1
|
Liu S, Zhang T, Chen Z, Guo K, Zhao P. Structural characterization of Corydalis yanhusuo polysaccharides and its bioactivity in vitro. Int J Biol Macromol 2025; 306:141575. [PMID: 40023428 DOI: 10.1016/j.ijbiomac.2025.141575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
This study isolated and purified two polysaccharides, CYHSP-1 and CYHSP-2, from Corydalis yanhusuo, and investigated their structures and in vitro biological activities. The findings revealed that CYHSP-1 and CYHSP-2 possess average molecular weights of 97.17 and 23.48 kDa, respectively, indicating uniform molecular weight glucans. Structural characterization, utilizing techniques such as Fourier transform infrared spectroscopy (FT-IR) and methylation analysis, identified the presence of sugar units including α-1,4-Glc-(1→, α-1,4,6-Glc-(1→, α-1,6-Glc-(1→, and α-t-Glc-(1→. CYHSP-1 demonstrated superior radical scavenging activity and a more pronounced inhibitory effect on human hepatocellular carcinoma HepG2 cells compared to CYHSP-2. These results indicate the significant potential of these Corydalis yanhusuo-derived polysaccharides as natural antioxidants and anti-tumor agents.
Collapse
Affiliation(s)
- Simei Liu
- Shaanxi Key Laboratory of Traditional Chinese Pharmacy Foundation and New Drug Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Tingting Zhang
- Shaanxi Key Laboratory of Traditional Chinese Pharmacy Foundation and New Drug Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Zilong Chen
- China Food and Drug Control Center of Weinan Institute of Inspection and Research in Shaanxi Province, Weinan, Shaanxi 714000, China
| | - Ke Guo
- Shaanxi Key Laboratory of Traditional Chinese Pharmacy Foundation and New Drug Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Peng Zhao
- Shaanxi Key Laboratory of Traditional Chinese Pharmacy Foundation and New Drug Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| |
Collapse
|
2
|
Dikalova A, Ao M, Lantier L, Gutor S, Dikalov S. Depletion of Mitochondrial Cyclophilin D in Endothelial and Smooth Muscle Cells Attenuates Vascular Dysfunction and Hypertension. FUNCTION 2025; 6:zqaf006. [PMID: 39919759 PMCID: PMC11931617 DOI: 10.1093/function/zqaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
Hypertension is a major risk factor of cardiovascular disease affecting nearly half of adult population. It is associated with mitochondrial dysfunction and understanding these mechanisms is important to develop new therapies. Cyclophilin D (CypD) promotes mitochondrial swelling and dysfunction. The objective of this study is to test if CypD depletion attenuates vascular dysfunction and hypertension using endothelial and smooth muscle-specific CypD knockout mice in angiotensin II model of vascular dysfunction and hypertension. Our results show that depletion of endothelial CypD prevents angiotensin II-induced impairment of endothelial-dependent vasorelaxation, preserves endothelial nitric oxide and mitochondrial respiration, attenuates hypertension, vascular oxidative stress and vascular metabolic glycolytic-switch. Depletion of smooth muscle CypD slightly reduces angiotensin II-induced hypertension, protects vascular nitric oxide and vasorelaxation, decreases vascular superoxide, diminishes angiotensin II-induced vascular glycolysis, hypertrophy and fibrosis. These data suggest "metabolic" and "redox" crosstalk between endothelial and smooth muscle cells. Endothelial CypD depletion reduces not only endothelial glycolysis but also attenuates smooth muscle cell glycolytic switch. Smooth muscle CypD depletion reduced not only smooth muscle glycolysis, but it also attenuated endothelial glycolysis. Vascular oxidative stress was inhibited both in EcCypDKO and SmcCypDKO mice, therefore, cell-specific CypD depletion had "global" antioxidant effect in vasculature. Our results support a novel function of mitochondrial CypD in regulation of superoxide and metabolism in vascular smooth muscle and endothelial cells which affect endothelial barrier and smooth muscle vascular functions. We suggest that blocking vascular CypD reduces vascular oxidative stress, improves vascular metabolism and vascular function which may be beneficial in cardiovascular disease.
Collapse
Affiliation(s)
- Anna Dikalova
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mingfang Ao
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Yin Z, Song R, Yu T, Fu Y, Ding Y, Nie H. Natural Compounds Regulate Macrophage Polarization and Alleviate Inflammation Against ALI/ARDS. Biomolecules 2025; 15:192. [PMID: 40001495 PMCID: PMC11853067 DOI: 10.3390/biom15020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a pulmonary disease with high mortality associated with inflammation. During the development of ALI/ARDS, macrophages usually polarize toward M1 pro-inflammatory macrophages, promoting the inflammatory response in ALI/ARDS and aggravating lung tissue damage. Natural compounds with anti-inflammatory activity have achieved excellent results in the treatment of ALI/ARDS through different regulatory modes, including macrophage polarization. Of note, flavonoid, brevilin A, and tetrahydropalmatine play an important role in the treatment of ALI/ARDS by modulating the phenotypic polarization of macrophages and their pro-inflammatory cytokine expression in innate immune cells of the lung. Flavonoids are a kind of naturally occurring polyphenol compound, which has antioxidant and anti-inflammatory activities. Studies have found that some flavonoids can alleviate ALI/ARDS through inhibiting the expression of inflammatory cytokines in macrophages. Among them, 5-methoxyflavone, acacetin, grape seed proanthocyanidins, and luteolin can also regulate macrophage polarization. Therefore, the in-depth exploration of the regulatory mechanism of macrophages can lay the foundation for the application of flavonoids in alleviating inflammation-related lung injury. This review focuses on the macrophage polarization effects of different natural compounds and their potential anti-inflammatory mechanisms in the treatment of ALI/ARDS.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China; (Z.Y.); (R.S.); (T.Y.); (Y.F.); (Y.D.)
| |
Collapse
|
4
|
Zhou ZY, Ma J, Zhao WR, Shi WT, Zhang J, Hu YY, Yue MY, Zhou WL, Yan H, Tang JY, Wang Y. Qiangxinyin formula protects against isoproterenol-induced cardiac hypertrophy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155717. [PMID: 38810550 DOI: 10.1016/j.phymed.2024.155717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
Heart failure is a life-threatening cardiovascular disease and characterized by cardiac hypertrophy, inflammation and fibrosis. The traditional Chinese medicine formula Qiangxinyin (QXY) is effective for the treatment of heart failure while the underlying mechanism is not clear. This study aims to identify the active ingredients of QXY and explore its mechanisms protecting against cardiac hypertrophy. We found that QXY significantly protected against isoproterenol (ISO)-induced cardiac hypertrophy and dysfunction in zebrafish. Eight compounds, including benzoylmesaconine (BMA), atractylenolide I (ATL I), icariin (ICA), quercitrin (QUE), psoralen (PRN), kaempferol (KMP), ferulic acid (FA) and protocatechuic acid (PCA) were identified from QXY. PRN, KMP and icaritin (ICT), an active pharmaceutical ingredient of ICA, prevented ISO-induced cardiac hypertrophy and dysfunction in zebrafish. In H9c2 cardiomyocyte treated with ISO, QXY significantly blocked the calcium influx, reduced intracellular lipid peroxidative product MDA, stimulated ATP production and increased mitochondrial membrane potential. QXY also inhibited ISO-induced cardiomyocyte hypertrophy and cytoskeleton reorganization. Mechanistically, QXY enhanced the phosphorylation of Smad family member 2 (SMAD2) and myosin phosphatase target subunit-1 (MYPT1), and suppressed the phosphorylation of myosin light chain (MLC). In conclusion, PRN, KMP and ICA are the main active ingredients of QXY that protect against ISO-induced cardiac hypertrophy and dysfunction largely via the blockage of calcium influx and inhibition of mitochondrial dysfunction as well as cytoskeleton reorganization.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong Special Administrative Regions of China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Regions of China
| | - Jie Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Yan Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mei-Yan Yue
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Long Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yu Wang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong Special Administrative Regions of China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Regions of China.
| |
Collapse
|
5
|
Chen S, Tian CB, Bai LY, He XC, Lu QY, Zhao YL, Luo XD. Thrombosis inhibited by Corydalis decumbens through regulating PI3K-Akt pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118177. [PMID: 38604510 DOI: 10.1016/j.jep.2024.118177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis decumbens (Thunb.) Pers. was used as stasis-eliminating medicine traditionally to treat cardiovascular disease potentially attributed to its antithrombotic effect, but lack of pharmacological research on it. AIM OF THE STUDY To investigate the antithrombotic effect of C. decumbens and its preliminary mechanism. MATERIALS AND METHODS A carrageenan-induced mouse thrombus model and adenosine diphosphate stimulated platelet aggregation of rabbits were used to confirm the inhibitory effect of C. decumbens extract and compounds on thrombosis in vivo. Then, H2O2-induced human umbilical vein endothelial cells (HUVECs) injury model was further adopted to verify the effects of bioactive compounds in vitro. Moreover, in silico network pharmacology analyses and molecular docking were performed to predict the underlying mechanisms, targets, and pathways, and which were further confirmed through western blotting assay. RESULTS The administration of total extract (TE), total alkaloids (TA) and tetrahydropalmatine (TET) resulted in a significant reduction in black tail thrombus and congestion, along with a decreasing in platelet aggregation of rabbits. A superior antithrombotic effect indicated the bioactive fraction, and then the isolated bioactive compounds, TET and protopine (PRO) increased cell survival, and decreased reactive oxygen species (ROS) and lactate dehydrogenase (LDH) release in H2O2-induced HUVECs injury model. Moreover, the two alkaloids targeted 33 major proteins and influenced 153 pathways in network pharmacology prediction. Among these, HSP90AA1, COX-2, NF-κB/p65, MMP1 and HIF-1α were the key proteins and PI3K-Akt emerged as the major signaling pathway. Further western blotting results supported that five key proteins were downregulated by the two bioactive compounds in H2O2-stimulated HUVECs model. CONCLUSION C. decumbens exerted protective effect on thrombosis through inhibiting PI3K-Akt pathway and related key proteins, which supported the traditional use and presented potential antithrombotic alkaloids for further investigation.
