1
|
Seo HY, Park JY, Lee SH, Lee HW, Han E, Hwang JS, Kim MK, Jang BK. Clusterin deficiency exacerbates cholestatic liver disease through ER stress and NLRP3 inflammasome activation. Cell Biosci 2025; 15:36. [PMID: 40089787 PMCID: PMC11909925 DOI: 10.1186/s13578-025-01376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Cholestatic liver disease, characterized by impaired bile flow, leads to the accumulation of harmful metabolites and toxins, resulting in liver damage. Inflammatory cytokines are crucial for the progression of this condition. Clusterin is a glycoprotein with roles in cell death, lipid transport, and cellular protection. We previously demonstrated that clusterin protects against hepatic steatosis and hepatic fibrosis. This study explored the roles of clusterin in cholestatic liver injury induced by a DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) diet. METHODS The study evaluated the impact of clusterin on liver injury in C57BL/6 mice and clusterin-knockout (KO) mice fed a DDC diet for 10-20 days. Primary Kupffer cells (KCs) and hepatocytes (HCs) of these mice were analyzed. Techniques such as Sirius red staining, immunohistochemistry, real-time RT-PCR, enzyme-linked immunosorbent assays, and western blotting were performed to assess the effects of clusterin. RESULTS Clusterin expression was upregulated in the cholestatic liver. Clusterin-KO mice exhibited elevated levels of alanine aminotransferase, aspartate aminotransferase, collagen, and αSMA upon DDC diet-induced liver injury. They also had increased levels of markers of endoplasmic reticulum (ER) stress (CHOP, ATF6, and p-eIF2α) and inflammasome activity (NLRP3, ASC, caspase-1, and interleukin 1 beta (IL1β) protein expression, and IL1β and interleukin 18 secretion). Thapsigargin, an ER stress inducer, heightened NLRP3 inflammasome activation in primary KCs and HCs, which was mitigated by overexpression of clusterin. CONCLUSIONS The absence of clusterin exacerbates ER stress and NLRP3 inflammasome activation in mice fed a DDC diet. Conversely, overexpression of clusterin suppresses these stress responses. Thus, clusterin deficiency is associated with an enhanced inflammasome response in the liver that is linked to upregulation of ER stress.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Ji Yeon Park
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - So-Hee Lee
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Eugene Han
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Jae Seok Hwang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea.
| | - Byoung Kuk Jang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu, Korea.
| |
Collapse
|
2
|
Mosaoa RM, Al-Rabia MW, Asfour HZ, Alhakamy NA, Mansouri RA, El-Agamy DS, Abdulaal WH, Mohamed GA, Ibrahim SRM, Elshal M. Targeting SIRT1/AMPK/Nrf2/NF-кB by sitagliptin protects against oxidative stress-mediated ER stress and inflammation during ANIT-induced cholestatic liver injury. Toxicology 2024; 507:153889. [PMID: 39029735 DOI: 10.1016/j.tox.2024.153889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intrahepatic cholestasis is a common clinical form of hepatobiliary injury characterized by the intrahepatic accumulation of toxic bile acids. Besides its antidiabetic activity, the dipeptidyl peptidase IV inhibitor sitagliptin (SG) has been recently assigned diverse pharmacological activities and therapeutic potential against different disorders owing to its emerging antioxidant and anti-inflammatory properties. The current study explored the potential hepatoprotective effect of SG on α-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury (CLI) in mice and investigate its possible targeted signaling pathways. Mice received SG (10 and 20 mg/kg) for four consecutive days, two days before and after a single oral administration of ANIT (75 mg/kg). Our results revealed that SG administration remarkably prevented ANIT-induced histopathological lesions in the liver and maintained hepatic functions and oxidative/antioxidant balance. Ultimately, SG counteracted the inflammatory response in the liver, as indicated by the marked suppression of hepatic expression of NF-κB, TNF-α, and IL-6. Moreover, it inhibited the endoplasmic reticulum (ER) stress response in the liver. These beneficial effects of SG were accompanied by upregulation of SIRT1, p-AMPK, and Nrf2 expressions while downregulating keap1 expression in the liver. In conclusion, this study is the first to demonstrate the ability of SG to protect against ANIT-induced CLI through modulating multiple signaling cascades, including SIRT1/AMPK, Nrf2/keap1, and NF-кB, which resulted in enhanced antioxidant capacity and repressed inflammatory and ER stress responses in the liver.
Collapse
Affiliation(s)
- Rami M Mosaoa
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia; Experimental Biochemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Artificial Intelligence for Precision Medicines, king Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Wesam H Abdulaal
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
3
|
Xu M, Li LP, He X, Lu XZ, Bi XY, Li Q, Xue XR. Metformin induction of heat shock factor 1 activation and the mitochondrial unfolded protein response alleviate cardiac remodeling in spontaneously hypertensive rats. FASEB J 2024; 38:e23654. [PMID: 38717442 DOI: 10.1096/fj.202400070r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024]
Abstract
Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.
Collapse
Affiliation(s)
- Man Xu
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Li-Peng Li
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xing-Zhu Lu
- Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University Medical School, Xi'an, Shaanxi, China
| | - Xue-Yuan Bi
- Department of Pharmacy, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Li
- Department of Science and Education, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, China
| | - Xiao-Rong Xue
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Zuo Z, He S, Qiu Y, Guo R, He Y, Jiao C, Xia Y, Liu W, Luan C, Guo W. Salvianolic acid A prevents UV-induced skin damage by inhibiting the cGAS-STING pathway. Int Immunopharmacol 2024; 132:111971. [PMID: 38565040 DOI: 10.1016/j.intimp.2024.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
DNA damage resulting from UV irradiation on the skin has been extensively documented in numerous studies. In our prior investigations, we demonstrated that UVB-induced DNA breakage from keratinocytes can activate the cGAS-STING pathway in macrophages. The cGAS-STING signaling pathway serves as the principal effector for detecting and responding to abnormal double-stranded DNA in the cytoplasm. Expanding on our previous findings, we have further validated that STING knockout significantly diminishes UVB-induced skin damage, emphasizing the critical role of cGAS-STING activation in this context. Salvianolic acid A, a principal active constituent of Salvia miltiorrhiza Burge, has been extensively studied for its therapeutic effects in conditions such as coronary heart disease, angina pectoris, and diabetic peripheral neuropathy. However, its effect on cGAS-STING pathway and its ability to alleviate skin damage have not been previously reported. In a co-culture system, supernatant from UVB-treated keratinocytes induced IRF3 activation in macrophages, and this activation was inhibited by salvianolic acid A. Our investigation, employing photodamage and photoaging models, establishes that salvianolic acid A effectively mitigates UV-induced epidermal thickening and collagen degeneration. Treatment with salvianolic acid A significantly reduced skin damage, epidermal thickness increase, and keratinocyte hyperproliferation compared to the untreated photo-damage and photoaging model groups. In summary, salvianolic acid A emerges as a promising candidate for preventing UV-induced skin damage by inhibiting cGAS-STING activation. This research enhances our understanding of the intricate mechanisms underlying skin photodamage and provides a potential avenue for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Zhenqi Zuo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, Nanjing, China
| | - Shengwei He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, Nanjing, China
| | - Yinqi Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, Nanjing, China
| | - Runying Guo
- Dongguan Eastern Central Hospital, The Sixth Affiliated hospital of Jinan University, China
| | - Yingxue He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, Nanjing, China
| | - Chenyang Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, Nanjing, China
| | - Yugui Xia
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China. 10th Xinghuo Road, Jiangbei New District, Nanjing, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, Nanjing, China
| | - Chao Luan
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, Nanjing, China.
