review summarized the role of TGF-β/Smad signaling pathway in tubulointerstitial fibrosis and natural products against tubulointerstitial fibrosis by targeting TGF-β/Smad signaling pathway. Additionally, many challenges and opportunities are presented for inhibiting renal fibrosis in the future.
Collapse
Affiliation(s)
- Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Ya-Mei Zhang
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Ying-Yong Zhao
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| |
Collapse
|
25
|
Luo LP, Suo P, Ren LL, Liu HJ, Zhang Y, Zhao YY. Shenkang Injection and Its Three Anthraquinones Ameliorates Renal Fibrosis by Simultaneous Targeting IƙB/NF-ƙB and Keap1/Nrf2 Signaling Pathways. Front Pharmacol 2021; 12:800522. [PMID: 35002735 PMCID: PMC8729217 DOI: 10.3389/fphar.2021.800522] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress and inflammation are important and critical mediators in the development and progression of chronic kidney disease (CKD) and its complications. Shenkang injection (SKI) has been widely used to treat patients with CKD. Although the anti-oxidative and anti-inflammatory activity was involved in SKI against CKD, its bioactive components and underlying mechanism remain enigmatic. A rat model of adenine-induced chronic renal failure (CRF) is associated with, and largely driven by, oxidative stress and inflammation. Hence, we identified the anti-oxidative and anti-inflammatory components of SKI and further revealed their underlying mechanism in the adenine-induced CRF rats. Compared with control rats, the levels of creatinine, urea, uric acid, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in serum were significantly increased in the adenine-induced CRF rats. However, treatment with SKI and its three anthraquinones including chrysophanol, emodin, and rhein could reverse these aberrant changes. They could significantly inhibit pro-fibrotic protein expressions including collagen I, α-SMA, fibronectin, and vimentin in the kidney tissues of the adenine-induced CRF rats. Of note, SKI and rhein showed the stronger inhibitory effect on these pro-fibrotic protein expressions than chrysophanol and emodin. Furthermore, they could improve dysregulation of IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways. Chrysophanol and emodin showed the stronger inhibitory effect on the NF-κB p65 protein expression than SKI and rhein. Rhein showed the strongest inhibitory effect on p65 downstream target gene products including NAD(P)H oxidase subunits (p47phox, p67phox, and gp91phox) and COX-2, MCP-1, iNOS, and 12-LO in the kidney tissues. However, SKI and rhein showed the stronger inhibitory effect on the significantly downregulated anti-inflammatory and anti-oxidative protein expression nuclear Nrf2 and its target gene products including HO-1, catalase, GCLC, and NQO1 in the Keap1/Nrf2 signaling pathway than chrysophanol and emodin. This study first demonstrated that SKI and its major components protected against renal fibrosis by inhibiting oxidative stress and inflammation via simultaneous targeting IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways, which illuminated the potential molecular mechanism of anti-oxidative and anti-inflammatory effects of SKI.
Collapse
Affiliation(s)
- Liang-Pu Luo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Li-Li Ren
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Hong-Jiao Liu
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|
26
|
Chang H, Meng HY, Bai WF, Meng QG. A metabolomic approach to elucidate the inhibitory effects of baicalin in pulmonary fibrosis. PHARMACEUTICAL BIOLOGY 2021; 59:1016-1025. [PMID: 34362286 PMCID: PMC8354164 DOI: 10.1080/13880209.2021.1950192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Baicalin, a major flavonoid extracted from Scutellaria baicalensis Georgi (Lamiaceae), has been shown to exert therapeutic effects on pulmonary fibrosis (PF). OBJECTIVE To use serum metabolomics combined with biochemical and histopathological analyses to clarify anti-PF mechanisms of baicalin on metabolic pathways and the levels of potential biomarkers. MATERIALS AND METHODS Forty male Sprague-Dawley rats were randomly divided into the control, PF model, prednisolone acetate-treated (4.2 mg/kg/day) and baicalin-treated (25 and 100 mg/kg/day) groups. A rat model of PF was established using a tracheal injection of bleomycin, and the respective drugs were administered intragastrically for 4 weeks. Histomorphology of lung tissue was examined after H&E and Masson's trichrome staining. Biochemical indicators including SOD, MDA and HYP were measured. Serum-metabonomic analysis based on UPLC-Q-TOF/MS was used to clarify the changes in potential biomarkers among different groups of PF rats. RESULTS Both doses of baicalin effectively alleviated bleomycin-induced pathological changes, and increased the levels of SOD (from 69.48 to 99.50 and 112.30, respectively), reduced the levels of MDA (from 10.91 to 5.0 and 7.53, respectively) and HYP (from 0.63 to 0.41 and 0.49, respectively). Forty-eight potential biomarkers associated with PF were identified. Meanwhile, the metabolic profiles and fluctuating metabolite levels were normalized or partially reversed after baicalin treatment. Furthermore, baicalin was found to improve PF potentially by the regulation of four key biomarkers involving taurine and hypotaurine metabolism, glutathione metabolism, and glycerophospholipid metabolism. CONCLUSIONS These findings revealed the anti-fibrotic mechanisms of baicalin and it may be considered as an effective therapy for PF.
Collapse
Affiliation(s)
- Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hong-yu Meng
- Nephroendocrine Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wan-fu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Qing-gang Meng
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- CONTACT Qing-gang Meng Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North third Ring Road East, Chaoyang District, Beijing100700, China
| |
Collapse
|
27
|
Bai W, Liu Q, Chang H, Liu Q, Gao C, Bai Y, Zhou H, Shi S. Metabolomics reveals the renoprotective effect of n-butanol extract and amygdalin extract from Amygdalus mongolica in rats with renal fibrosis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:556-564. [PMID: 34278886 DOI: 10.1080/21691401.2021.1952212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Renal fibrosis (RF) is a pathological process of progression from chronic kidney disease to end-stage renal disease. Amygdalus mongolica is a traditional Chinese medicine, and our previous studies demonstrated that the n-butanol extract (BUT) and amygdalin extract (AMY) from its seeds can prevent RF. However, the underlying mechanism remains unclear. The present study investigated the exact mechanism of the protective effect of A. mongolica on RF. A renal fibrosis rat model was induced with unilateral ureteral obstruction. Biochemical indicators were measured and combined with histopathology of renal tissue to evaluate the anti-RF effects. A serum metabonomic method was used to clarify the changes in the metabolic profile. The tubulointerstitial damage and fibrosis were significantly improved and metabolic perturbations were restored after treatment with BUT and AMY. Thirty-eight metabolites associated with RF progression and related to the regulation of arginine and proline metabolism, nicotinate and nicotinamide metabolism, and histidine metabolism were identified. They were restored to levels similar to those in controls after treatment. Moreover, no significant differences in efficacy were observed between the BUT and AMY groups. This study reveals and compares the potential mechanisms of the renoprotective effects after treatment with BUT and AMY from a metabolomic perspective.