Collapse
Affiliation(s)
- Song Chen
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Cai-Bo Tian
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Li-Yu Bai
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xing-Chao He
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Qing-Yu Lu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
6
|
Dikalova A, Fehrenbach D, Mayorov V, Panov A, Ao M, Lantier L, Amarnath V, Lopez MG, Billings FT, Sack MN, Dikalov S. Mitochondrial CypD Acetylation Promotes Endothelial Dysfunction and Hypertension. Circ Res 2024; 134:1451-1464. [PMID: 38639088 PMCID: PMC11116043 DOI: 10.1161/circresaha.123.323596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Nearly half of adults have hypertension, a major risk factor for cardiovascular disease. Mitochondrial hyperacetylation is linked to hypertension, but the role of acetylation of specific proteins is not clear. We hypothesized that acetylation of mitochondrial CypD (cyclophilin D) at K166 contributes to endothelial dysfunction and hypertension. METHODS To test this hypothesis, we studied CypD acetylation in patients with essential hypertension, defined a pathogenic role of CypD acetylation in deacetylation mimetic CypD-K166R mutant mice and endothelial-specific GCN5L1 (general control of amino acid synthesis 5 like 1)-deficient mice using an Ang II (angiotensin II) model of hypertension. RESULTS Arterioles from hypertensive patients had 280% higher CypD acetylation coupled with reduced Sirt3 (sirtuin 3) and increased GCN5L1 levels. GCN5L1 regulates mitochondrial protein acetylation and promotes CypD acetylation, which is counteracted by mitochondrial deacetylase Sirt3. In human aortic endothelial cells, GCN5L1 depletion prevents superoxide overproduction. Deacetylation mimetic CypD-K166R mice were protected from vascular oxidative stress, endothelial dysfunction, and Ang II-induced hypertension. Ang II-induced hypertension increased mitochondrial GCN5L1 and reduced Sirt3 levels resulting in a 250% increase in GCN5L1/Sirt3 ratio promoting CypD acetylation. Treatment with mitochondria-targeted scavenger of cytotoxic isolevuglandins (mito2HOBA) normalized GCN5L1/Sirt3 ratio, reduced CypD acetylation, and attenuated hypertension. The role of mitochondrial acetyltransferase GCN5L1 in the endothelial function was tested in endothelial-specific GCN5L1 knockout mice. Depletion of endothelial GCN5L1 prevented Ang II-induced mitochondrial oxidative stress, reduced the maladaptive switch of vascular metabolism to glycolysis, prevented inactivation of endothelial nitric oxide, preserved endothelial-dependent relaxation, and attenuated hypertension. CONCLUSIONS These data support the pathogenic role of CypD acetylation in endothelial dysfunction and hypertension. We suggest that targeting cytotoxic mitochondrial isolevuglandins and GCN5L1 reduces CypD acetylation, which may be beneficial in cardiovascular disease.
Collapse
Affiliation(s)
- Anna Dikalova
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | - Mingfang Ao
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
Sahinturk S. Cilostazol induces vasorelaxation through the activation of the eNOS/NO/cGMP pathway, prostanoids, AMPK, PKC, potassium channels, and calcium channels. Prostaglandins Other Lipid Mediat 2023; 169:106782. [PMID: 37741358 DOI: 10.1016/j.prostaglandins.2023.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE This study aimed to investigate vasoactive effect mechanisms of cilostazol in rat thoracic aorta. MATERIALS AND METHODS The vessel rings prepared from the thoracic aortas of the male rats were placed in the chambers of the isolated tissue bath system. The resting tone was adjusted to 1 g. Following the equilibration phase, potassium chloride or phenylephrine was used to contract the vessel rings. When achieving a steady contraction, cilostazol was applied cumulatively (10-8-10-4 M). In the presence of potassium channel blockers or signaling pathway inhibitors, the same experimental procedure was performed. RESULTS Cilostazol exhibited a significant vasorelaxant effect in a concentration-dependent manner (pD2: 5.94 ± 0.94) (p < .001). The vasorelaxant effect level of cilostazol was significantly reduced by the endothelial nitric oxide synthase inhibitor L-NAME (10-4 M), soluble guanylate cyclase inhibitor methylene blue (10 µM), cyclooxygenase 1/2 inhibitor indomethacin (5 µM), adenosine monophosphate-activated protein kinase inhibitor compound C (10 µM), non-selective potassium channel blocker tetraethylammonium chloride (10 mM), large-conductance calcium-activated potassium channel blocker iberiotoxin (20 nM), voltage-gated potassium channel blocker 4-Aminopyridine (1 mM), and inward-rectifier potassium channel blocker BaCl2 (30 µM) (p < .001). Moreover, incubation of cilostazol (10-4 M) significantly reduced caffeine (10 mM), cyclopiazonic acid (10 µM), and phorbol 12-myristate 13-acetate-induced (100 µM) vascular contractions (p < .001). CONCLUSIONS In the rat thoracic aorta, the vasodilator action level of cilostazol is quite noticeable. The vasorelaxant effects of cilostazol are mediated by the eNOS/NO/cGMP pathway, prostanoids, AMPK pathway, PKC, potassium channels, and calcium channels.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Bursa Uludag University Medicine School, Physiology Department, 16059, Bursa, Turkey.
| |
Collapse
|
8
|
Li J, Wu Y, Dong S, Yu Y, Wu Y, Xiang B, Li Q. Research Progress on Neuroprotective Effects of Isoquinoline Alkaloids. Molecules 2023; 28:4797. [PMID: 37375352 DOI: 10.3390/molecules28124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuronal injury and apoptosis are important causes of the occurrence and development of many neurodegenerative diseases, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Although the detailed mechanism of some diseases is unknown, the loss of neurons in the brain is still the main pathological feature. By exerting the neuroprotective effects of drugs, it is of great significance to alleviate the symptoms and improve the prognosis of these diseases. Isoquinoline alkaloids are important active ingredients in many traditional Chinese medicines. These substances have a wide range of pharmacological effects and significant activity. Although some studies have suggested that isoquinoline alkaloids may have pharmacological activities for treating neurodegenerative diseases, there is currently a lack of a comprehensive summary regarding their mechanisms and characteristics in neuroprotection. This paper provides a comprehensive review of the active components found in isoquinoline alkaloids that have neuroprotective effects. It thoroughly explains the various mechanisms behind the neuroprotective effects of isoquinoline alkaloids and summarizes their common characteristics. This information can serve as a reference for further research on the neuroprotective effects of isoquinoline alkaloids.