| |
Collapse
|
5
|
Wang W, Wang S, Li Y, Zhu M, Xu Q, Luo B, Liu Y, Liu Y. Network pharmacology, molecular docking, and in vitro experimental verification of the mechanism of Guanxining in treating diabetic atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117792. [PMID: 38290612 DOI: 10.1016/j.jep.2024.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guanxinning(GXN) tablet is a patented traditional Chinese medicine widely used to prevent and treat cardiovascular diseases. However, its potential mechanism and target in anti-diabetic atherosclerosis have not been clarified. AIM The aim of this study was to investigate the underlying targets and mechanisms of action GXN in the treatment of diabetic atherosclerosis, employing a combination of network pharmacology, molecular docking, and in vitro experimental verification. METHODS We predicted the core components and targets of GXN in the treatment of diabetic atherosclerosis through various databases, and made analysis and molecular docking. In vitro, we induced injury in human umbilical vein endothelial cells using glucose/palmitate and observed the effects of GXN on cellular damage high-glucose and high-fat conditions, subsequently elucidating its molecular mechanisms. RESULTS A total of 14 active components and 157 targets of GXN were identified. Using the PPI network, we selected 9 core active components and 20 targets of GXN. GO functional analysis revealed that these targets were primarily associated with apoptosis signaling pathways in response to endoplasmic reticulum stress and reactive oxygen species responses. Molecular docking confirmed the strong binding affinities of the primary active components of GXN with ERN1, MAPK1 and BECN1. In vitro experiments demonstrated the ability of GXN to restore endothelial cell activity, enhance cell migration and inhibit sICAM secretion, and upregulate the expression of endoplasmic reticulum stress-related proteins (IRE1, XBP1) and autophagy-related proteins (Beclin1, LC3A, and LC3B), while simultaneously inhibiting endothelial cell apoptosis under high-glucose and high-fat conditions. CONCLUSIONS Our findings suggest that GXN can potentially safeguard endothelial cells from the adverse effects of high-glucose and high-fat by modulating the interactions between endoplasmic reticulum stress and autophagy. Therefore, GXN is a promising candidate for the prevention and treatment of diabetic atherosclerosis.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Sutong Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Qian Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China; The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
6
|
Wang M, Zhao J, Chen J, Long T, Xu M, Luo T, Che Q, He Y, Xu D. The role of sirtuin1 in liver injury: molecular mechanisms and novel therapeutic target. PeerJ 2024; 12:e17094. [PMID: 38563003 PMCID: PMC10984179 DOI: 10.7717/peerj.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Liver disease is a common and serious threat to human health. The progression of liver diseases is influenced by many physiologic processes, including oxidative stress, inflammation, bile acid metabolism, and autophagy. Various factors lead to the dysfunction of these processes and basing on the different pathogeny, pathology, clinical manifestation, and pathogenesis, liver diseases are grouped into different categories. Specifically, Sirtuin1 (SIRT1), a member of the sirtuin protein family, has been extensively studied in the context of liver injury in recent years and are confirmed the significant role in liver disease. SIRT1 has been found to play a critical role in regulating key processes in liver injury. Further, SIRT1 seems to cause divers outcomes in different types of liver diseases. Recent studies have showed some therapeutic strategies involving modulating SIRT1, which may bring a novel therapeutic target. To elucidate the mechanisms underlying the role of sirtuin1 in liver injury and its potentiality as a therapeutic target, this review outlines the key signaling pathways associated with sirtuin1 and liver injury, and discusses recent advances in therapeutic strategies targeting sirtuin1 in liver diseases.
Collapse
Affiliation(s)
- Mufei Wang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiuxia Chen
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Teng Long
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mengwei Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tingting Luo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingya Che
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yihuai He
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Sinha S, Hassan N, Schwartz RE. Organelle stress and alterations in interorganelle crosstalk during liver fibrosis. Hepatology 2024; 79:482-501. [PMID: 36626634 DOI: 10.1097/hep.0000000000000012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
The synchronous functioning and quality control of organelles ensure cell survival and function and are essential for maintaining homeostasis. Prolonged exposure to stressors (viruses, bacteria, parasitic infections, alcohol, drugs) or genetic mutations often disrupt the functional integrity of organelles which plays a critical role in the initiation and progression of several diseases including chronic liver diseases. One of the most important pathologic consequences of chronic liver diseases is liver fibrosis, characterized by tissue scarring due to the progressive accumulation of extracellular matrix components. Left untreated, fibrosis may advance to life-threatening complications such as cirrhosis, hepatic decompensation, and HCC, which collectively accounts for ∼1 million deaths per year worldwide. Owing to the lack of treatment options that can regress or reverse cirrhosis, liver transplantation is currently the only available treatment for end-stage liver disease. However, the limited supply of usable donor organs, adverse effects of lifelong immunosuppressive regimes, and financial considerations pose major challenges and limit its application. Hence, effective therapeutic strategies are urgently needed. An improved understanding of the organelle-level regulation of fibrosis can help devise effective antifibrotic therapies focused on reducing organelle stress, limiting organelle damage, improving interorganelle crosstalk, and restoring organelle homeostasis; and could be a potential clinical option to avoid transplantation. This review provides a timely update on the recent findings and mechanisms covering organelle-specific dysfunctions in liver fibrosis, highlights how correction of organelle functions opens new treatment avenues and discusses the potential challenges to clinical application.