Collapse
Affiliation(s)
- Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Qing Liu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Quanli Liu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Chen Gao
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Yingchun Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hongbing Zhou
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou, China
| |
Collapse
|
28
|
Gao C, Bai WF, Zhou HB, Hao HM, Bai YC, Liu QL, Chang H, Shi SL. Metabolomic assessment of mechanisms underlying anti-renal fibrosis properties of petroleum ether extract from Amygdalus mongolica. PHARMACEUTICAL BIOLOGY 2021; 59:565-574. [PMID: 33989107 PMCID: PMC8128208 DOI: 10.1080/13880209.2021.1920619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT The petroleum ether extract (PET) of Amygdalus mongolica (Maxim.) Ricker (Rosaceae) has an ameliorative effect on renal fibrosis (RF). OBJECTIVE To evaluate the antifibrotic effects of A. mongolica seeds PET on RF by serum metabolomics, biochemical and histopathological analyses. MATERIALS AND METHODS Sixty male Sprague-Dawley rats were randomly divided into the sham-operated, RF model, benazepril hydrochloride-treated model (1.5 mg/kg) and PET-treated (1.75, 1.25, 0.75 g/kg) groups, and the respective drugs were administered intragastrically for 21 days. Biochemical indicators including BUN, Scr, HYP, SOD, and MDA were measured. Haematoxylin and eosin and Masson staining were used for histological examination. The serum metabolomic profiles were determined by UPLC-Q-TOF/MS and metabolism network analysis. Acute toxicity test was performed to validate biosafety. RESULTS The PET LD50 was >23.9 g/kg in rats. PET significantly alleviated fibrosis by reducing the levels of Scr (from 34.02 to 32.02), HYP (from 403.67 to 303.17) and MDA (from 1.84 to 1.73), and increasing that of SOD (from 256.42 to 271.85). Metabolomic profiling identified 10 potential biomarkers, of which three key markers were significantly associated with RF-related pathways including phenylalanine, tyrosine and tryptophan biosynthesis, amino sugar and nucleotide sugar metabolism and tyrosine metabolism. In addition, three key biomarkers were restored to baseline levels following PET treatment, with the medium dose showing optimal effect. CONCLUSIONS These findings revealed the mechanism of A. mongolica PET antifibrotic effects for RF rats on metabolic activity and provided the experimental basis for the clinical application.
Collapse
Affiliation(s)
- Chen Gao
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Department of Pharmacy, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Wan-fu Bai
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hong-bing Zhou
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hai-mei Hao
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ying-chun Bai
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Quan-li Liu
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Song-li Shi
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
29
|
Qin MY, Huang SQ, Zou XQ, Zhong XB, Yang YF, Zhang YT, Mi ZC, Zhang YS, Huang ZG. Drug-containing serum of rhubarb-astragalus capsule inhibits the epithelial-mesenchymal transformation of HK-2 by downregulating TGF-β1/p38MAPK/Smad2/3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114414. [PMID: 34314804 DOI: 10.1016/j.jep.2021.114414] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheum palmatum L; Astragalus membranaceus (Fisch.), is referred to as 'Dahuang, Huangqi' in China. As an important medicinal plant, the rhizome of rhubarb and astragalus is traditionally used in the treatment of kidney diseases associated with renal failure, inflammation and tumors. AIM OF THE STUDY This study aimed to investigate the effect of a drug-containing serum of rhubarb-astragalus capsules (composed of rhubarb and astragalus) and to elucidate its mechanism in the epithelial-mesenchymal transformation of renal tubular epithelial cells. MATERIALS AND METHODS Epithelial-mesenchymal transformation (EMT) of HK-2 cells was induced by TGF-β1, and rhubarb-astragalus and losartan drug-containing serum from rats, as well as SB203580 (a specific inhibitor of p38 MAPK), were used. High-performance liquid chromatography analysis was performed to determine the main components of the drug-containing serum of rhubarb-astragalus from rats. Western blotting and immunofluorescence analysis were used to determine the levels of protein expression, and real-time quantitative PCR analysis was used to detect the levels of gene expression. RESULTS The drug-containing serum of rhubarb-astragalus contained emodin (0.36 μg/ml) and danthraquinone (0.96 μg/ml). Rhubarb-astragalus significantly decreased the protein expression levels of α-SMA, FN, vimentin and N-cadherin in HK-2 cells that were increased by TGF-β1, while it significantly increased the E-cadherin protein expression level that was decreased by TGF-β1. Rhubarb-astragalus also significantly decreased the protein expression levels of TGF-β1 and p38 MAPK and the mRNA expression levels of α-SMA, vimentin, TGF-β1, p38 MAPK, Smad2 and Smad3 in HK-2 cells that were increased by TGF-β1. It is worth noting that SB203580 (a p38 MAPK inhibitor) had similar effects as rhubarb-astragalus in this study. CONCLUSION The drug-containing serum of rhubarb-astragalus can inhibit EMT in HK-2 cells by downregulating the TGF-β1/p38 MAPK/Smad2/3 pathway.
Collapse
Affiliation(s)
- Meng-Yuan Qin
- Postgraduate, Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Song-Qing Huang
- Postgraduate, Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Qin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Bin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, China.
| | - Yu-Fang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Yu-Ting Zhang
- Postgraduate, Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zheng-Cheng Mi
- Postgraduate, Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan-Song Zhang
- Postgraduate, Pharmacy Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen-Guang Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Chen P, Chen X, Chu H, Xia W, Zou X, Wang D, Rong M. Periodontitis regulates renal impairment in obese mice via TGF-β/Smad pathway. Am J Transl Res 2021; 13:12523-12535. [PMID: 34956470 PMCID: PMC8661180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To determine the impact of periodontitis on renal impairment induced by obesity. METHODS Periodontitis and obesity models were induced using silk ligatures with bacteria and high-fat diet, respectively. Indicators of renal function were compared. Renal tubular epithelial cells (RTECs) were treated with lipopolysaccharides from periodontal pathogens in a high-fat environment to induce cell models of periodontitis and obesity. The transforming growth factor-β/mothers against decapentaplegic homolog (Smad) (TGF-β/Smad) pathway was evaluated both in vivo and in vitro. The indicators of renal function, renal pathological changes, and serum inflammatory cytokines were measured. The viability/apoptosis of RTECs and the expression of inflammatory cytokines were determined. RESULTS Periodontitis resulted in an increase in TGF-β/Smad activity in the kidney of obese mice. Moreover, the activity of RTECs was also increased in vitro. Downregulation of TGF-β led to reduced TGF-β, p-Smad2, p-Smad3, and Smad7 levels in kidney tissue and RTECs, ameliorated renal function indicators and renal pathological changes, increased viability and apoptosis of RTECs, and decreased levels of inflammatory cytokines. CONCLUSION Periodontitis regulates renal impairment via the TGF-β/Smad pathway in obese mice.