Collapse
Affiliation(s)
- Jinhua Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yarong Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Shuze Dong
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Ye Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Yuhao Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Benhan Xiang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou 310013, China
| |
Collapse
|
9
|
Chennupati R, Solga I, Wischmann P, Dahlmann P, Celik FG, Pacht D, Şahin A, Yogathasan V, Hosen MR, Gerdes N, Kelm M, Jung C. Chronic anemia is associated with systemic endothelial dysfunction. Front Cardiovasc Med 2023; 10:1099069. [PMID: 37234375 PMCID: PMC10205985 DOI: 10.3389/fcvm.2023.1099069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Background In acute myocardial infarction and heart failure, anemia is associated with adverse clinical outcomes. Endothelial dysfunction (ED) is characterized by attenuated nitric oxide (NO)-mediated relaxation responses which is poorly studied in chronic anemia (CA). We hypothesized that CA is associated with ED due to increased oxidative stress in the endothelium. Methods CA was induced by repeated blood withdrawal in male C57BL/6J mice. Flow-Mediated Dilation (FMD) responses were assessed in CA mice using ultrasound-guided femoral transient ischemia model. Tissue organ bath was used to assess vascular responsiveness of aortic rings from CA mice, and in aortic rings incubated with red blood cells (RBCs) from anemic patients. In the aortic rings from anemic mice, the role of arginases was assessed using either an arginase inhibitor (Nor-NOHA) or genetic ablation of arginase 1 in the endothelium. Inflammatory changes in plasma of CA mice were examined by ELISA. Expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), myeloperoxidase (MPO), 3-Nitrotyrosine levels, and 4-Hydroxynonenal (4-HNE) were assessed either by Western blotting or immunohistochemistry. The role of reactive oxygen species (ROS) in ED was assessed in the anemic mice either supplemented with N-Acetyl cysteine (NAC) or by in vitro pharmacological inhibition of MPO. Results The FMD responses were diminished with a correlation to the duration of anemia. Aortic rings from CA mice showed reduced NO-dependent relaxation compared to non-anemic mice. RBCs from anemic patients attenuated NO-dependent relaxation responses in murine aortic rings compared to non-anemic controls. CA results in increased plasma VCAM-1, ICAM-1 levels, and an increased iNOS expression in aortic vascular smooth muscle cells. Arginases inhibition or arginase1 deletion did not improve ED in anemic mice. Increased expression of MPO and 4-HNE observed in endothelial cells of aortic sections from CA mice. NAC supplementation or inhibition of MPO improved relaxation responses in CA mice. Conclusion Chronic anemia is associated with progressive endothelial dysfunction evidenced by activation of the endothelium mediated by systemic inflammation, increased iNOS activity, and ROS production in the arterial wall. ROS scavenger (NAC) supplementation or MPO inhibition are potential therapeutic options to reverse the devastating endothelial dysfunction in chronic anemia.
Collapse
Affiliation(s)
- Ramesh Chennupati
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Isabella Solga
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Patricia Wischmann
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Paul Dahlmann
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Feyza Gül Celik
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Daniela Pacht
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Aslıhan Şahin
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Vithya Yogathasan
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad Rabiul Hosen
- Department of Internal Medicine II, HeartCenter Bonn, University Hospital Bonn, Bonn, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
10
|
Verma K, Shukla R, Dwivedi J, Paliwal S, Sharma S. New insights on mode of action of vasorelaxant activity of simvastatin. Inflammopharmacology 2023; 31:1279-1288. [PMID: 37038017 DOI: 10.1007/s10787-023-01219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Simvastatin is a semisynthetic inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and is used extensively to treat atherosclerotic cardiovascular disease. Apart from the lipid-lowering effect, simvastatin has been documented to offer impressive vasorelaxant activity. However, the mechanism associated with this vasorelaxant activity has yet not been substantially explored. Thus, the present study has aimed to elucidate the mechanism(s) associated with simvastatin-induced vasorelaxation using an established rat aortic ring model. The results from the study depicted that simvastatin caused significant relaxation in aortic rings pre-contracted with phenylephrine and potassium chloride (KCl). The vasorelaxant effect of simvastatin was attenuated by methylene blue (sGC-dependent cyclic guanosine monophosphate (cGMP) inhibitor), NG-nitro-L-arginine methyl ester (L-NAME; NO synthase inhibitor), 4-aminopyridine (Kv blocker), glibenclamide (KATP blocker), and barium chloride (Kir blocker). In addition, the vasorelaxant effect of simvastatin was slightly reduced by PD123319 (angiotensin II type 2 receptor (AT2R) antagonist). However, indomethacin (COX inhibitor), 1H-[1,2,4]Ox adiazolol [4,3-α]quinoxalin-1-one (ODQ; selective soluble guanylate cyclase (sGC) inhibitor), losartan (angiotensin II type 1 receptor (AT1R) antagonist), atropine (muscarinic receptor blocker), and tetraethyl ammonium (TEA; KCa blocker) did not affect the vasorelaxant effect of simvastatin. Furthermore, simvastatin was found to attenuate the release of calcium (Ca2+) from intracellular stores in the presence of ruthenium red (ryanodine receptor, RyR inhibitor) and extracellular stores via nifedipine (voltage-operated Ca2+ channels, VOCC blocker) and SK&F96365 (receptor-operated Ca2+ channel, ROCC blocker). Thus, it can be concluded that the vasorelaxant effect of simvastatin involves NO/cGMP pathways, AT2R receptors, Ca2+ channels, and K+ channels.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India.
| |
Collapse
|
11
|
Engin S, Barut EN, Erac Y, Sari S, Kadioglu M. The inhibitory effect of escitalopram on mouse detrusor contractility: The role of L-type calcium channels. Toxicol Appl Pharmacol 2023; 461:116408. [PMID: 36736438 DOI: 10.1016/j.taap.2023.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/27/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are associated with urinary problems attributed to their central effects. ESC is a preferred SSRI and several case reports described that ESC is related to urinary retention. However, the direct effect of ESC on detrusor contractility is still not completely elucidated. Thus, we investigated the effect of ESC on detrusor contractility and mechanism(s) of its action in isolated mouse detrusor strips. Molecular docking and measurement of intracellular calcium were performed to determine the possible calcium channel blocking effect of ESC. The contractile responses to carbachol (CCh), KCl and electrical field stimulation of detrusor strips were significantly abolished by ESC (10 or 100 μM). ESC relaxed KCl-precontracted detrusor strips concentration-dependently, which was not affected by tetraethylammonium, glibenclamide, 4-aminopyridine, propranolol, L-NAME or methylene blue. ESC (10 or 100 μM) reduced both the CaCl2- and CCh-induced contractions under calcium-free conditions, indicating the role of calcium-involved mechanisms in ESC-mediated relaxation. Furthermore, ESC significantly decreased Bay K8644-induced contraction and the cytosolic calcium level in fura-2-loaded A7r5 cells. Molecular docking study also revealed the potential of ESC to bind L-type calcium (Cav1) channels. Our results demonstrate that ESC inhibits detrusor contractility via blocking Cav1 channels, which provides evidence for the direct effect of ESC on detrusor contractility and its mechanism.
Collapse
Affiliation(s)
- Seçkin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye.
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Türkiye
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Mine Kadioglu
- Department of Medical Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
12
|
Zhou ZY, Shi WT, Zhang J, Zhao WR, Xiao Y, Zhang KY, Ma J, Tang JY, Wang Y. Sodium tanshinone IIA sulfonate protects against hyperhomocysteine-induced vascular endothelial injury via activation of NNMT/SIRT1-mediated NRF2/HO-1 and AKT/MAPKs signaling in human umbilical vascular endothelial cells. Biomed Pharmacother 2023; 158:114137. [PMID: 36525817 DOI: 10.1016/j.biopha.2022.114137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Homocysteine (Hcy) is one of the independent risk factors of cardiovascular disease. Sodium tanshinone IIA sulfonate (STS) is a hydrophilic derivate of tanshinone IIA which is the main active constitute of Chinese Materia Medica Salviae Miltiorrhizae Radix et Rhizoma, and exhibits multiple pharmacological activities. However, whether STS could prevent from Hcy-induced endothelial cell injury is unknown. We found that STS dramatically reversed Hcy-induced cell death concentration dependently in human umbilical vascular endothelial cells (HUVECs). STS ameliorated the endothelial cell cycle progression, proliferation and cell migratory function impaired by Hcy, which might be co-related to the inhibition of intracellular oxidative stress and mitochondrial dysfunction. STS also elevated the phosphorylation of AKT and MAPKs and protein expression of sirtuin1 (SIRT1), NRF2 and HO-1 which were suppressed by Hcy. The protective effect of STS against Hcy-induced endothelial cell toxicity was partially attenuated by PI3K, AKT, MEK, ERK, SIRT1, NRF2 and HO-1 inhibitors. Besides, knockdown of SIRT1 by its siRNA dramatically decreased the endothelial protective effect of STS accompanied with suppression of SIRT1, NRF2, HO-1 and phosphorylated AKT. The activation of AKT or NRF2 partially reversed SIRT1-knockdown impaired cyto-protective effect of STS against Hcy-induced cell injury. Furthermore, STS prevented from Hcy-induced intracellular nicotinamide N-methyltransferase (NNMT) reduction along with elevation of intracellular methylnicotinamide (MNA), and MNA enhanced STS protecting against Hcy induced endothelial death. Knockdown of NNMT reduced the protective effect of STS against Hcy induced endothelial cell injury. Collectively, STS presented potent endothelial protective effect against Hcy and the underlying molecular mechanisms were involved in the suppression of intracellular oxidative stress and mitochondria dysfunction by activation of AKT/MAPKs, SIRT1/NRF2/HO-1 and NNMT/MNA signaling pathways.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, the Hong Kong Special Administrative Region of China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, the Hong Kong Special Administrative Region of China.