Collapse
Affiliation(s)
- Saloni Sinha
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
8
|
Abdelfattah AM, Mahmoud SS, El-Wafaey DI, Abdelgeleel HM, Abdelhamid AM. Diacerein ameliorates cholestasis-induced liver fibrosis in rat via modulating HMGB1/RAGE/NF-κB/JNK pathway and endoplasmic reticulum stress. Sci Rep 2023; 13:11455. [PMID: 37454204 PMCID: PMC10349817 DOI: 10.1038/s41598-023-38375-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Diacerein is an interleukin (IL)-1β inhibitor approved for osteoarthritis. This study aimed to investigate the potential anti-fibrotic effect of diacerein against bile duct ligation (BDL)-induced liver fibrosis. Forty male Wistar rats were divided into: sham-operated group, BDL group, and BDL groups treated with diacerein at 10, 30, and 50 mg/kg/day starting two days before surgery and continued for 4 weeks. Diacerein decreased the hepatic injury markers and alleviated oxidative stress triggered by BDL by reducing hepatic malondialdehyde (MDA) and increasing hepatic superoxide dismutase (SOD) levels. Diacerein mitigated BDL-induced inflammation via lowering hepatic levels and mRNA expression of high mobility group box 1 (HMGB1), nuclear factor-κB (NF-κB), and IL-1β. The hepatic gene expression of Advanced Glycation End products Receptor (RAGE) gene and immunohistochemical expression of some ER stress markers, e.g., glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1 (IRE1α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), CCAAT/enhancer-binding protein homologous protein (CHOP), and phosphorylated c-Jun N-terminal kinase protein contents were lowered by diacerein. Furthermore, diacerein suppressed the hepatic levels of fibrogenic mediators, e.g., Transforming growth factor β1 (TGF-β1), α- smooth muscle actin (α-SMA), collagen 1, and hydroxyproline, as well as the apoptotic caspase 3 and BAX immunostaining in BDL rats. The histopathological abnormalities induced by BDL significantly improved. Our study demonstrated that diacerein exhibited an antifibrotic effect by inhibiting HMGB1/RAGE/NF-κB/JNK pathway, and ER stress. Better protection was observed with increasing the dose.
Collapse
Affiliation(s)
| | - Shireen Sami Mahmoud
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Dalia Ibrahim El-Wafaey
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Amira Mohamed Abdelhamid
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, Egypt.
| |
Collapse
|
9
|
Xiang W, Yang Y, Weng L, Ye Z, Ding P, Li H, Sun J, Zeng C. Hyperhomocysteinemia activates NLRP3 inflammasome to cause hepatic steatosis and insulin resistance via MDM2-mediated ubiquitination of HSF1. Int Immunopharmacol 2023; 118:110085. [PMID: 37018978 DOI: 10.1016/j.intimp.2023.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Hyperhomocysteinemia (HHcy) is associated with nonalcoholic fatty liver disease (NAFLD) and insulin resistance (IR). However, the underlying mechanism is still unknown. Recent studies have demonstrated that NLRP3 inflammasome activation plays a vital role in NAFLD and IR. Our study aimed to explore whether NLRP3 inflammasome contributed to HHcy-induced NAFLD and IR as well as dissected the underlying mechanism. C57BL/6 mice were fed a high-methionine diet (HMD) for 8 weeks to establish the HHcy mouse model. Compared with a chow diet, HMD induced hepatic steatosis (HS) and IR as well as activation of hepatic NLRP3 inflammasome. Moreover, HHcy-induced NAFLD and IR characterization disclosed that NLRP3 inflammasome activation occurred in liver tissue of HMD-fed mice, but was very marginal in either NLRP3-/- or Caspase-1-/- mice. Mechanistically, high levels of homocysteine (Hcy) up-regulated the expression of mouse double minute 2 homolog (MDM2), which directly ubiquitinates heat shock transcription factor 1 (HSF1) and consequently activated hepatic NLRP3 inflammasome in vivo and in vitro. In addition, in vitro experiments showed P300-mediated HSF1 acetylation at K298 hindered MDM2-mediated ubiquitination of HSF1 at K372, which plays important role in determining the HSF1 level. Importantly, either inhibition of MDM2 by JNJ-165 or activation of HSF1 by HSF1A reversed HMD-induced hepatic NLRP3 inflammasome, and consequently alleviated HS and IR in mice. This study demonstrates that NLRP3 inflammasome activation contributes to HHcy-induced NAFLD and IR, and further identified that HSF1 as a new substrate of MDM2 and its decrease on MDM2-mediated ubiquitination at K372 modulates NLRP3 inflammasome activation. These findings may provide novel therapeutic strategies aimed at halting HS or IR.
Collapse
Affiliation(s)
- Wenjing Xiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Liangkun Weng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiming Ye
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ping Ding
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huayu Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia Sun
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cheng Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510699, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Chin Y, Gumilar KE, Li XG, Tjokroprawiro BA, Lu CH, Lu J, Zhou M, Sobol RW, Tan M. Targeting HSF1 for cancer treatment: mechanisms and inhibitor development. Theranostics 2023; 13:2281-2300. [PMID: 37153737 PMCID: PMC10157728 DOI: 10.7150/thno.82431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Heat Shock Factor 1 (HSF1) is a master regulator of heat shock responsive signaling. In addition to playing critical roles in cellular heat shock response, emerging evidence suggests that HSF1 also regulates a non-heat shock responsive transcriptional network to handle metabolic, chemical, and genetic stress. The function of HSF1 in cellular transformation and cancer development has been extensively studied in recent years. Due to important roles for HSF1 for coping with various stressful cellular states, research on HSF1 has been very active. New functions and molecular mechanisms underlying these functions have been continuously discovered, providing new targets for novel cancer treatment strategies. In this article, we review the essential roles and mechanisms of HSF1 action in cancer cells, focusing more on recently discovered functions and their underlying mechanisms to reflect the new advances in cancer biology. In addition, we emphasize new advances with regard to HSF1 inhibitors for cancer drug development.