Collapse
Affiliation(s)
- Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, China
| | - Xiao Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, China
| | - Hongxing Chu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, China
| | - Wei Xia
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, China
| | - Xiaoyan Zou
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, China
| | - Dan Wang
- Haizhu Square Branch of Stomatological Hospital, Southern Medical UniversityGuangzhou 510120, Guangdong, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical UniversityGuangzhou 510280, Guangdong, China
| |
Collapse
|
31
|
Yuan D, Kuan T, Ling H, Wang H, Feng L, Zhao Q, Li J, Ran J. Serum metabolomics of end-stage renal disease patients with depression: potential biomarkers for diagnosis. Ren Fail 2021; 43:1479-1491. [PMID: 34723750 PMCID: PMC8567927 DOI: 10.1080/0886022x.2021.1994995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background End-stage renal disease (ESRD) is the final stage during the development of renal failure. Depression is the most common psychiatric disorder in patients with ESRD, which in turn aggravates the progression of renal failure, however, its underlying mechanism remains unclear. This study aimed to reveal the pathogenesis and to discover novel peripheral biomarkers for ESRD patients with depression through metabolomic analysis. Methods Ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used to explore changes of serum metabolites among healthy controls, ESRD patients with or without depression. The differential metabolites between groups were subjected to clustering analysis, pathway analysis, receiver operating characteristic (ROC) curve analysis. Results A total of 57 significant serum differential metabolites were identified between ESRD patients with or without depression, which were involved in 19 metabolic pathways, such as energy metabolism, glycerolipid metabolism, and glutamate-centered metabolism. Moreover, the area under the ROC curve of gentisic acid, uric acid, 5-hydroxytryptamine, 2-phosphoglyceric acid, leucyl-phenylalanine, propenyl carnitine, naloxone, pregnenolone, 6-thioxanthene 5'-monophosphate, hydroxyl ansoprazole, zileuton O-glucuronide, cabergoline, PA(34:2), PG(36:1), probucol and their combination was greater than 0.90. Conclusions Inflammation, oxidative stress and energy metabolism abnormalities, glycerolipid metabolism, and glutamate-centered metabolism are associated with the pathogenesis of ESRD with depression, which may be promising targets for therapy. Furthermore, the identified differential metabolites may serve as biomarkers for the diagnosis of ESRD patients with depression.
Collapse
Affiliation(s)
- Dezhi Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Kuan
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hu Ling
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hongkai Wang
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Liping Feng
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuye Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinfang Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
The Dysregulation of Eicosanoids and Bile Acids Correlates with Impaired Kidney Function and Renal Fibrosis in Chronic Renal Failure. Metabolites 2021; 11:metabo11020127. [PMID: 33672315 PMCID: PMC7926759 DOI: 10.3390/metabo11020127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic renal failure (CRF) is an irreversible deterioration of the renal functions that characterized by fluid electrolyte unbalance and metabolic-endocrine dysfunctions. Increasing evidence demonstrated that metabolic disturbances, especially dyslipidemia and profound changes in lipid and lipoprotein metabolism were involved in CRF. Identification of lipids associated with impaired kidney functions may play important roles in the understanding of biochemical mechanism and CRF treatment. Ultra-performance liquid chromatography coupled with high-definition mass spectrometry-based lipidomics was performed to identify important differential lipids in adenine-induced CRF rats and investigate the undergoing anti-fibrotic mechanism of Polyporus umbellatus (PPU) and ergone (ERG). Linear correlation analysis was performed between lipid species intensities and creatinine levels in serum. Adenine-induced rats exhibited declining kidney function and renal fibrosis. Compared with control rats, a panel of lipid species was identified in the serum of CRF rats. Our further study demonstrated that eight lipids, including leukotrienes and bile acids, presented a strong linear correlation with serum creatinine levels. In addition, receiver operating characteristics analysis showed that eight lipids exhibited excellent area under the curve for differentiating CRF from control rats, with high sensitivity and specificity. The aberrant changes of clinical biochemistry data and dysregulation of eight lipids could be significantly improved by the administration of PPU and ergone. In conclusion, CRF might be associated with the disturbance of leukotriene metabolism, bile acid metabolism and lysophospholipid metabolism. The levels of eicosanoids and bile acids could be used for indicating kidney function impairment in CRF. PPU could improve renal functions and either fully or partially reversed the levels of eicosanoids and bile acids.