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ying Xiao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Kai-Yu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jie Ma
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yu Wang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, the Hong Kong Special Administrative Region of China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, the Hong Kong Special Administrative Region of China.
| |
Collapse
|
13
|
Oyagbemi AA, Adebayo AK, Adebiyi OE, Adigun KO, Folarin OR, Esan OO, Ajibade TO, Ogunpolu BS, Falayi OO, Ogunmiluyi IO, Olutayo Omobowale T, Ola-Davies OE, Olopade JO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Yakubu MA, Nwulia E, Oguntibeju OO. Leaf extract of Anacardium occidentale ameliorates biomarkers of neuroinflammation, memory loss, and neurobehavioral deficit in N(ω)-nitro-L-arginine methyl ester (L-NAME) treated rats. Biomarkers 2023; 28:263-272. [PMID: 36632742 DOI: 10.1080/1354750x.2022.2164354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Anacardium occidentale commonly known as Cashew is a plant that is widely used in African traditional medicine. It is endowed with phytochemical constituents that are responsible for its medicinal properties. METHODS Twenty-five male Wistar rats were grouped as follows: Control (Group A), Group B (L-NAME 40 mg/kg), Group C (100 mg/kg Anacardium occidentale extract plus 40 mg/kg L-NAME), Group D (200 mg/kg extract plus 40 mg/kg L-NAME) and Group E (10 mg/kg of Lisinopril plus 40 mg/kg L-NAME). The animals were treated with oral administration of either the extracts or Lisnopril daily for 4 weeks. Neuro-behavioural tests such as the Morris Water Maze and Hanging Wire Grip tests were carried out to evaluate memory/spatial learning and muscular strength, respectively. Makers of oxidative stress, antioxidant enzymes and immunohistochemical staining of Glial Fibrillary Acidic Protein and Ionised Calcium Binding Adaptor molecule 1 were assessed. RESULTS L-NAME administration caused significant increases in biomarkers of oxidative stress, decreased antioxidant status, acetylcholinesterase activity, altered neuro-behavioural changes, astrocytosis, and microgliosis. However, Anacardium occidentale reversed exaggerated oxidative stress biomarkers and improved neuro-behavioural changes. CONCLUSIONS Combining all, Anacardium occidentale enhanced brain antioxidant defence status, improved memory and muscular strength, thus, suggesting the neuroprotective properties of Anacardium occidentale.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedeji Kolawole Adebayo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamide Elizabeth Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kabirat Oluwaseun Adigun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Sciences, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Iyanuoluwa Omolola Ogunmiluyi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa Florida Campus, University of South Africa, Roodepoort, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria, Faculty of Veterinary Science, Pretoria, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, Texas, USA
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Howard University Hospital, Howard University, Washington, District of Columbia, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
14
|
Li Q, Ouyang X, Lin J. The impact of periodontitis on vascular endothelial dysfunction. Front Cell Infect Microbiol 2022; 12:998313. [PMID: 36118034 PMCID: PMC9480849 DOI: 10.3389/fcimb.2022.998313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Periodontitis, an oral inflammatory disease, originates from periodontal microbiota dysbiosis which is associated with the dysregulation of host immunoinflammatory response. This chronic infection is not only harmful to oral health but is also a risk factor for the onset and progress of various vascular diseases, such as hypertension, atherosclerosis, and coronary arterial disease. Vascular endothelial dysfunction is the initial key pathological feature of vascular diseases. Clarifying the association between periodontitis and vascular endothelial dysfunction is undoubtedly a key breakthrough for understanding the potential relationship between periodontitis and vascular diseases. However, there is currently a lack of an updated review of their relationship. Therefore, we aim to focus on the implications of periodontitis in vascular endothelial dysfunction in this review.
Collapse
Affiliation(s)
- Qian Li
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Xiangying Ouyang, ; Jiang Lin,
| | - Jiang Lin
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiangying Ouyang, ; Jiang Lin,
| |
Collapse
|
15
|
Sun J, Liu X, Zhao S, Zhang S, Yang L, Zhang J, Zhao M, Xu Y. Prediction and verification of potential lead analgesic and antiarrhythmic components in Corydalis yanhusuo W. T. Wang based on voltage-gated sodium channel proteins. Int J Biol Macromol 2022; 216:537-546. [PMID: 35809671 DOI: 10.1016/j.ijbiomac.2022.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022]
Abstract
Corydalis yanhusuo W. T. Wang, a traditional Chinese herbal medicine, has been used as an analgesic for thousands of years and it also promotes blood circulation. In this study, 33 Corydalis yanhusuo alkaloid active components were acquired from Traditional Chinese Medicine Database and Analysis Platform (TCMSP). A total of 543 pain-related targets, 1774 arrhythmia targets, and 642 potential targets of these active components were obtained using Swiss Target Prediction, GeneCards, Open Target Platform, and Therapeutic Target Database. Fifty intersecting targets were visualized through a Venn diagram, KEGG and GO pathway enrichment analysis. The analysis proposed that sodium ion channels are likely potential targets of Corydalis yanhusuo active components as analgesia and anti-arrhythmia agents. Molecular docking showed that the 33 components could bind to Nav1.7 and Nav1.5 (two subtypes of ion channel proteins) with different binding energies. In a patch clamp study, dihydrosanguinarine and dihydrochelerythrine, two monomers with the strongest binding effects, could inhibit the peak currents and promote both activation and inactivation phases of Nav1.5. Meanwhile, dihydrosanguinarine and dihydrochelerythrine could also inhibit peak currents and promote the activation phase of Nav1.7. Therefore, the findings from this study provide valuable information for future uses of traditional Chinese medicines to treat pain and cardiovascular disease.
Collapse
Affiliation(s)
- Jianfang Sun
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shangfeng Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Suli Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Liying Yang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
16
|
Wang Z, Bian W, Yan Y, Zhang DM. Functional Regulation of K ATP Channels and Mutant Insight Into Clinical Therapeutic Strategies in Cardiovascular Diseases. Front Pharmacol 2022; 13:868401. [PMID: 35837280 PMCID: PMC9274113 DOI: 10.3389/fphar.2022.868401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
ATP-sensitive potassium channels (KATP channels) play pivotal roles in excitable cells and link cellular metabolism with membrane excitability. The action potential converts electricity into dynamics by ion channel-mediated ion exchange to generate systole, involved in every heartbeat. Activation of the KATP channel repolarizes the membrane potential and decreases early afterdepolarization (EAD)-mediated arrhythmias. KATP channels in cardiomyocytes have less function under physiological conditions but they open during severe and prolonged anoxia due to a reduced ATP/ADP ratio, lessening cellular excitability and thus preventing action potential generation and cell contraction. Small active molecules activate and enhance the opening of the KATP channel, which induces the repolarization of the membrane and decreases the occurrence of malignant arrhythmia. Accumulated evidence indicates that mutation of KATP channels deteriorates the regulatory roles in mutation-related diseases. However, patients with mutations in KATP channels still have no efficient treatment. Hence, in this study, we describe the role of KATP channels and subunits in angiocardiopathy, summarize the mutations of the KATP channels and the functional regulation of small active molecules in KATP channels, elucidate the potential mechanisms of mutant KATP channels and provide insight into clinical therapeutic strategies.
Collapse
Affiliation(s)
- Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yufeng Yan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Du Q, Meng X, Wang S. A Comprehensive Review on the Chemical Properties, Plant Sources, Pharmacological Activities, Pharmacokinetic and Toxicological Characteristics of Tetrahydropalmatine. Front Pharmacol 2022; 13:890078. [PMID: 35559252 PMCID: PMC9086320 DOI: 10.3389/fphar.2022.890078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Tetrahydropalmatine (THP), a tetrahydroproberine isoquinoline alkaloid, is widely present in some botanical drugs, such as Stephania epigaea H.S. Lo (Menispermaceae; Radix stephaniae epigaeae), Corydalis yanhusuo (Y.H.Chou & Chun C.Hsu) W.T. Wang ex Z.Y. Su and C.Y. Wu (Papaveraceae; Corydalis rhizoma), and Phellodendron chinense C.K.Schneid (Berberidaceae; Phellodendri chinensis cortex). THP has attracted considerable attention because of its diverse pharmacological activities. In this review, the chemical properties, plant sources, pharmacological activities, pharmacokinetic and toxicological characteristics of THP were systematically summarized for the first time. The results indicated that THP mainly existed in Papaveraceae and Menispermaceae families. Its pharmacological activities include anti-addiction, anti-inflammatory, analgesic, neuroprotective, and antitumor effects. Pharmacokinetic studies showed that THP was inadequately absorbed in the intestine and had rapid clearance and low bioavailability in vivo, as well as self-microemulsifying drug delivery systems, which could increase the absorption level and absorption rate of THP and improve its bioavailability. In addition, THP may have potential cardiac and neurological toxicity, but toxicity studies of THP are limited, especially its long-duration and acute toxicity tests. In summary, THP, as a natural alkaloid, has application prospects and potential development value, which is promising to be a novel drug for the treatment of pain, inflammation, and other related diseases. Further research on its potential target, molecular mechanism, toxicity, and oral utilization should need to be strengthened in the future.