Collapse
Affiliation(s)
- Yeh Chin
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
| | - Khanisyah E Gumilar
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- The Department of Obstetrics and Gynecology, Medical Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, Taiwan, R.O.C
| | - Brahmana A. Tjokroprawiro
- The Department of Obstetrics and Gynecology, Medical Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Chien-Hsing Lu
- Department of Gynecology and Obstetrics, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, USA
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, USA
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
11
|
Singh S, Sharma N, Shukla S, Behl T, Gupta S, Anwer MK, Vargas-De-La-Cruz C, Bungau SG, Brisc C. Understanding the Potential Role of Nanotechnology in Liver Fibrosis: A Paradigm in Therapeutics. Molecules 2023; 28:molecules28062811. [PMID: 36985782 PMCID: PMC10057127 DOI: 10.3390/molecules28062811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The liver is a vital organ that plays a crucial role in the physiological operation of the human body. The liver controls the body's detoxification processes as well as the storage and breakdown of red blood cells, plasma protein and hormone production, and red blood cell destruction; therefore, it is vulnerable to their harmful effects, making it more prone to illness. The most frequent complications of chronic liver conditions include cirrhosis, fatty liver, liver fibrosis, hepatitis, and illnesses brought on by alcohol and drugs. Hepatic fibrosis involves the activation of hepatic stellate cells to cause persistent liver damage through the accumulation of cytosolic matrix proteins. The purpose of this review is to educate a concise discussion of the epidemiology of chronic liver disease, the pathogenesis and pathophysiology of liver fibrosis, the symptoms of liver fibrosis progression and regression, the clinical evaluation of liver fibrosis and the research into nanotechnology-based synthetic and herbal treatments for the liver fibrosis is summarized in this article. The herbal remedies summarized in this review article include epigallocathechin-3-gallate, silymarin, oxymatrine, curcumin, tetrandrine, glycyrrhetinic acid, salvianolic acid, plumbagin, Scutellaria baicalnsis Georgi, astragalosides, hawthorn extract, and andrographolides.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Saurabh Shukla
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
12
|
Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H, Ren J. Endoplasmic reticulum stress in liver diseases. Hepatology 2023; 77:619-639. [PMID: 35524448 PMCID: PMC9637239 DOI: 10.1002/hep.32562] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that fosters the correct folding of linear polypeptides and proteins, a process tightly governed by the ER-resident enzymes and chaperones. Failure to shape the proper 3-dimensional architecture of proteins culminates in the accumulation of misfolded or unfolded proteins within the ER, disturbs ER homeostasis, and leads to canonically defined ER stress. Recent studies have elucidated that cellular perturbations, such as lipotoxicity, can also lead to ER stress. In response to ER stress, the unfolded protein response (UPR) is activated to reestablish ER homeostasis ("adaptive UPR"), or, conversely, to provoke cell death when ER stress is overwhelmed and sustained ("maladaptive UPR"). It is well documented that ER stress contributes to the onset and progression of multiple hepatic pathologies including NAFLD, alcohol-associated liver disease, viral hepatitis, liver ischemia, drug toxicity, and liver cancers. Here, we review key studies dealing with the emerging role of ER stress and the UPR in the pathophysiology of liver diseases from cellular, murine, and human models. Specifically, we will summarize current available knowledge on pharmacological and non-pharmacological interventions that may be used to target maladaptive UPR for the treatment of nonmalignant liver diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Pavlović N, Heindryckx F. Targeting ER stress in the hepatic tumor microenvironment. FEBS J 2022; 289:7163-7176. [PMID: 34331743 DOI: 10.1111/febs.16145] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. It currently ranks as one of the most aggressive and deadly cancers worldwide, with an increasing mortality rate and limited treatment options. An important hallmark of liver pathologies, such as liver fibrosis and HCC, is the accumulation of misfolded and unfolded proteins in the lumen of the endoplasmic reticulum (ER), which induces ER stress and leads to the activation of the unfolded protein response (UPR). Upon accumulation of misfolded proteins, ER stress is sensed through three transmembrane proteins, IRE1α, PERK, and ATF6, which trigger the UPR to either alleviate ER stress or induce apoptosis. Increased expression of ER stress markers has been widely shown to correlate with fibrosis, inflammation, drug resistance, and overall HCC aggressiveness, as well as poor patient prognosis. While preclinical in vivo cancer models and in vitro approaches have shown promising results by pharmacologically targeting ER stress mediators, the major challenge of this therapeutic strategy lies in specifically and effectively targeting ER stress in HCC. Furthermore, both ER stress inducers and inhibitors have been shown to ameliorate HCC progression, adding to the complexity of targeting ER stress players as an anticancer strategy. More studies are needed to better understand the dual role and molecular background of ER stress in HCC, as well as its therapeutic potential for patients with liver cancer.
Collapse
Affiliation(s)
- Nataša Pavlović
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|
14
|
Pan PH, Wang YY, Lin SY, Liao SL, Chen YF, Huang WC, Chen CJ, Chen WY. 18β-Glycyrrhetinic Acid Protects against Cholestatic Liver Injury in Bile Duct-Ligated Rats. Antioxidants (Basel) 2022; 11:961. [PMID: 35624826 PMCID: PMC9138139 DOI: 10.3390/antiox11050961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