Collapse
|
33
|
Wang YN, Wu XQ, Zhang DD, Hu HH, Liu JL, Vaziri ND, Guo Y, Zhao YY, Miao H. Polyporus Umbellatus Protects Against Renal Fibrosis by Regulating Intrarenal Fatty Acyl Metabolites. Front Pharmacol 2021; 12:633566. [PMID: 33679418 PMCID: PMC7934088 DOI: 10.3389/fphar.2021.633566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Chronic renal failure (CRF) results in significant dyslipidemia and profound changes in lipid metabolism. Polyporus umbellatus (PPU) has been shown to prevent kidney injury and subsequent kidney fibrosis. Methods: Lipidomic analysis was performed to explore the intrarenal profile of lipid metabolites and further investigate the effect of PPU and its main bioactive component, ergone, on disorders of lipid metabolism in rats induced by adenine. Univariate and multivariate statistical analyses were performed for choosing intrarenal differential lipid species in CRF rats and the intervening effect of n-hexane extract of PPU and ergone on CRF rats. Results: Compared with control group, decreased creatinine clearance rate indicated declining kidney function in CRF group. Based on the lipidomics, we identified 65 lipid species that showed significant differences between CRF and control groups. The levels of 12 lipid species, especially fatty acyl lipids including docosahexaenoic acid, docosapentaenoic acid (22n-3), 10,11-Dihydro-12R-hydroxy-leukotriene C4, 3-hydroxydodecanoyl carnitine, eicosapentaenoic acid, hypogeic acid and 3-hydroxypentadecanoic acid had a strong linear correlation with creatinine clearance rate, which indicated these lipid species were associated with impaired renal function. In addition, receiver operating characteristics analysis showed that 12 lipid species had high area under the curve values with high sensitivity and specificity for differentiating CRF group from control group. These changes are related to the perturbation of fatty acyl metabolism. Treatment with PPU and ergone improved the impaired kidney function and mitigated renal fibrosis. Both chemometrics and cluster analyses showed that rats treated by PPU and ergone could be separated from CRF rats by using 12 lipid species. Intriguingly, PPU treatment could restore the levels of 12 lipid species, while treatment with ergone could only reverse the changes of six fatty acids in CRF rats. Conclusion: Altered intrarenal fatty acyl metabolites were implicated in pathogenesis of renal fibrosis. PPU and ergone administration alleviated renal fibrosis and partially improved fatty acyl metabolism. These findings suggest that PPU exerted its renoprotective effect by regulating fatty acyl metabolism as a potential biochemical mechanism. Therefore, these findings indicated that fatty acyl metabolism played an important role in renal fibrosis and could be considered as an effective therapeutic avenue against renal fibrosis.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - Xia-Qing Wu
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - Dan-Dan Zhang
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - He-He Hu
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - Jian-Ling Liu
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - Hua Miao
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| |
Collapse
|
34
|
Gao J, Liu Q, Zhao L, Yu J, Wang S, Cao T, Gao X, Wei Y. Identification and Antihypertension Study of Novel Angiotensin I-Converting Enzyme Inhibitory Peptides from the Skirt of Chlamys farreri Fermented with Bacillus natto. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:146-158. [PMID: 33356234 DOI: 10.1021/acs.jafc.0c04232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this study was to isolate the angiotensin I-converting enzyme (ACE) inhibitory peptides from the skirt of Chlamys farreri fermented with Bacillus natto and to explore the antihypertension effect through in vivo studies. ACE inhibitory peptides were purified from the fermentation mixture by ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography sequentially. The amino acids' sequence of the five novel ACE inhibitory peptides were identified by liquid chromatography-tandem mass spectrometry. Animal experiments demonstrated that the novel ACE inhibitory peptides significantly reduced the blood pressure in spontaneously hypertensive rats after a single or long-time treatment. Potential mechanisms were explored, and the results indicated that the novel peptides could regulate the renal renin-angiotensin system, improve vascular remodeling, inhibit myocardial fibrosis, and rebalance the gut microbial dysbiosis. Our results suggest that the fermentation products of the Chlamys farreri skirt by B. natto are potential sources of active peptides processing antihypertension activities.
Collapse
Affiliation(s)
- Jie Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qi Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ling Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Shanglong Wang
- Chenland Nutritionals, Incorporated, Invine, California 92614, United States
| | - Tingfeng Cao
- Chenland Nutritionals, Incorporated, Invine, California 92614, United States
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
35
|
Bahramsoltani R, Rahimi R. An Evaluation of Traditional Persian Medicine for the Management of SARS-CoV-2. Front Pharmacol 2020; 11:571434. [PMID: 33324206 PMCID: PMC7724033 DOI: 10.3389/fphar.2020.571434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
A new coronavirus causing severe acute respiratory syndrome (SARS-CoV-2) has emerged and with it, a global investigation of new antiviral treatments and supportive care for organ failure due to this life-threatening viral infection. Traditional Persian Medicine (TPM) is one of the most ancient medical doctrines mostly known with the manuscripts of Avicenna and Rhazes. In this paper, we first introduce a series of medicinal plants that would potentially be beneficial in treating SARS-CoV-2 infection according to TPM textbooks. Then, we review medicinal plants based on the pharmacological studies obtained from electronic databases and discuss their mechanism of action in SARS-CoV-2 infection. There are several medicinal plants in TPM with cardiotonic, kidney tonic, and pulmonary tonic activities, protecting the lung, heart, and kidney, the three main vulnerable organs in SARS-CoV-2 infection. Some medicinal plants can prevent "humor infection", a situation described in TPM which has similar features to SARS-CoV-2 infection. Pharmacological evaluations are in line with the therapeutic activities of several plants mentioned in TPM, mostly through antiviral, cytoprotective, anti-inflammatory, antioxidant, and anti-apoptotic mechanisms. Amongst the primarily-introduced medicinal plants from TPM, rhubarb, licorice, garlic, saffron, galangal, and clove are the most studied plants and represent candidates for clinical studies. The antiviral compounds isolated from these plants provide novel molecular structures to design new semisynthetic antiviral agents. Future clinical studies in healthy volunteers as well as patients suffering from pulmonary infections are necessary to confirm the safety and efficacy of these plants as complementary and integrative interventions in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
36
|
Zhou SS, Ai ZZ, Li WN, Li L, Zhu XY, Ba YM. Shenkang VII Recipe Attenuates Unilateral Ureteral Obstruction-induced Renal Fibrosis via TGF-β/Smad, NF-κB and SHH Signaling Pathway. Curr Med Sci 2020; 40:917-930. [PMID: 32980902 DOI: 10.1007/s11596-020-2255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to explore the protective effects of the traditional Chinese Medicine formula Shenkang VII recipe (SK-7) on renal fibrosis and the mechanisms. Renal fibrosis was induced by unilateral ureteral obstruction (UUO) in rats. The rats were then divided into 5 groups: control group (Sham operation), UUO model group, UUO model plus low to high doses of SK-7 (0.5, 1.0, or 2.0 g/kg/day, for 14 days) groups. The animals were sacrificed on the 7th or 14th day. Kidney tissues were collected for histopathological examinations (hematoxylin and eosin and Masson's trichrome staining). Immunohistochemistry was used to detect the expression of collagen type III (Col III), fibronectin (FN), α-smooth muscle actin (α-SMA), TIMP metallopeptidase inhibitor 2 (TIMP2), matrix metallopeptidase 2 (MMP2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and monocyte chemotactic protein-1 (MCP-1). The TGF-β1/Smad, NF-kB and Sonic hedgehog signaling proteins were detected by Western blotting. Our results showed that SK-7 prevented UUO-induced renal injury and accumulation of collagen fibrils. Renal fibrosis biomarkers Col III, FN, α-SMA and TIMP2 were increased in the rats after UUO and decreased by SK-7, while MMP2 was upregulated after treatment. SK-7 also suppressed the levels of TNF-α, IL-1β and MCP-1 in UUO rats. In addition, SK-7 inhibited activation of the TGF-β/Smad, NF-κB and sonic hedgehog signaling (SHH) pathways. Taken together, these findings suggest that SK-7 may regulate the synthesis and degradation of extracellular matrix, reduce inflammation and suppress the proliferation of fibroblasts, by blocking the TGF-β1/Smad, NF-κB and SHH signaling pathways to exert its anti-renal fibrosis effect in UUO rats.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhong-Zhu Ai