Collapse
Affiliation(s)
- Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Ru Q, Xiong Q, Tian X, Xu C, Li C, Chen L, Wu Y. Candidate Chinese Herbal Medicine Alleviates Methamphetamine Addiction via Regulating Dopaminergic and Serotonergic Pathways. Front Mol Neurosci 2022; 15:874080. [PMID: 35422687 PMCID: PMC9002015 DOI: 10.3389/fnmol.2022.874080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 01/18/2023] Open
Abstract
Methamphetamine (METH) addiction and its induced mental disorders have become a severe worldwide problem. A candidate Chinese herbal medicine (CCHM) in our lab had therapeutic effects on METH-induced locomotor sensitization, however, its chemical and pharmacological profiles remain to be elucidated. The current study aimed to investigate the effect of CCHM on conditioned place preference (CPP) induced by METH and screen the main active ingredients and key targets by using network pharmacology and molecular docking methods. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, Gene ontology (GO) analysis and protein-protein interaction (PPI) network were performed to discover the potential mechanisms. Results showed that CCHM could significantly inhibit METH-induced CPP behaviors in mice. A total of 123 components and 43 targets were screened. According to the network pharmacology analysis, ten hub targets including D(2) dopamine receptor (DRD2) and 5-hydroxytryptamine receptor 3A (HTR3A) were screened. GO analysis and KEGG enrichment indicated that mechanisms of CCHM treatment of METH addiction were related to multiple pathways such as dopaminergic synapse and serotoninergic synapse. Western blot results showed that the protein expressions of DRD2 in nucleus accumbens and prefrontal cortex were significantly decreased in METH group, while the protein expressions of HTR3A were significantly increased. These changes caused by METH could be prevented by CCHM pretreatment. The results of molecular docking displayed that the five active ingredients such as (S)-Scoulerine, Hyndarin, and Beta-Sitosterol had good affinities with DRD2 and HTR3A. In conclusion, this study constructed the CCHM's pharmacologic network for treating METH addiction based on the method of network analysis and experimental verification, and analyzed its major active ingredients and potential targets, indicating a new direction for further revealing its mechanisms of effect on METH addiction.
Collapse
Affiliation(s)
- Qin Ru
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China,Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Qi Xiong
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiang Tian
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Congyue Xu
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Can Li
- Wuhan Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, China,*Correspondence: Lin Chen,
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China,Yuxiang Wu,
| |
Collapse
|
19
|
Xu JF, Xia J, Wan Y, Yang Y, Wu JJ, Peng C, Ao H. Vasorelaxant Activities and its Underlying Mechanisms of Magnolia Volatile Oil on Rat Thoracic Aorta Based on Network Pharmacology. Front Pharmacol 2022; 13:812716. [PMID: 35308213 PMCID: PMC8926352 DOI: 10.3389/fphar.2022.812716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Objective: Magnolia volatile oil (MVO) is a mixture mainly containing eudesmol and its isomers. This study was to investigate the vasorelaxant effects and the underlying mechanism of MVO in rat thoracic aortas. Method: The present study combined gas chromatography–mass spectrometry (GC-MS) and network pharmacology analysis with in vitro experiments to clarify the mechanisms of MVO against vessel contraction. A compound–target network, compound–target–disease network, protein–protein interaction network, compound–target–pathway network, gene ontology, and pathway enrichment for hypertension were applied to identify the potential active compounds, drug targets, and pathways. Additionally, the thoracic aortic rings with or without endothelium were prepared to explore the underlying mechanisms. The roles of the PI3K-Akt-NO pathways, neuroreceptors, K+ channels, and Ca2+ channels on the vasorelaxant effects of MVO were evaluated through the rat thoracic aortic rings. Results: A total of 29 compounds were found in MVO, which were identified by GC-MS, of which 21 compounds with a content of more than 0.1% were selected for further analysis. The network pharmacology research predicted that beta-caryophyllene, palmitic acid, and (+)-β-selinene might act as the effective ingredients of MVO for the treatment of hypertension. Several hot targets, mainly involving TNF, CHRM1, ACE, IL10, PTGS2, REN, and F2, and pivotal pathways, such as the neuroactive ligand–receptor interaction, the calcium signaling pathway, and the PI3K-Akt signaling, were responsible for the vasorelaxant effect of MVO. As expected, MVO exerted a vasorelaxant effect on the aortic rings pre-contracted by KCl and phenylephrine in an endothelium-dependent and non-endothelium-dependent manner. Importantly, a pre-incubation with indomethacin (Indo), N-nitro-L-arginine methyl ester, methylene blue, wortmannin, and atropine sulfate as well as 4-aminopyridione diminished MVO-induced vasorelaxation, suggesting that the activation of the PI3K-Akt-NO pathway and KV channel were involved in the vasorelaxant effect of MVO, which was consistent with the results of the Kyoto Encyclopedia of Genes and the Genomes. Additionally, MVO could significantly inhibit Ca2+ influx resulting in the contraction of aortic rings, revealing that the inhibition of the calcium signaling pathway exactly participated in the vasorelaxant activity of MVO as predicted by network pharmacology. Conclusion: MVO might be a potent treatment of diseases with vascular dysfunction like hypertension. The underlying mechanisms were related to the PI3K-Akt-NO pathway, KV pathway, as well as Ca2+ channel, which were predicted by the network pharmacology and verified by the experiments in vitro. This study based on network pharmacology provided experimental support for the clinical application of MVO in the treatment of hypertension and afforded a novel research method to explore the activity and mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jin-Feng Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Hui Ao,
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Hui Ao,
| |
Collapse
|
20
|
Distribution of Therapeutic Efficacy of Ranunculales Plants Used by Ethnic Minorities on the Phylogenetic Tree of Chinese Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9027727. [PMID: 35069772 PMCID: PMC8769838 DOI: 10.1155/2022/9027727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022]
Abstract
The medicinal properties of plants can be evolutionarily predicted by phylogeny-based methods, which, however, have not been used to explore the regularity of therapeutic effects of Chinese plants utilized by ethnic minorities. This study aims at exploring the distribution law of therapeutic efficacy of Ranunculales plants on the phylogenetic tree of Chinese species. We collected therapeutic efficacy data of 551 ethnomedicinal species belonging to five species-rich families of Ranunculales; these therapeutic data were divided into 15 categories according to the impacted tissues and organs. The phylogenetic tree of angiosperm species was used to analyze the phylogenetic signals of ethnomedicinal plants by calculating the net relatedness index (NRI) and nearest taxon index (NTI) in R language. The NRI results revealed a clustered structure for eight medicinal categories (poisoning/intoxication, circulatory, gastrointestinal, eyesight, oral, pediatric, skin, and urinary disorders) and overdispersion for the remaining seven (neurological, general, hepatobiliary, musculoskeletal, otolaryngologic, reproductive, and respiratory disorders), while the NTI metric identified the clustered structure for all. Statistically, NRI and NTI values were significant in 5 and 11 categories, respectively. It was found that Mahonia eurybracteata has therapeutic effects on all categories. iTOL was used to visualize the distribution of treatment efficacy on species phylogenetic trees. By figuring out the distribution of therapeutic effects of Ranunculales medicinal plants, the importance of phylogenetic methods in finding potential medicinal resources is highlighted; NRI, NTI, and similar indices can be calculated to help find taxonomic groups with medicinal efficacy based on the phylogenetic tree of flora in different geographic regions.
Collapse
|
21
|
Processing and Compatibility of Corydalis yanhusuo: Phytochemistry, Pharmacology, Pharmacokinetics, and Safety. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:1271953. [PMID: 35003289 PMCID: PMC8739176 DOI: 10.1155/2021/1271953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/22/2021] [Indexed: 02/02/2023]
Abstract
Processed and polyherbal formulations (compatibility) are widely used in traditional Chinese medicine (TCM). However, processing and compatibility may alter the efficacy and safety of herbal medicines, and therefore, evaluating the herbal medicines changes after processing and compatibility is important for their safety. Since Corydalis yanhusuo (Y.H.Chou & Chun C.Hsu) W.T.Wang ex Z.Y.Su & C.Y.Wu (Family: Papaveraceae and Genera: Corydalis), a traditional medicinal plant in China, Japan, Korea, and other Asian countries, has been used for treating a wide range of medical conditions, it is an ideal representative of studying the effects of processing and compatibility on efficacy and toxicity. In this paper, information was obtained by searching electronic databases, classic books, PhD and MSc dissertations, local conference papers, and unpublished materials prior to July 2021. We provide a summary of the phytochemistry, pharmacology, pharmacokinetics, quality control, and safety of C. yanhusuo under various processing or compatibility conditions. Based on our findings, vinegar processing is probably the best C. yanhusuo processing method, which could increase the absorption rate of tetrahydropalmatine (THP) in the heart, liver, spleen, lung, and brain tissues and alleviate mice muscle tremors and liver damage caused by C. yanhusuo. These results indicate that processing and compatibility can reduce toxicity and increase the efficacy of C. yanhusuo. The information provides an expanded understanding of the efficacy and toxicity mechanisms of TCM compounds, which is valuable for industrial production quality control and future drug research.