18β-Glycyrrhetinic acid is a nutraceutical agent with promising hepatoprotective effects. Its protective mechanisms against cholestatic liver injury were further investigated in a rodent model of extrahepatic cholestasis caused by Bile Duct Ligation (BDL) in rats. The daily oral administration of 18β-Glycyrrhetinic acid improved liver histology, serum biochemicals, ductular reaction, oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis. 18β-Glycyrrhetinic acid alleviated the BDL-induced hepatic and systemic retention of bile acids, matrix-producing cell activation, hepatic collagen deposition, Transforming Growth Factor beta-1/Smad activation, malondialdehyde elevation, glutathione reduction, High Mobility Group Box-1/Toll-Like Receptor-4 activation, NF-κB activation, inflammatory cell infiltration/accumulation, Interleukin-1β expression, Signal Transducer and Activator of Transcription-1 activation, Endoplasmic Reticulum stress, impairment autophagy, and caspase 3 activation. Conversely, the protein expression of Sirt1, Farnesoid X Receptor, nuclear NF-E2-Related Factor-2, Transcription Factor EB, bile acid efflux transporters, and LC3-II, as well as the protein phosphorylation of AMP-Activated Protein Kinase, was promoted in 18β-Glycyrrhetinic acid-treated BDL rats. The hepatoprotective effects of 18β-Glycyrrhetinic acid in the present investigation correlated well with co-activation and possible interactions among Sirt, FXR, and Nrf2. The concurrent or concomitant activation of Sirt1, FXR, and Nrf2 not only restored the homeostatic regulation of bile acid metabolism, but also alleviated oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
- Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung City 435, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yu-Fang Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan;
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
| |
Collapse
|
15
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
16
|
Sestrin2 protects against cholestatic liver injury by inhibiting endoplasmic reticulum stress and NLRP3 inflammasome-mediated pyroptosis. Exp Mol Med 2022; 54:239-251. [PMID: 35260799 PMCID: PMC8980001 DOI: 10.1038/s12276-022-00737-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic exposure to bile acid in the liver due to impaired bile flow induces cholestatic liver disease, resulting in hepatotoxicity and liver fibrosis. Sestrin2, a highly conserved, stress-inducible protein, has been implicated in cellular responses to multiple stress conditions and the maintenance of cellular homeostasis. However, its role in cholestatic liver injury is not fully understood. In this study, we investigated the role of hepatic Sestrin2 in cholestatic liver injury and its underlying mechanisms using in vivo and in vitro approaches. Hepatic Sestrin2 expression was upregulated by activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein-β (C/EBP-β) after treatment with bile acids and correlated with endoplasmic reticulum (ER) stress responses. Bile-duct ligation (BDL)-induced hepatocellular apoptosis and liver fibrosis were exacerbated in Sestrin2-knockout (Sesn2−/−) mice. Moreover, Sestrin2 deficiency enhanced cholestasis-induced hepatic ER stress, whereas Sestrin2 overexpression ameliorated bile acid-induced ER stress. Notably, the mammalian target of rapamycin (mTOR) inhibitor rapamycin and the AMP-activated protein kinase (AMPK) activator AICAR reversed bile acid-induced ER stress in Sestrin2-deficient cells. Furthermore, Sestrin2 deficiency promoted cholestasis-induced hepatic pyroptosis by activating NLRP3 inflammasomes. Thus, our study provides evidence for the biological significance of Sestrin2 and its relationship with cholestatic liver injury, suggesting the potential role of Sestrin2 in regulating ER stress and inflammasome activation during cholestatic liver injury. A protein that manages the response to cellular stress can help prevent disruptions in bile flow from progressing to liver fibrosis or failure. Disrupted flow leads to the accumulation of bile acids, which triggers a state known as endoplasmic reticulum (ER) stress, fueling inflammation and eventual cell death. Researchers led by Hwan-Woo Park and Jongdae Shin at Konyang University, Daejon, South Korea, have demonstrated that the Sestrin2 protein plays a prominent role in managing this ER stress response to cytotoxic bile acids in cultured liver cells. They subsequently used a Sestrin2-deficient mouse model to demonstrate that the absence of this protein contributes to heightened ER stress and greatly increased liver damage following impaired bile flow. These results suggest that Sestrin2 modulators could offer effective treatments for liver disorders associated with bile flow obstruction.
Collapse
|
17
|
Xiong Y, Hu J, Xuan C, Tian J, Tan K, Chen Z, Luo Y, Du X, Cheng J, Zhang L, Cao W. Transcriptome analysis reveals the molecular mechanism of Yiqi Rougan decoction in reducing CCl 4-induced liver fibrosis in rats. Chin Med 2021; 16:142. [PMID: 34952623 PMCID: PMC8709947 DOI: 10.1186/s13020-021-00552-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Liver fibrosis develops from various chronic liver diseases, and there is currently a lack of specific treatment strategies. Yiqi Rougan decoction (YQRG) is a traditional Chinese medicine that has shown durative effects in the treatment of liver fibrosis; however, the mechanism associated with YQRG-related improvements in liver fibrosis remains to be experimentally determined. This study evaluated the therapeutic effect of YQRG on carbon tetrachloride (CCl4)-induced liver fibrosis in rats and its molecular mechanism. Methods We used low-, medium-, and high-dose YQRG to treat CCl4-induced liver fibrosis in rats, followed by assessment of liver injury and fibrosis according to liver appearance, body weight, liver mass index, histopathologic examination, and serum testing. Additionally, we performed transcriptome analysis using RNA-sequencing (RNA-seq) technology, including cluster, Gene Ontology (GO), and pathway analyses, to identify differentially expressed genes (DEGs), and protein and gene expression were detected by immunofluorescence (IFC), western blot and real-time quantitative PCR. Results The results showed that YQRG effectively alleviated CCl4-induced liver injury and fibrosis in rats, including observations of improved liver function, decreased activity of hepatic stellate cells (HSCs), and decreased extracellular matrix (ECM) deposition. Moreover, we identified downregulated and upregulated DEGs in the model group relative to the control and YQRG-treated groups, with GO analysis revealing their enrichment in biological processes, such as endoplasmic reticulum stress (ERS), apoptosis, and autophagy. Furthermore, pathway analysis showed that YQRG treatment downregulated the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/Akt (PI3K/AKT) signalling pathways and upregulated other signalling pathways, including those related to peroxisome proliferator-activated receptors(PPAR) and AMP-activated protein kinase(AMPK), with these findings subsequently verified experimentally. Conclusion These findings showed that YQRG improved CCl4-induced liver fibrosis through multiple mechanisms and pathways, offering critical insight into the YQRG-related therapeutic mechanism and promoting further research into its potential application. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00552-w.