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wei-Nan Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Liang Li
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Yun Zhu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yuan-Ming Ba
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China. .,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
37
|
Yu W, Yang W, Zhao MY, Meng XL. Functional Metabolomics Analysis Elucidating the Metabolic Biomarker and Key Pathway Change Associated With the Chronic Glomerulonephritis and Revealing Action Mechanism of Rhein. Front Pharmacol 2020; 11:554783. [PMID: 33101021 PMCID: PMC7544993 DOI: 10.3389/fphar.2020.554783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic glomerulonephritis (CGN) as the culprit of kidney failure can increase the mortality of critically ill patients and seriously threatens people’s health all over the world. This study using metabolomics strategy is to reveal the potential therapeutic mechanism-related targets to evaluate the effects of rhein (RH) on CGN rats. Changes of serum metabolites and pathways were analyzed by non-targeted metabolomic method based on liquid chromatography-mass spectrometry (LC-MS) combined with ingenuity pathway analysis. In addition, the levels of biochemical indicators were also detected. A total of 25 potential biomarkers were identified to express serum metabolic turbulence in CGN animal model, and then 16 biomarkers were regulated by RH trending to the normal states. From metabolite enrichment and pathway analysis, pharmacological activity of RH on CGN were mainly involved in six vital metabolic pathways including phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, tricarboxylic acid cycle (TCA cycle), alanine, aspartate, and glutamate metabolism, arginine and proline metabolism. It suggested CGN treatment with RH, which may be mediated via interference with metabolic pathway such as amino acid metabolism, arachidonic acid metabolism, and TCA cycle to regulating inflammation, oxidation response and immune regulation against CGN. It showed that metabolomics method offer deeply insight into the therapeutic mechanisms of natural product.
Collapse
Affiliation(s)
- Wei Yu
- Department of Intensive Care Unit, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yang
- Department of Intensive Care Unit, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming-Yan Zhao
- Department of Intensive Care Unit, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiang-Lin Meng
- Department of Intensive Care Unit, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Chen DQ, Wu XQ, Chen L, Hu HH, Wang YN, Zhao YY. Poricoic acid A as a modulator of TPH-1 expression inhibits renal fibrosis via modulating protein stability of β-catenin and β-catenin-mediated transcription. Ther Adv Chronic Dis 2020; 11:2040622320962648. [PMID: 33062239 PMCID: PMC7534062 DOI: 10.1177/2040622320962648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Renal fibrosis is the common feature of chronic kidney disease (CKD). However, few drugs specifically target fibrogenesis due to the lack of an effective therapeutic target. Hence, it is urgent to find a therapeutic strategy that inhibits renal fibrosis. Here, we identified that poricoic acid A (PAA) as the modulator of tryptophan hydroxylase-1 (TPH-1), the key enzyme in tryptophan metabolism, exerted potent anti-fibrotic effects in the kidney. Methods Lentiviral vector, luciferase reporter activity assay and co-immunoprecipitation were used. The animal model of unilateral ureteral obstruction and adenine-induced chronic renal failure as well as transforming growth factor (TGF)-β1-treated epithelial cells NRK-52E and fibroblasts NRK-49F were used. Results TPH-1 was gradually decreased during CKD progression, while PAA treatment significantly increased TPH-1 expression to suppress renal fibrosis. Pharmacological overexpression of TPH-1 by PAA treatment exhibited anti-fibrosis and was linked to Wnt/β-catenin signaling activity. TPH-1 exhibited anti-fibrotic effects by suppressing epithelial cell injury and fibroblast activation, and PAA promoted TPH-1 expression and then suppressed the Wnt/β-catenin signaling pathway via regulating the protein stability of β-catenin and β-catenin-mediated transcription. TPH-1 overexpression enhanced the anti-fibrotic effects of PAA, while TPH-1 deficiency weakened the anti-fibrotic effects of PAA, indicating that TPH-1 was required for the anti-fibrotic effects of PAA. Conclusion PAA as a modulator of TPH-1 expression attenuated renal fibrosis through regulating the Wnt/β-catenin signaling pathway by acting on the protein stability of β-catenin and β-catenin-mediated transcription. TPH-1 was required for PAA to exert anti-fibrosis.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Faculty of Life Science and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xia-Qing Wu
- Faculty of Life Science and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lin Chen
- Faculty of Life Science and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - He-He Hu
- Faculty of Life Science and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yan-Ni Wang
- Faculty of Life Science and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| |
Collapse
|
39
|
Lee SY, Wu ST, Liang YJ, Su MJ, Huang CW, Jao YH, Ku HC. Soluble Dipeptidyl Peptidase-4 Induces Fibroblast Activation Through Proteinase-Activated Receptor-2. Front Pharmacol 2020; 11:552818. [PMID: 33117158 PMCID: PMC7561399 DOI: 10.3389/fphar.2020.552818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts are the chief secretory cells of the extracellular matrix (ECM) responsible for basal deposition and degradation of the ECM under normal conditions. During stress, fibroblasts undergo continuous activation, which is defined as the differentiation of fibroblasts into myofibroblasts, a cell type with an elevated capacity for secreting ECM proteins. Dipeptidyl peptidase-4 (DPP4) is a ubiquitously expressed transmembrane glycoprotein and exerts effects that are both dependent and independent of its enzymatic activity. DPP4 has been demonstrated to define fibroblast populations in human skin biopsies of systemic sclerosis. Shedding of DPP4 from different tissues into the circulation appears to be involved in the pathogenesis of the diseases. The mechanism underlying soluble DPP4–induced dermal fibrosis has not been clearly determined. The effects of DPP4 on murine 3T3 fibroblasts and human dermal fibroblasts were evaluated by measuring the expression of fibrotic proteins, such as α-SMA and collagen. Soluble DPP4 stimulated the activation of fibroblasts in a dose-dependent manner by activating nuclear factor-kappa B (NF-κB) and suppressor of mothers against decapentaplegic (SMAD) signaling. Blocking proteinase-activated receptor-2 (PAR2) abrogated the DPP4-induced activation of NF-κB and SMAD and expression of fibrosis-associated proteins in fibroblasts. Linagliptin, a clinically available DPP4 inhibitor, was observed to abrogate the soluble DPP4–induced expression of fibrotic proteins. This study demonstrated the mechanism underlying soluble DPP4, which activated NF-κB and SMAD signaling through PAR2, leading to fibroblast activation. Our data extend the current view of soluble DPP4. Elevated levels of circulating soluble DPP4 may contribute to one of the mediators that induce dermal fibrosis in patients.