Collapse
|
22
|
Liu X, Bu J, Ma Y, Chen Y, Li Q, Jiao X, Hu Z, Cui G, Tang J, Guo J, Huang L. Functional characterization of (S)-N-methylcoclaurine 3'-hydroxylase (NMCH) involved in the biosynthesis of benzylisoquinoline alkaloids in Corydalis yanhusuo. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:507-515. [PMID: 34757301 DOI: 10.1016/j.plaphy.2021.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 05/24/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are compounds naturally found in plants and can have significant value in clinical settings. Metabolic engineering and synthetic biology are both promising approaches for the heterologous acquisition of benzylisoquinoline alkaloids. (S)-N-methylcoclaurine 3'-hydroxylase (NMCH), a member of the CYP80 family of CYP450, is the penultimate catalytic enzyme that forms the central branch-point intermediate (S)-reticuline and plays a key role in the biosynthesis of BIAs. In this study, an NMCH gene was cloned from Corydalis yanhusuo, while in vitro reactions demonstrated that CyNMCH can catalyze (S)-N-methylcoclaurine to produce (S)-3'-hydroxy-N-methylcoclaurine. The Km and Kcat of CyNMCH were estimated and compared with those identified in Eschscholzia californica and Coptis japonica. This newly discovered CyNMCH will provide alternative genetic resources for the synthetic biological production of benzylisoquinoline alkaloids and provides a foundation to help analyze the biosynthetic pathway of BIAs biosynthesis in C. yanhusuo.
Collapse
Affiliation(s)
- Xiuyu Liu
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450008, China; State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Junling Bu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.
| | - Qishuang Li
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Xiang Jiao
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.
| | - Zhimin Hu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, NO.16 Neinanxiaojie, Dongcheng district, Beijing, China.
| |
Collapse
|
23
|
Zhu W, Hong H, Hong Z, Kang X, Du W, Ge W, Li C. Rapid Quality Identification of Decoction Pieces of Crude and Processed Corydalis Rhizoma by Near-Infrared Spectroscopy Coupled with Chemometrics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:1936057. [PMID: 34336355 PMCID: PMC8324354 DOI: 10.1155/2021/1936057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In order to identify the quality of crude and processed Corydalis Rhizoma decoction pieces, the research established a simple, fast, reliable, and validated near-infrared qualitative and quantitative model combined with chemometrics. 51 batches of crude and 40 batches of processed Corydalis Rhizoma from the Zhejiang and Jiangsu provinces of China were collected and analyzed. Crude and processed Corydalis Rhizoma samples were crushed to obtain NIR spectra. The content of seven alkaloids in crude and processed Corydalis Rhizoma was determined by high-performance liquid chromatography (HPLC). Pretreatment methods were screened such as normalization methods, offset filtering methods, and smoothing. Combined with partial least squares-discriminant analysis (PLS-DA) and partial least squares (PLS), the qualitative and quantitative models of crude and processed Corydalis Rhizoma were established, and the correlation coefficient (R 2), root mean square error of calibration (RMSEC), and root mean square error of prediction (RMSEP) were used as evaluation indexes. Tetrahydropalmatine was used as an example for screening pretreatment methods; the results showed that MSC combined with the second derivative and no smoothing and the model with the wavelength range of 10000-5000 cm-1 had the best predictive ability and applied to all seven alkaloid components. Among them, the correlation coefficients were all higher than 0.99, and RMSEC and RMSEP were all less than 1%. The qualitative and quantitative model of the seven alkaloids in Corydalis Rhizoma can effectively identify the crude and processed Corydalis Rhizoma and determine the content of the seven alkaloids. By studying the NIR qualitative and quantitative models of crude and processed Corydalis Rhizoma, we can achieve rapid discrimination and quantitative prediction of crude and processed Corydalis Rhizoma. These methods can greatly improve the efficiency of traditional Chinese medicine analysis and provide a strong scientific basis for the quality identification and control of traditional Chinese medicine.
Collapse
Affiliation(s)
- Weihao Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Hao Hong
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Zhihui Hong
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xianjie Kang
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou 311401, China
| | - Weifeng Du
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou 311401, China
| | - Weihong Ge
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou 311401, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 311401, China
| |
Collapse
|
24
|
Li Y, Zhang Z, Li S, Yu T, Jia Z. Therapeutic Effects of Traditional Chinese Medicine on Cardiovascular Diseases: the Central Role of Calcium Signaling. Front Pharmacol 2021; 12:682273. [PMID: 34305595 PMCID: PMC8299363 DOI: 10.3389/fphar.2021.682273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Calcium, as a second messenger, plays an important role in the pathogenesis of cardiovascular diseases (CVDs). The malfunction of calcium signaling in endothelial cells and vascular smooth muscle cells promotes hypertension. In cardiomyocytes, calcium overload induces apoptosis, leading to myocardial infarction and arrhythmias. Moreover, the calcium–calcineurin–nuclear factor of activated T cells (NFAT) pathway is essential for expressing the cardiac pro-hypertrophic gene. Heart failure is also characterized by reduced calcium transient amplitude and enhanced sarcoplasmic reticulum (SR) calcium leakage. Traditional Chinese medicine (TCM) has been used to treat CVDs for thousands of years in China. Because of its multicomponent and multitarget characteristics, TCM's unique advantages in CVD treatment are closely related to the modulation of multiple calcium handling proteins and calcium signaling pathways in different types of cells involved in distinct CVDs. Thus, we systematically review the diverse mechanisms of TCM in regulating calcium pathways to treat various types of CVDs, ranging from hypertrophic cardiomyopathy to diabetic heart disease.
Collapse
Affiliation(s)
- Yuxin Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoqi Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Engin S, Kaya Yasar Y, Barut EN, Getboga D, Erac Y, Sezen SF. The inhibitory effect of trimetazidine on detrusor contractility - a potential repositioning of trimetazidine for the treatment of overactive bladder. J Pharm Pharmacol 2021; 74:94-102. [PMID: 34109981 DOI: 10.1093/jpp/rgab072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study aimed to identify the effect of trimetazidine (TMZ), an antianginal drug, on detrusor smooth muscle (DSM) contractility and its possible mechanisms of action. METHODS We performed in-vitro contractility studies on isolated mouse DSM strips and investigated the effect of TMZ on Ca2+ levels in fura-2-loaded A7r5 cells. KEY FINDINGS TMZ (300 or 1000 µM) inhibited carbachol (CCh)- and KCl-induced contractions and produced a concentration-dependent (10-1000 µM) relaxation in KCl-precontracted DSM strips. TMZ-induced relaxation was markedly decreased by BaCl2, an inward-rectifying K+ channel blocker, but was not altered by preincubation with tetraethylammonium, glibenclamide, 4-aminopyridine, propranolol, L-NAME or methylene blue. TMZ (300 or 1000 µM) reduced both the CaCl2-induced contraction of depolarized DSM strips under Ca2+-free conditions and the CCh-induced contraction of DSM strips preincubated with nifedipine in Ca2+-containing Krebs solution. Furthermore, TMZ (1000 µM) significantly decreased the Ca2+ levels in fura-2-loaded A7r5 cells. CONCLUSIONS TMZ decreased DSM contractility and caused a concentration-dependent relaxation of the tissue possibly through its actions on Ca2+ transients and K+ channels. Our results provide preclinical evidence that TMZ would be a potential candidate to treat disorders related to the overactivity of the bladder.
Collapse
Affiliation(s)
- Seckin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Yesim Kaya Yasar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Damla Getboga
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
26
|
Xu Q, Deng H, Li X, Quan ZS. Application of Amino Acids in the Structural Modification of Natural Products: A Review. Front Chem 2021; 9:650569. [PMID: 33996749 PMCID: PMC8118163 DOI: 10.3389/fchem.2021.650569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 01/11/2023] Open
Abstract
Natural products and their derivatives are important sources for drug discovery; however, they usually have poor solubility and low activity and require structural modification. Amino acids are highly soluble in water and have a wide range of activities. The introduction of amino acids into natural products is expected to improve the performance of these products and minimize their adverse effects. Therefore, this review summarizes the application of amino acids in the structural modification of natural products and provides a theoretical basis for the structural modification of natural products in the future. The articles were divided into six types based on the backbone structures of the natural products, and the related applications of amino acids in the structural modification of natural products were discussed in detail.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
27
|
Deng AP, Zhang Y, Zhou L, Kang CZ, Lv CG, Kang LP, Nan TG, Zhan ZL, Guo LP, Huang LQ. Systematic review of the alkaloid constituents in several important medicinal plants of the Genus Corydalis. PHYTOCHEMISTRY 2021; 183:112644. [PMID: 33429352 DOI: 10.1016/j.phytochem.2020.112644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The genus Corydalis is a botanical source of various pharmaceutically active components. Its member species have been widely used in traditional medicine systems in Southeast Asia, especially in China for thousands of years. They have been administered to treat the common cold, hypertension, hepatitis, hemorrhage, edema, gastritis, cardiovascular and cerebrovascular diseases, and neurological disorders. Analgesia is the most important effect of Corydalis products, which are relatively non-addictive and associated with low tolerance compared with other analgesics. Certain Corydalis species are rich in alkaloids, which have strong biological activity, and also contain coumarins, flavonoids, steroids, organic acids and other chemical components. These constituents have pharmacological efficacy against diseases of the nervous, cardiovascular and digestive systems. Numerous investigations have been performed on these plants and their components. Here, we systemically summarized the chemical constituents of important medicinal member species of Corydalis that have been reported since 1962. A total 381 alkaloids were enumerated, including 117 quaternary isoquinoline type, 60 Benzophenanthridine type, 37 aporphine type, 10 protopine type, 59 phthalide isoquinoline type, 52 simple isoquinoline-type, 25 lignin amides and 21 other alkaloids. Thus, we have provided a basis for further explorations into the pharmacologically active constituents of Corydalissp.(Papaveraceae) to develop medicines that exert strong effects, are relatively non-addictive, and result in few side effects.