Collapse
Affiliation(s)
- Yu Xiong
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Jinyuan Hu
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Chen Xuan
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Jiayu Tian
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Kaiyue Tan
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Zhiwei Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Yan Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China.,Department of Kidney Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Xuqin Du
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Junxiong Cheng
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Lanyue Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China
| | - Wenfu Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Medical College Road, Yuzhong District, Chongqing, 400016, China. .,Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China. .,Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
18
|
Rao Y, Li C, Hu YT, Xu YH, Song BB, Guo SY, Jiang Z, Zhao DD, Chen SB, Tan JH, Huang SL, Li QJ, Wang XJ, Zhang YJ, Ye JM, Huang ZS. A novel HSF1 activator ameliorates nonalcoholic steatohepatitis by stimulating mitochondrial adaptive oxidation. Br J Pharmacol 2021; 179:1411-1432. [PMID: 34783017 DOI: 10.1111/bph.15727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic steatohepatitis (NASH) is the more severe form of metabolic associated fatty liver disease (MAFLD), and no pharmacologic treatment approved as yet. Identification of novel therapeutic targets and their agents are critical to overcome the current inadequacy of drug treatment for NASH. EXPERIMENTAL APPROACH The correlation between heat shock factor 1 (HSF1) levels and the development of NASH and the target genes of HSF1 in hepatocyte were revealed by chromatin-immunoprecipitation sequencing. The effects and mechanisms of SYSU-3d in alleviating NASH were examined in relevant cell models and mouse models (the Ob/Ob mice, high-fat and high-cholesterol diet, the methionine-choline deficient diet fed mice). The drug-like properties of SYSU-3d in vivo were evaluated. KEY RESULTS HSF1 is progressively reduced with mitochondrial dysfunction in NASH pathogenesis and activation of this transcription factor by its newly-identified activator SYSU-3d efficiently ameliorated all manifestations of NASH in mice. When activated, the phosphorylated HSF1 (Ser326) translocated to nucleus and bound to the promoter of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) to induce mitochondrial biogenesis, thus increasing mitochondrial adaptive oxidation and inhibiting oxidative stress. The deletion of HSF1 and PGC-1α or recovery of HSF1 in HSF1-deficiency cells revealed the HSF1/PGC-1α metabolic axis mainly responsible for the anti-NASH effects of SYSU-3d independent of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). CONCLUSION AND IMPLICATIONS Activation of HSF1 is a practicable therapeutic approach for NASH treatment via the HSF1/PGC-1α/mitochondrial axis, and SYSU-3d would take into consideration as a potential candidate for the treatment of NASH.
Collapse
Affiliation(s)
- Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao-Hao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing-Bing Song
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Jun Wang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ying-Jun Zhang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Wu X, Yan Y, Zhang Q. Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury. J Inflamm Res 2021; 14:5713-5737. [PMID: 34764668 PMCID: PMC8576359 DOI: 10.2147/jir.s329864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic injury of the central nervous system, characterized by neurological dysfunction and locomotor disability. Although the underlying pathological mechanism of SCI is complex and remains unclear, the important role of neuroinflammation has been gradually unveiled in recent years. The inflammation process after SCI involves disruption of the blood–spinal cord barrier (BSCB), activation of gliocytes, infiltration of peripheral macrophages, and feedback loops between different cells. Thus, our first aim is to illustrate pathogenesis, related cells and factors of neuroinflammation after SCI in this review. Due to the good bioactivity of natural products derived from plants and medicinal herbs, these widely exist as food, health-care products and drugs in our lives. In the inflammation after SCI, multiple natural products exert satisfactory effects. Therefore, the second aim of this review is to sum up the effects and mechanisms of 25 natural compounds and 7 extracts derived from plants or medicinal herbs on neuroinflammation after SCI. Clarification of the SCI inflammation mechanism and a summary of the related natural products is helpful for in-depth research and drug development.
Collapse
Affiliation(s)
- Xue Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Qian Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| |
Collapse
|
20
|
Lai J, Qian Q, Ding Q, Zhou L, Fu A, Du Z, Wang C, Song Z, Li S, Dou X. Activation of AMP-Activated Protein Kinase-Sirtuin 1 Pathway Contributes to Salvianolic Acid A-Induced Browning of White Adipose Tissue in High-Fat Diet Fed Male Mice. Front Pharmacol 2021; 12:614406. [PMID: 34122060 PMCID: PMC8193940 DOI: 10.3389/fphar.2021.614406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Salvianolic acid A (Sal A), a natural polyphenolic compound extracted from Radix Salvia miltiorrhiza (Danshen), exhibits exceptional pharmacological activities against cardiovascular diseases. While a few studies have reported anti-obesity properties of Sal A, the underlying mechanisms are largely unknown. Given the prevalence of obesity and promising potential of browning of white adipose tissue to combat obesity, recent research has focused on herbal ingredients that may promote browning and increase energy expenditure. Purpose: The present study was designed to investigate the protective antiobesity mechanisms of Sal A, in part through white adipose browning. Methods: Both high-fat diet (HFD)-induced obese (DIO) male mice model and fully differentiated C3H10T1/2 adipocytes from mouse embryo fibroblasts were employed in this study. Sal A (20 and 40 mg/kg) was administrated to DIO mice by intraperitoneal injection for 13-weeks. Molecular mechanisms mediating effects of Sal A were evaluated. Resluts: Sal A treatment significantly attenuated HFD-induced weight gain and lipid accumulation in epididymal fat pad. Uncoupling protein 1 (UCP-1), a specialized thermogenic protein and marker for white adipocyte browning, was significantly induced by Sal A treatment in both white adipose tissues and cultured adipocytes. Further mechanistic investigations revealed that Sal A robustly reversed HFD-decreased AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1) expression in mice. Genetically silencing either AMPK or SIRT1 using siRNA abolished UCP-1 upregulation by Sal A. AMPK silencing significantly blocked Sal A-increased SIRT1 expression, while SIRT1 silencing did not affect Sal A-upregulated phosphorylated-AMPK. These findings indicate that AMPK was involved in Sal A-increased SIRT1. Conclusion: Sal A increases white adipose tissue browning in HFD-fed male mice and in cultured adipocytes. Thus, Sal is a potential natural therapeutic compound for treating and/or preventing obesity.
Collapse
Affiliation(s)
- Jianfei Lai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| | - Li Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ai Fu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyan Du
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Du N, Wu K, Zhang J, Wang L, Pan X, Zhu Y, Wu X, Liu J, Chen Y, Ye Y, Wang Y, Wu W, Cheng W, Huang Y. Inonotsuoxide B regulates M1 to M2 macrophage polarization through sirtuin-1/endoplasmic reticulum stress axis. Int Immunopharmacol 2021; 96:107603. [PMID: 33831807 DOI: 10.1016/j.intimp.2021.107603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 02/08/2023]
Abstract
We explored the effect of tetracyclic triterpenoid inonotsuoxide B (IB) extracts of Inonotus obliquus on M1 to M2 macrophage polarization and its possible underlying mechanism. Lipopolysaccharide (LPS)-activated M1 macrophages exert pro-inflammatory effects and release inflammatory cytokines including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. The model and various groups were treated with different IB concentrations (2.5, 5, and 10 μg/mL) to observe changes in the M1 and M2 phenotypes, gene expression of NAD-dependent deacetylase sirtuin-1 (Sirt1), and endoplasmic reticulum stress (ERS). SIRT1-siRNA and thapsigargin (TG), an ERS agonist, were used to examine the relationship between SIRT1/ERS and the effect of IB on M1 to M2 RAW264.7 macrophage phenotypic changes. We found that IB had no effect on RAW264.7 cell proliferation at 10 μg/mL. Increasing concentrations of IB (2.5, 5, and 10 μg/mL) decreased the number of phenotypic M1 macrophages and, consequently, decreased the release of the inflammatory cytokines, IL-1β and TNF-α. Furthermore, IB treatment increased the level of phenotypic M2 macrophages, which increased the release of anti-inflammatory cytokines such as arginase (Arg)-1 and found in inflammatory zone 1 (FIZZ1) in a dose-dependent manner. Further, we found that IB increased the expression of SIRT1 and inhibited that of ERS. Inhibition of Sirt1 expression by siRNA significantly increased that of ERS marker genes and IL1β. Excessive ERS levels inhibited the IB-induced transformation of phenotypic M1 macrophage to the M2 macrophage phenotype. Therefore, IB, an extract of I. obliquus, may regulate macrophage polarization through the SIRT1/ERS signaling pathway.