Collapse
Affiliation(s)
- Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.,Division of Pulmonary and Critical Care Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Shao-Tung Wu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yao-Jen Liang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ming-Jai Su
- College of Medicine, Institute of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yu-Hsuan Jao
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
40
|
Mehmood A, Zhao L, Ishaq M, Zad OD, Zhao L, Wang C, Usman M, Lian Y, Xu M. Renoprotective effect of stevia residue extract on adenine-induced chronic kidney disease in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
41
|
Ji C, Deng Y, Yang A, Lu Z, Chen Y, Liu X, Han L, Zou C. Rhubarb Enema Improved Colon Mucosal Barrier Injury in 5/6 Nephrectomy Rats May Associate With Gut Microbiota Modification. Front Pharmacol 2020; 11:1092. [PMID: 32848732 PMCID: PMC7403201 DOI: 10.3389/fphar.2020.01092] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is often accompanied with colon mucosal barrier damage and gut microbiota disturbance, which strongly associate with up-regulated inflammation and kidney tubulointerstitial fibrosis. However, few interventions could protect the damaged barrier effectively. Rheum palmatum L or rhubarb is a common herbal medicine which is widely used to protect the colon mucosal barrier. In previous studies, we found that rhubarb intervention may reduce renal inflammation and tubulointerstitial fibrosis, via gut microbiota modification. However, whether intestinal barrier function could be improved by rhubarb intervention and the relationship with intestinal flora are still unknown. Therefore, we investigated the effects of rhubarb enema on intestinal barrier, and further analyzed the relationship with gut microbiota in 5/6 nephrectomy rats. Results indicated that rhubarb enema improved the intestinal barrier, regulated gut microbiota dysbiosis, suppressed systemic inflammation, and alleviated renal fibrosis. More specifically, rhubarb enema treatment inhibited the overgrowth of conditional pathogenic gut bacteria, including Akkermansia, Methanosphaera, and Clostridiaceae in CKD. The modification of gut microbiota with rhubarb intervention displayed significant correlation to intestinal barrier markers, TLR4–MyD88–NF-κB inflammatory response, and systemic inflammation. These results revealed that rhubarb enema could restore intestinal barrier by modifying several functional enteric bacteria, which may further explain the renal protection mechanism of the rhubarb enema.
Collapse
Affiliation(s)
- Chunlan Ji
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yusheng Deng
- Department of Scientific Research, KMHD, Shenzhen, China
| | - Aicheng Yang
- Department of Nephrology, The Affiliated Jiangmen TCM Hospital of Jinan University, Jiangmen, China
| | - Zhaoyu Lu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lijuan Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan Zou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
42
|
Feng Z, Liu W, Jiang HX, Dai H, Gao C, Dong Z, Gao Y, Liu F, Zhang Z, Zhao Q, Zhang L, Liu B. How Does Herbal Medicine Treat Idiopathic Membranous Nephropathy? Front Pharmacol 2020; 11:994. [PMID: 32719601 PMCID: PMC7350518 DOI: 10.3389/fphar.2020.00994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) has made increasing progress in mechanism and treatment research. Herbal medicine is gradually being accepted as an alternative therapy in treating IMN. However, the intervention mechanism of herbal medicine in the treatment of membranous nephropathy is still unclear. In this review, we summarize some achievements of herb medicine in treating IMN and discuss the research direction of herb in IMN. Finally, we propose the dilemma about the study on the treatment of IMN with herb medicine. We hope that this article can bring some thoughts for clinical and scientific researchers on the treatment of IMN with herb medicine.
Collapse
Affiliation(s)
- Zhendong Feng
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Department of Nephropathy, Beijing Traditional Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Wenbin Liu
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Han Xue Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chang Gao
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gao
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fei Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Qihan Zhao
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lei Zhang
- Department of Nephropathy, Beijing Traditional Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Baoli Liu
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Let-7c-5p Is Involved in Chronic Kidney Disease by Targeting TGF- β Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6960941. [PMID: 32626757 PMCID: PMC7306863 DOI: 10.1155/2020/6960941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023]
Abstract
The purpose of the present study was to investigate the expressions of hsa-let-7c-5p and TGF-β signaling-related molecules and their correlations with clinical characteristics in chronic kidney disease (CKD). Twenty-three biopsy specimens of CKD patients and 20 negative control tissues were selected. Quantitative real-time PCR (qPCR) was used for the detection of hsa-let-7c-5p, transforming growth factor β (TGF-β) and TGF-β receptor type 1 (TGF-βR1) expression levels. Target gene of hsa-let-7c-5p was verified by dual-luciferase reporter assay. A significant decrease of hsa-let-7c-5p expression in CKD tissue was found, compared with that of normal renal tissues (p < 0.01). Expression levels of TGF-β in CKD were increased, compared with that of normal kidney tissue (p < 0.001). The difference in the expression of TGF-β R1 between CKD tissues and normal renal tissues was not significant (p > 0.05). A negative correlation was found between the expression of TGF-β and renal tissue hsa-let-7c-5p levels. Furthermore, hsa-let-7c-5p was identified to regulate TGF- β1 by directly binding with the 167-173 site in the 3′ untranslated region. Decreased hsa-let-7c-5p levels in CKD patients was found to be associated with disease severity, which shows a negative correlation with proteinuria and creatinine levels, and a positive correlation with estimated glomerular filtration rate (eGFR), while relative TGF-β1 expression had a positive correlation with creatinine level. In summary, changes in hsa-let-7c-5p expression and its target gene TGF-β are associated with the disease status of CKD. Let-7c-5p may contribute to the pathogenesis of renal fibrosis through TGF-β signaling, a potential diagnostic and therapeutic target of the disease.