Collapse
Affiliation(s)
- Ai-Ping Deng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yue Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chuan-Zhi Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chao-Gen Lv
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li-Ping Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tie-Gui Nan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhi-Lai Zhan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lan-Ping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
28
|
Tribulus terrestris L. Extract Protects against Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophage and Zebrafish via Inhibition of Akt/MAPKs and NF- κB/iNOS-NO Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6628561. [PMID: 33628304 PMCID: PMC7895590 DOI: 10.1155/2021/6628561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Inflammation response is a regulated cellular process and excessive inflammation has been recognized in numerous diseases, such as cardiovascular disease, neurodegenerative disease, inflammatory bowel disease, and cancer. Tribulus terrestris L. (TT), also known as Bai Jili in Chinese, has been applied in traditional Chinese medicine for thousands of years while its anti-inflammatory activity and underlying mechanism are not fully elucidated. Here, we hypothesize Tribulus terrestris L. extract (BJL) which presents anti-inflammatory effect, and the action mechanism was also investigated. We employed the transgenic zebrafish line Tg(MPO:GFP), which expresses green fluorescence protein (GFP) in neutrophils, and mice macrophage RAW 264.7 cells as the in vivo and in vitro model to evaluate the anti-inflammatory effect of BJL, respectively. The production of nitric oxide (NO) was measured by Griess reagent. The mRNA expression levels of inflammatory cytokines and inducible nitric oxide synthase (iNOS) were measured by real-time PCR, and the intracellular total or phosphorylated protein levels of NF-κB, Akt, and MAPKs including MEK, ERK, p38, and JNK were detected by western blot. We found that BJL significantly inhibited fin transection or lipopolysaccharide- (LPS-) induced neutrophil migration and aggregation in zebrafish in vivo. In mice macrophage RAW 264.7 cells, BJL ameliorated LPS-triggered excessive release of NO and transcription of inflammatory cytokine genes including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β). BJL also reduced the LPS-induced elevations of intracellular iNOS and nuclear factor kappa B (NF-κB) which mediate the cellular NO and inflammatory cytokine productions, respectively. Moreover, LPS dramatically increased the phosphorylation of Akt and MAPKs including MEK, ERK, p38, and JNK in RAW 264.7 cells, while cotreatment BJL with LPS suppressed their phosphorylation. Taken together, our data suggested that BJL presented potent anti-inflammatory effect and the underlying mechanism was closely related to the inhibition of Akt/MAPKs and NF-κB/iNOS-NO signaling pathways.
Collapse
|
29
|
Tian B, Tian M, Huang SM. Advances in phytochemical and modern pharmacological research of Rhizoma Corydalis. PHARMACEUTICAL BIOLOGY 2020; 58:265-275. [PMID: 32223481 PMCID: PMC7170387 DOI: 10.1080/13880209.2020.1741651] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 05/22/2023]
Abstract
ABSRACTContext: Rhizoma Corydalis (RC) is the dried tubers of Corydalis yanhusuo (Y. H. Chou and Chun C. Hsu) W. T. Wang ex Z. Y. Su and C. Y. Wu (Papaveraceae). Traditionally, RC is used to alleviate pain such as headache, abdominal pain, and epigastric pain. Modern medicine shows that it has analgesic, anti-arrhythmia, and other effects.Objective: We provided an overview of the phytochemical and pharmacological properties of RC as a foundation for its clinical application and further research and development of new drugs.Methods: We collected data of various phytochemical and pharmacological effects of RC from 1982 to 2019. To correlate with existing scientific evidence, we used Google Scholar and the journal databases Scopus, PubMed, and CNKI. 'Rhizoma Corydalis', 'phytochemistry', and 'pharmacological effects' were used as key words.Results: Currently, more than 100 chemical components have been isolated and identified from RC, among which alkaloid is the pimary active component of RC. Based on prior research, RC has antinociceptive, sedative, anti-epileptic, antidepressive and anti-anxiety, acetylcholinesterase inhibitory effect, drug abstinence, anti-arrhythmic, antimyocardial infarction, dilated coronary artery, cerebral ischaemia reperfusion (I/R) injury protection, antihypertensive, antithrombotic, antigastrointestinal ulcer, liver protection, antimicrobial, anti-inflammation, antiviral, and anticancer effects.Conclusions: RC is reported to be effective in treating a variety of diseases. Current pharmacological studies on RC mainly focus on the nervous, circulatory, digestive, and endocrine systems, as well as drug withdrawal. Although experimental data support the beneficial effects of this drug, its physiological activity remains a concern. Nonetheless, this review provides a foundation for future research.
Collapse
Affiliation(s)
- Bing Tian
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Tian
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
- Ming Tian Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin150040, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- CONTACT Shu-Ming Huang Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin150040, China
| |
Collapse
|
30
|
Wang Z, Liang Y, Yu J, Zhang D, Ren L, Zhang Z, Liu Y, Wu X, Liu L, Tang Z. Guchang Zhixie Wan protects mice against dextran sulfate sodium-induced colitis through modulating the gut microbiota in colon. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112991. [PMID: 32442592 DOI: 10.1016/j.jep.2020.112991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guchang Zhixie Wan (GC) is a traditional Chinese patent medicine used in the treatment of colitis in clinical trials. Though the notable effect of GC on colitis, the concrete mechanism of GC remain elusive. Emerging evidence showed that the imbalances of inflammatory cytokines and gut microbiota were both closely related to the initiation and progression of colitis. AIM OF THE STUDY To elucidate the relationship between the protective effects of GC on colitis and gut microbiota. MATERIALS AND METHODS Male Kunming (KM) mice were enrolled in our work to establish colitis model induced by dextran sulfate sodium (DSS). The colitis mice were randomly divided into different groups and treated orally with 125 mg/kg of sulfasalazine (positive control) and 25, 50, 100 mg/kg of GC for 7 days, respectively. Inflammation cytokines of IL-1β, IL-4, IL-6, IL-8, IL-11, IL-12 and TNF-α were detected by ELISA analysis and the histological changes were detected by H&E staining. Gut microbiota diversity was analyzed by 16S rDNA sequencing. Metagenomes analysis were also conducted to reflect the protective effects of GC on colitis. RESULTS The results of CAS (Clinical Activity Score) confirmed the protective effects of GC on colitis. After administration of GC, the levels of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-11, IL-12 and TNF-α were all decreased while the anti-inflammatory cytokines IL-4 was slightly increased, indicating that GC could down regulate pro-inflammatory cytokines. H&E staining revealed that GC could improve the histopathological structure of the colon tissue. The results of 16S rDNA sequences analysis showed that GC could decrease the relative abundance of Turicibacter and increase the relative abundance of Ruminococcaceae_UCG-005. CONCLUSION GC greatly improve the health condition of colitis mice induced by DSS through improving the imbalances of inflammatory cytokines and gut microbiota.