Collapse
Affiliation(s)
- Na Du
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Kun Wu
- Department of Natural Medicine and Chemistry, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Lili Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Xuesheng Pan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yueqin Zhu
- Department of Pharmacy, West Branch of The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei 230031, China
| | - Xian Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Jinghao Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yun Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Ying Ye
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Yuanyuan Wang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China
| | - Wenyong Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, China
| | - Wenming Cheng
- Department of Natural Medicine and Chemistry, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
22
|
Liao X, Zhan W, Li R, Tian T, Yu L, Yang Q. Irisin ameliorates endoplasmic reticulum stress and liver fibrosis through inhibiting PERK-mediated destabilization of HNRNPA1 in hepatic stellate cells. Biol Chem 2021; 402:703-715. [PMID: 33951764 DOI: 10.1515/hsz-2020-0251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a common consequence of chronic liver diseases involved with the activation of hepatic stellate cells (HSCs) and endoplasmic reticulum (ER) stress. Irisin is a small polypeptide hormone that shows beneficial effects on metabolic disorders. The current study aimed to investigate the biological function of irisin on hepatic fibrosis. A mouse model of carbon tetrachloride (CCl4)-induced hepatic fibrosis was established. CCl4-treated mice showed elevated serum levels of AST and ALT, increased collagen accumulation, induced ER stress, and upregulated expressions of pro-fibrotic proteins in the liver compared to the controls. The administration of irisin, however, ameliorated CCl4-induced hepatic fibrosis in both cultured HSCs and mice. PKR-like ER kinase (PERK) is a key component of the ER stress-associated signaling pathway. We found that irisin treatment improved the stability of heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) via regulating the phosphorylation of PERK in mouse livers and isolated HSCs. Also, the knockdown of HNRNPA1 eliminated the hepatoprotective effects of irisin on hepatic fibrosis and ER stress. In summary, this study showed that irisin alleviated ER stress and hepatic fibrosis by inhibiting PERK-mediated HNRNPA1 destabilization, suggesting that irisin may represent a promising therapeutic strategy for patients with liver fibrosis.
Collapse
Affiliation(s)
- Xin Liao
- Department of Pathophysiology, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang City550004, Guizhou Province, China.,Department of Imaging, Affiliated Hospital of Guizhou Medical University, Guiyang City550004, Guizhou Province, China
| | - Wei Zhan
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang City550004, Guizhou Province, China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang City550002, Guizhou Province, China
| | - Tian Tian
- Central Laboratory, Guiyang Maternal and Child Health Hospital, Guiyang City550004, Guizhou Province, China
| | - Lei Yu
- Department of Pathology, Guiyang Maternal and Child Health Hospital, Guiyang City550004, Guizhou Province, China
| | - Qin Yang
- Department of Pathophysiology, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang City550004, Guizhou Province, China
| |
Collapse
|
23
|
Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Eur J Pharmacol 2020; 888:173376. [PMID: 32810493 DOI: 10.1016/j.ejphar.2020.173376] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular complications associated with diabetes mellitus remains a leading cause of morbidity and mortality across the world. Diabetic cardiomyopathy is a descriptive pathology that in absence of co-morbidities such as hypertension, dyslipidemia initially characterized by cardiac stiffness, myocardial fibrosis, ventricular hypertrophy, and remodeling. These abnormalities further contribute to diastolic dysfunctions followed by systolic dysfunctions and eventually results in clinical heart failure (HF). The clinical outcomes associated with HF are considerably worse in patients with diabetes. The complexity of the pathogenesis and clinical features of diabetic cardiomyopathy raises serious questions in developing a therapeutic strategy to manage cardio-metabolic abnormalities. Despite extensive research in the past decade the compelling approaches to manage and treat diabetic cardiomyopathy are limited. AMP-Activated Protein Kinase (AMPK), a serine-threonine kinase, often referred to as cellular "metabolic master switch". During the development and progression of diabetic cardiomyopathy, a plethora of evidence demonstrate the beneficial role of AMPK on cardio-metabolic abnormalities including altered substrate utilization, impaired cardiac insulin metabolic signaling, mitochondrial dysfunction and oxidative stress, myocardial inflammation, increased accumulation of advanced glycation end-products, impaired cardiac calcium handling, maladaptive activation of the renin-angiotensin-aldosterone system, endoplasmic reticulum stress, myocardial fibrosis, ventricular hypertrophy, cardiac apoptosis, and impaired autophagy. Therefore, in this review, we have summarized the findings from pre-clinical and clinical studies and provided a collective overview of the pathophysiological mechanism and the regulatory role of AMPK on cardio-metabolic abnormalities during the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abdul Haye
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yasmeen Shamsi
- Department of Moalejat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Danish Ahmed
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
24
|
Qian J, Jiao Y, Wang G, Liu H, Cao X, Yang H. Mechanism of TGF-β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis. Exp Ther Med 2020; 20:1541-1549. [PMID: 32742385 PMCID: PMC7388376 DOI: 10.3892/etm.2020.8826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Effect of exogenous transforming growth factor-β1 (TGF-β1) on cholestatic mice by inhibiting Kupffer cell immune responses in liver was investigated. To induce cholestasis, BALB/c mice received a sham operation (Mock group), or underwent a bile duct ligation (BDL group) and then were subcutaneously injected with TGF-β1 at multiple sites (TGF group). Liver functions were evaluated according to the levels of alanine aminotransferase (ALT), aspartate aminotransferase AST and γ-glutamyltranspeptidase (γ-GT) in serum samples. Expression of nuclear factor-κB (NF-κB), interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) was detected. Expression of inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1) in Kupffer cells (KCs) of the liver was detected. The isolated KCs were divided into control group, LPS group, TGF group and Galunisertib group and western blot analysis was used to detect the expression of NF-κB, IL-6, IL-1β, TNF-α, iNOS and Arg-1. The percentage of CD40, CD86, CD204 and CD206 as macrophage cell surface antigens were measured by flow cytometry. The indexes of liver function and liver fibrosis of the mice in the TGF group were significantly lower than those in the BDL group (P<0.05). The levels of IL-1β, IL-6 and TNF-α in the liver were lower than those in the BDL group, while the level of IL-10 was significantly increased (P<0.05). M2-type transformation occurred in liver Kupffer cells of mice in the TGF group. In cell experiments, TGF treatment downregulated the expression of IL-1β, IL-6, TNF-α and NF-κB, increased the expression of IL-10, and induced M2-type transformation in macrophages (P<0.05). In conclusion, TGF-ß1 diminished the progression of cholestasis in mice by inhibiting the inflammatory response of KCs and regulating KC polarization.