Collapse
|
44
|
Chen H, Wang MC, Chen YY, Chen L, Wang YN, Vaziri ND, Miao H, Zhao YY. Alisol B 23-acetate attenuates CKD progression by regulating the renin-angiotensin system and gut-kidney axis. Ther Adv Chronic Dis 2020; 11:2040622320920025. [PMID: 32547719 PMCID: PMC7249553 DOI: 10.1177/2040622320920025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/18/2020] [Indexed: 01/18/2023] Open
Abstract
Background: Increasing evidence suggests a link between the gut microbiome and various diseases including hypertension and chronic kidney disease (CKD). However, studies examining the efficacy of controlling blood pressure and inhibiting the renin–angiotensin system (RAS) in preventing CKD progression are limited. Methods: In the present study, we used 5/6 nephrectomised (NX) and unilateral ureteral obstructed (UUO) rat models and cultured renal tubular epithelial cells and fibroblasts to test whether alisol B 23-acetate (ABA) can attenuate renal fibrogenesis by regulating blood pressure and inhibiting RAS. Results: ABA treatment re-established dysbiosis of the gut microbiome, lowered blood pressure, reduced serum creatinine and proteinuria, suppressed expression of RAS constituents and inhibited the epithelial-to-mesenchymal transition in NX rats. Similarly, ABA treatment inhibited expression of collagen I, fibronectin, vimentin, α-smooth muscle actin and fibroblast-specific protein 1 at both mRNA and protein levels in UUO rats. ABA was also effective in suppressing activation of the transforming growth factor-β (TGF-β)/Smad3 and preserving Smad7 expression in both NX and UUO rats. In vitro experiments demonstrated that ABA treatment inhibited the Wnt/β-catenin and mitochondrial-associated caspase pathways. Conclusion: These data suggest that ABA attenuated renal fibrosis through a mechanism associated with re-establishing dysbiosis of the gut microbiome and regulating blood pressure, and Smad7-mediated inhibition of Smad3 phosphorylation. Thus, we demonstrate ABA as a promising candidate for treatment of CKD by improving the gut microbiome and regulating blood pressure.
Collapse
Affiliation(s)
- Hua Chen
- Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Min-Chang Wang
- Instrumental Analysis Center, Xi'an Modern Chemistry Institute, Xi'an, Shaanxi, China
| | - Yuan-Yuan Chen
- Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, CA, USA
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| |
Collapse
|
45
|
Zeng X, Cai G, Liang T, Li Q, Yang Y, Zhong X, Zou X, Qin M, Mi Z. Rhubarb and Astragalus Capsule Attenuates Renal Interstitial Fibrosis in Rats with Unilateral Ureteral Obstruction by Alleviating Apoptosis through Regulating Transforming Growth Factor beta1 (TGF-β1)/p38 Mitogen-Activated Protein Kinases (p38 MAPK) Pathway. Med Sci Monit 2020; 26:e920720. [PMID: 32205836 PMCID: PMC7111584 DOI: 10.12659/msm.920720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rhubarb and astragalus capsule (RAC) has been used in the clinical treatment of chronic kidney disease for decades. However, the mechanism of RAC has not been fully elucidated. This study aimed to investigate the protective effect and mechanisms of RAC on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MATERIAL AND METHODS The main components of RAC are detected by high-performance liquid phase (HPLC). A rat model of UUO was established, and a subset of rats underwent treatment with RAC. Renal function and renal pathology were examined at 14 days and 21 days after the UUO operation. Renal cell apoptosis was detected by TUNEL staining. The levels of Bcl-2 and Bax in the kidney were examined by western blotting, and the levels of collagen I, alpha-SMA, transforming growth factor (TGF)-ß1, and p38 MAPK in the kidneys were detected by immunohistochemistry. RESULTS High-performance liquid phase chromatography showed that RAC contained 1.12 mg/g aloe-emodin, 2.25 mg/g rhein, 1.75 mg/g emodin, and 4.50 mg/g chrysophanol. Administration of RAC significantly decreased the levels of urinary N-acetyl-ß-D-glucosaminidase (NAG), serum blood urea nitrogen (BUN), and creatinine (Scr) and also reduced renal tissue damages and interstitial fibrosis induced by UUO in rats. Moreover, the increased levels of collagen I, alpha-SMA, TGF-ß1, p38 MAPK, and the Bax/Bcl-2 ratio, as well as cell apoptosis in the kidney, were induced by UUO, and were all found deceased by RAC treatment. CONCLUSIONS RAC can improve the renal interstitial fibrosis induced by UUO, and the mechanism may be related to inhibition of renal tubular cell apoptosis via TGF-ß1/p38 MAPK pathway.
Collapse
Affiliation(s)
- Xian Zeng
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Guozhen Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Taolin Liang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qingqing Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaobin Zhong
- Regenerative Medicine Research Center, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mengyuan Qin
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zhengcheng Mi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
46
|
Liu X, Zhang B, Huang S, Wang F, Zheng L, Lu J, Zeng Y, Chen J, Li S. Metabolomics Analysis Reveals the Protection Mechanism of Huangqi-Danshen Decoction on Adenine-Induced Chronic Kidney Disease in Rats. Front Pharmacol 2019; 10:992. [PMID: 31551789 PMCID: PMC6747014 DOI: 10.3389/fphar.2019.00992] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Huangqi-Danshen decoction (HDD) is a commonly used drug pair for clinical treatment of chronic kidney disease (CKD) in traditional Chinese medicine with good efficacy. However, the potential mechanisms of this action have not been well elucidated. The aim of this study was to explore the metabolic profiling variations in response to HDD treatment in a CKD rat model. CKD rat model was induced by adding 0.75% adenine to the diet for 4 weeks. The rats in the treatment group received HDD extract orally at the dose of 4.7 g/kg/day during the experiment. At the end of the experiment, serum and kidney samples were collected for biochemical and pathological examination. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) was used to analyze metabolic profiling variations in the kidney. The results showed that treatment with HDD markedly attenuated kidney injury and improved renal function. A total of 28 metabolites contributing to CKD phenotype were found and identified in the kidney samples. The primary metabolic pathways disordered in the kidney of CKD rats were glycerophospholipid metabolism, glycosylphosphatidylinositol-anchor biosynthesis, and citrate cycle. Partial least squares discriminant analysis (PLS-DA) score plot showed that the three groups of renal samples were obviously divided into three categories, and the metabolic trajectory of the HDD treatment group moved to the control group. (E)-Piperolein A, phosphatidylcholines (PC) (18:1/22:6), phosphatidylinositols (PI) (13:0/18:1), PI (15:0/20:3), phosphatidylserines (PS) (O-20:0/12:0), and triglyceride (TG) (22:4/24:0/O-18:0) represented potential biomarkers of the renoprotective effects of HDD against CKD. In conclusion, HDD has renoprotective effect against adenine-induced CKD, which may be mediated via partially restoration of perturbed metabolism in the kidney.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bing Zhang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Fochang Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Youjia Zeng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
47
|
Xu S, Ge X, Li S, Guo X, Dai D, Yang T. Discrimination of Different Parts of Saffron by Metabolomic-Based Ultra-Performance Liquid Chromatography Coupled with High-Definition Mass Spectrometry. Chem Biodivers 2019; 16:e1900363. [PMID: 31385642 DOI: 10.1002/cbdv.201900363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
In this study, the metabolite profiling of three different parts of Crocus sativus L. was measured by using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTof-MS/MS). Multivariate statistical analysis was used to distinguish among the samples from different parts. A total of 54 compounds were identified in tepals, stigmas and stamens by UPLC-QTof-MS/MS. The results stated that chemical characteristics of saffron were obviously diverse in terms of the parts of flower. Through analysis, coniferin and crocin-2 were special components in stigmas when compared to tepals and stamens. The content of flavonoids was high in tepals when compared with the stigmas. The tepal of saffron may processed as a source of flavonoids in the future. The research provided the basis for the theory that only the stigma can be used as medicine.