Collapse
Affiliation(s)
- Jun Qian
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuwen Jiao
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Guangyao Wang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Hanyang Liu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xiang Cao
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Haojun Yang
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
25
|
Chan YT, Wang N, Tan HY, Li S, Feng Y. Targeting Hepatic Stellate Cells for the Treatment of Liver Fibrosis by Natural Products: Is It the Dawning of a New Era? Front Pharmacol 2020; 11:548. [PMID: 32425789 PMCID: PMC7212390 DOI: 10.3389/fphar.2020.00548] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a progressive liver damage condition that is worth studying widely. It is important to target and alleviate the disease at an early stage before turning into later cirrhosis or liver cancer. There are currently no direct medicines targeting the attenuation or reversal of liver fibrosis, and so there is an urgent need to look into this area. Traditional Chinese Medicine has a long history in using herbal medicines to treat liver diseases including fibrosis. It is time to integrate the ancient wisdom with modern science and technology to look for the best solution to the disease. In this review, the principal concept of the pathology of liver fibrosis will be described, and then some of the single compounds isolated from herbal medicines, including salvianolic acids, oxymatrine, curcumin, tetrandrine, etc. will be discussed from their effects to the molecular mechanism behind. Molecular targets of the compounds are analyzed by network pharmacology approach, and TGFβ/SMAD was identified as the most common pathway. This review serves to summarize the current findings of herbal medicines combining with modern medicines in the area of fibrosis. It hopefully provides insights in further pharmaceutical research directions.
Collapse
Affiliation(s)
| | | | | | | | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
26
|
Zhou F, Teng L, Liu Y, Ma Y, Chen W, Bi L. Elaboration of the Comprehensive Metabolic Profile of Salvianolic Acid A in Vivo and in Vitro Using UFLC-Q/TOF-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12199-12207. [PMID: 31595753 DOI: 10.1021/acs.jafc.9b04131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Salvianolic acid A (Sal A) has a wide range of pharmacological activities. To date, there have been no systematic and detailed metabolite research data of Sal A after oral administration in vitro and in vivo. In this study, a rapid and systematic method based on ultrafast liquid chromatography-quadrupole-time-of-flight mass spectrometry was developed to detect metabolites of Sal A in vitro (human liver microsome, human intestinal microbiota, artificial gastric, and intestinal juice) and in vivo (urine, plasma, feces, and various organs collected after oral administration of Sal A to normal rats and pseudo-germ-free rats). A total of 26 metabolites of Sal A were characterized. These metabolites were formed through extensive metabolic reactions, such as hydroxylation, hydrogenation, and glucuronidation reactions. This study provides novel possibility for exploring the potential biological mechanism of Sal A, and aids the promotion of clinical application.
Collapse
Affiliation(s)
- Fuqiong Zhou
- Central Laboratory, Affiliated Nanjing Hospital of Chinese Medicine , Nanjing University of Chinese Medicine , 157 Daming Road , Nanjing , Jiangsu 210012 , China
- School of Preclinical Medicine , Nanjing University of Chinese Medicine , 138 Xianlin Road , Nanjing , Jiangsu 210023 , China
| | - Linxin Teng
- School of Preclinical Medicine , Nanjing University of Chinese Medicine , 138 Xianlin Road , Nanjing , Jiangsu 210023 , China
| | - Yu Liu
- School of Preclinical Medicine , Nanjing University of Chinese Medicine , 138 Xianlin Road , Nanjing , Jiangsu 210023 , China
| | - Yanxia Ma
- School of Preclinical Medicine , Nanjing University of Chinese Medicine , 138 Xianlin Road , Nanjing , Jiangsu 210023 , China
| | - Weiping Chen
- School of Preclinical Medicine , Nanjing University of Chinese Medicine , 138 Xianlin Road , Nanjing , Jiangsu 210023 , China
| | - Lei Bi
- School of Preclinical Medicine , Nanjing University of Chinese Medicine , 138 Xianlin Road , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
27
|
Ma L, Tang L, Yi Q. Salvianolic Acids: Potential Source of Natural Drugs for the Treatment of Fibrosis Disease and Cancer. Front Pharmacol 2019; 10:97. [PMID: 30842735 PMCID: PMC6391314 DOI: 10.3389/fphar.2019.00097] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Salvianolic acids, the most effective and abundant compounds extracted from Salvia miltiorrhiza (Danshen), are well known for its good anti-oxidative activity. Danshen has been extensively used as a traditional medicine to treat cardiovascular-related diseases in China and other Asian countries for hundreds of years. Recently, more and more studies have demonstrated that salvianolic acids also have a good effect on the alleviation of fibrosis disease and the treatment of cancer. In vivo and in vitro experiments have demonstrated that salvianolic acids can modulate signal transduction within fibroblasts and cancer cells. It is discovered that the cancer treatment of salvianolic acids is not only because salvianolic acids promote the apoptosis of cancer cells, but also due to the inhibition of cancer-associated epithelial-mesenchymal transition processes. In this article, we review a variety of studies focusing on the comprehensive roles of salvianolic acids in the treatment of fibrosis disease and cancer. These perspectives on the therapeutic potential of salvianolic acids highlight the importance of these compounds, which could be the novel and attractive drugs for fibrosis disease and cancer.
Collapse
Affiliation(s)
- Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|