Collapse
Affiliation(s)
- Shuya Xu
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Henan Provincial Engineering Technology Research Center of Economic Crop Seedling, Zhengzhou, 450008, P. R. China.,College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, P. R. China
| | - Xiaojin Ge
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Henan Provincial Engineering Technology Research Center of Economic Crop Seedling, Zhengzhou, 450008, P. R. China
| | - Shimin Li
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Henan Provincial Engineering Technology Research Center of Economic Crop Seedling, Zhengzhou, 450008, P. R. China
| | - Xiaoyang Guo
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Henan Provincial Engineering Technology Research Center of Economic Crop Seedling, Zhengzhou, 450008, P. R. China
| | - Dandan Dai
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Henan Provincial Engineering Technology Research Center of Economic Crop Seedling, Zhengzhou, 450008, P. R. China
| | - Tiegang Yang
- Economic Crop Research Institute, Henan Academy of Agricultural Sciences, Henan Provincial Engineering Technology Research Center of Economic Crop Seedling, Zhengzhou, 450008, P. R. China
| |
Collapse
|
48
|
Chen YY, Yu XY, Chen L, Vaziri ND, Ma SC, Zhao YY. Redox signaling in aging kidney and opportunity for therapeutic intervention through natural products. Free Radic Biol Med 2019; 141:141-149. [PMID: 31199964 DOI: 10.1016/j.freeradbiomed.2019.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Kidney diseases are serious public problems with high morbidity and mortality in the general population and heavily retard renal function with aging regardless of the cause. Although myriad strategies have been assigned to prevent or harness disease progression, unfortunately, thus far, there is a paucity of effective therapies partly due to an insufficient knowledge of underlying pathological mechanisms, indicating deeper studies are urgently needed. Additionally, natural products are increasingly recognized as an alternative source for disease intervention owing to the potent safety and efficacy, which might be exploited for novel drug discovery. In this review, we primarily expatiate the new advances on mediators that might be amenable to targeting aging kidney and kidney diseases, including nicotinamide adenine dinucleotide phosphate oxidase (NOX), transforming growth factor-β (TGF-β), renin-angiotensin system (RAS), nuclear factor-erythroid 2 related factor 2 (Nrf2), peroxisome proliferator-activated γ receptor (PPARγ), advanced glycation endproducts (AGEs) as well as microRNAs and vitagenes. Of note, we conclude by highlighting some natural products which have the potential to facilitate the development of novel treatment for patients with myriad renal diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China
| | - Lin Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
49
|
Chronic kidney disease: Biomarker diagnosis to therapeutic targets. Clin Chim Acta 2019; 499:54-63. [PMID: 31476302 DOI: 10.1016/j.cca.2019.08.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD), characterized as renal dysfunction, is recognized as a major public health problem with high morbidity and mortality worldwide. Unfortunately, there are no obvious clinical symptoms in early stage disease until severe damage has occurred. Further complicating early diagnosis and treatment is the lack of sensitive and specific biomarkers. As such, novel biomarkers are urgently needed. Metabolomics has shown an increasing potential for identifying underlying disease mechanisms, facilitating clinical diagnosis and developing pharmaceutical treatments for CKD. Recent advances in metabolomics revealed that CKD was closely associated with the dysregulation of numerous metabolites, such as amino acids, lipids, nucleotides and glycoses, that might be exploited as potential biomarkers. In this review, we summarize recent metabolomic applications based on animal model studies and in patients with CKD and highlight several biomarkers that may play important roles in diagnosis, intervention and development of new therapeutic strategies.
Collapse
|
50
|
Yang T, Feng YL, Chen L, Vaziri ND, Zhao YY. Dietary natural flavonoids treating cancer by targeting aryl hydrocarbon receptor. Crit Rev Toxicol 2019; 49:445-460. [PMID: 31433724 DOI: 10.1080/10408444.2019.1635987] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The role of aryl hydrocarbon receptor (AhR) as a ligand-activated transcription factor in the field of cancer has gradually been unveiled. A strong body of evidence indicated that AhR is implicated in cell proliferation and apoptosis, immune metabolism and other processes, which further affected tumor growth, survival, migration, and invasion. Therefore, AhR targeted therapy may become a new method for cancer treatment and provide a new direction for clinical tumor treatment. Astonishingly, the largest source of exposure of animals and humans to AhR ligands (synthetic and natural) comes from the diet. Myriad studies have described that various natural dietary chemicals can directly activate and/or inhibit the AhR signaling pathway. Of note, numerous natural products contribute to AhR active, of which dietary flavonoids are the largest class of natural AhR ligands. As interest in AhR and its ligands increases, it seems sensible to summarize current research on these ligands. In this review, we highlight the role of AhR in tumorigenesis and focus on the double effect of AhR in cancer therapy. We explored the molecular mechanism of AhR ligands on cancer through a few AhR agonists/antagonists currently in clinical practice. Ultimately, we summarize and highlight the latest progression of dietary flavonoids as AhR ligands in cancer inhibition, including the limitations and deficiencies of it in clinical research. This review will offer a comprehensive understanding of AhR and its dietary ligands which may dramatically pave the way for targeted cancer treatment.
Collapse
Affiliation(s)
- Tian Yang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Ya-Long Feng
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| |
Collapse
|