Collapse
Affiliation(s)
- Zheng Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Yanni Liang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Jingao Yu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Dongbo Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Langlang Ren
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Zhen Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Yanru Liu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Xue Wu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Li Liu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| |
Collapse
|
31
|
Zhou ZY, Zhao WR, Xiao Y, Zhang J, Tang JY, Lee SMY. Mechanism Study of the Protective Effects of Sodium Tanshinone IIA Sulfonate Against Atorvastatin-Induced Cerebral Hemorrhage in Zebrafish: Transcriptome Analysis. Front Pharmacol 2020; 11:551745. [PMID: 33123006 PMCID: PMC7567336 DOI: 10.3389/fphar.2020.551745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Hemorrhage stroke is a severe vascular disease of the brain with a high mortality rate in humans. Salvia miltiorrhiza Bunge (Danshen) is a well-known Chinese Materia Medica for treating cerebral vascular and cardiovascular diseases in traditional Chinese medicine. Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA, which is the main active ingredient of Danshen. In our previous study, we established a zebrafish model of cerebral hemorrhage and found that STS dramatically decreased both the hemorrhage rate and hemorrhage area, although the underlying mechanism was not fully elucidated. We conducted a transcriptome analysis of the protective effect of STS against atorvastatin (Ator)-induced cerebral hemorrhage in zebrafish using RNA-seq technology. RNA-seq revealed 207 DEGs between the Ator-treated group and control group; the expression levels of 53 DEGs between the Ator-treated group and control group were reversed between the STS + Ator-treated group and Ator-treated group. GO enrichment analysis indicated that these 53 DEGs encode proteins with roles in hemoglobin complexes, oxygen carrier activity and oxygen binding, etc. KEGG analysis suggested that these 53 DEGs were most enriched in three items, namely, porphyrin and chlorophyll metabolism, ferroptosis, and the HIF-1 signaling pathway. The PPI network analysis identified 12 hub genes, and we further verified that Ator elevated the mRNA expression levels of hemoglobin (hbae1.3, hbae3, hbae5, hbbe2, and hbbe3), carbonic anhydrase (cahz), HIF-1 (hif1al2) and Na+/H+ exchanger (slc4a1a and slc9a1) genes, while STS significantly suppressed these genes. In addition, we found that pharmacological inhibition of PI3K/Akt, MAPKs, and mTOR signaling pathways by specific inhibitors partially attenuated the protective effect of STS against Ator-induced cerebral hemorrhage in zebrafish, regardless of mTOR inhibition. We concluded that hemoglobin, carbonic anhydrase, Na+/H+ exchanger and HIF-1 genes might be potential biomarkers of Ator-induced cerebral hemorrhage in zebrafish, as well as pharmacological targets of STS. Moreover, HIF-1 and its regulators, i.e., the PI3K/Akt and MAPK signaling pathways, were involved in the protective effect of STS against Ator-induced cerebral hemorrhage. This study also provided evidence of biomarkers involved in hemorrhage stroke and improved understanding of the effects of HMG-COA reductase inhibition on vascular permeability and cerebral hemorrhage.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wai-Rong Zhao
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
32
|
Shen HS, Chiang JH, Hsiung NH. Adjunctive Chinese Herbal Products Therapy Reduces the Risk of Ischemic Stroke Among Patients With Rheumatoid Arthritis. Front Pharmacol 2020; 11:169. [PMID: 32194408 PMCID: PMC7064546 DOI: 10.3389/fphar.2020.00169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
We performed a retrospective cohort study to investigate the association between the risk of ischemic stroke (IS) and the use of Chinese herbal products (CHP) in combination with western medicine (WM) among patients with rheumatoid arthritis (RA). The data were sourced from the registry for beneficiaries, inpatient and ambulatory care claims, and Registry for Catastrophic Illness from the National Health Insurance Research Database (NHIRD) in Taiwan between 1997 and 2011. Patients, who were newly diagnosed with RA between 1997 and 2010, were classified as the CHP group or non-CHP group depending on the presence of absence the adjunctive use of CHP following a diagnosis of RA. A total of 4,148 RA patients were in both the CHP and non-CHP groups after 1:1 matching. Patients in the CHP group had a significantly lower risk of IS compared to patients in the non-CHP group (adjusted hazard ratio [aHR], 0.67; 95% confidence interval [CI], 0.52-0.86). In the CHP group, patients who used CHP for more than 30 days had a lower risk of IS than their counterparts (aHR: 0.61, 95% CI: 0.40-0.91). Gui-Zhi-Shao-Yao-Zhi-Mu-Tang, Shu-Jin-Huo-Xie-Tang, and Du-Huo-Ji-Sheng-Tang might be associated with a lower risk of IS. Finally, the use of CHP in combination with WM was associated with a decreased risk of IS in patients with RA, especially among those who had used CHP for more than 30 days. A further randomized control trial is required to clarify the casual relationship between these results.
Collapse
Affiliation(s)
- Hsuan-Shu Shen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jen-Huai Chiang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | | |
Collapse
|
33
|
Zhou ZY, Zhao WR, Xiao Y, Zhou XM, Huang C, Shi WT, Zhang J, Ye Q, Chen XL, Tang JY. Antiangiogenesis effect of timosaponin AIII on HUVECs in vitro and zebrafish embryos in vivo. Acta Pharmacol Sin 2020; 41:260-269. [PMID: 31515528 PMCID: PMC7471416 DOI: 10.1038/s41401-019-0291-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
Timosaponin AIII (Timo AIII) is a natural steroidal saponin isolated from the traditional Chinese herb Anemarrhena asphodeloides Bge with proved effectiveness in the treatment of numerous cancers. However, whether Timo AIII suppresses tumor angiogenesis remains unclear. In the present study, we investigated the antiangiogenesis effects of Timo AIII and the underlying mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and zebrafish embryos in vivo. We showed that treatment with Timo AIII (0.5-2 µM) partially disrupted the intersegmental vessels (ISVs) and subintestinal vessels (SIVs) growth in transgenic zebrafish Tg(fli-1a: EGFP)y1. Timo AIII (0.5-4 µM) dose-dependently inhibited VEGF-induced proliferation, migration, invasion, and tube formation of HUVECs, but these inhibitory effects were not due to its cytotoxicity. We further demonstrated that Timo AIII treatment significantly suppressed the expression of VEGF receptor (VEGFR) and the phosphorylation of Akt, MEK1/2, and ERK1/2 in HUVECs. Timo AIII treatment also significantly inhibited VEGF-triggered phosphorylation of VEGFR2, Akt, and ERK1/2 in HUVECs. Moreover, we conducted RNA-Seq and analyzed the transcriptome changes in both HUVECs and zebrafish embryos following Timo AIII treatment. The coexpression network analysis results showed that various biological processes and signaling pathways were enriched including angiogenesis, cell motility, cell adhesion, protein serine/threonine kinase activity, transmembrane signaling receptor activity, growth factor activity, etc., which was consistent with the antiangiogenesis effects of Timo AIII in HUVECs and zebrafish embryos. We conclude that the antiangiogenesis effect of Timo AIII is mediated through VEGF/PI3K/Akt/MAPK signaling cascade; Timo AIII potentially exerts antiangiogenesis effect in cancer treatment.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Cardiac rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ying Xiao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiang-Ming Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qing Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
- Cardiac rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
34
|
Carbajal-García A, Reyes-García J, Montaño LM. Androgen Effects on the Adrenergic System of the Vascular, Airway, and Cardiac Myocytes and Their Relevance in Pathological Processes. Int J Endocrinol 2020; 2020:8849641. [PMID: 33273918 PMCID: PMC7676939 DOI: 10.1155/2020/8849641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Androgen signaling comprises nongenomic and genomic pathways. Nongenomic actions are not related to the binding of the androgen receptor (AR) and occur rapidly. The genomic effects implicate the binding to a cytosolic AR, leading to protein synthesis. Both events are independent of each other. Genomic effects have been associated with different pathologies such as vascular ischemia, hypertension, asthma, and cardiovascular diseases. Catecholamines play a crucial role in regulating vascular smooth muscle (VSM), airway smooth muscle (ASM), and cardiac muscle (CM) function and tone. OBJECTIVE The aim of this review is an updated analysis of the role of androgens in the adrenergic system of vascular, airway, and cardiac myocytes. Body. Testosterone (T) favors vasoconstriction, and its concentration fluctuation during life stages can affect the vascular tone and might contribute to the development of hypertension. In the VSM, T increases α1-adrenergic receptors (α 1-ARs) and decreases adenylyl cyclase expression, favoring high blood pressure and hypertension. Androgens have also been associated with asthma. During puberty, girls are more susceptible to present asthma symptoms than boys because of the increment in the plasmatic concentrations of T in young men. In the ASM, β 2-ARs are responsible for the bronchodilator effect, and T augments the expression of β 2-ARs evoking an increase in the relaxing response to salbutamol. The levels of T are also associated with an increment in atherosclerosis and cardiovascular risk. In the CM, activation of α 1A-ARs and β 2-ARs increases the ionotropic activity, leading to the development of contraction, and T upregulates the expression of both receptors and improves the myocardial performance. CONCLUSIONS Androgens play an essential role in the adrenergic system of vascular, airway, and cardiac myocytes, favoring either a state of health or disease. While the use of androgens as a therapeutic tool for treating asthma symptoms or heart disease is proposed, the vascular system is warmly affected.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
35
|
Uncovering Synergistic Mechanism of Chinese Herbal Medicine in the Treatment of Atrial Fibrillation with Obstructive Sleep Apnea Hypopnea Syndrome by Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8691608. [PMID: 31949472 PMCID: PMC6948354 DOI: 10.1155/2019/8691608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Paroxysmal atrial fibrillation (AF) combined with obstructive sleep apnea hypopnea syndrome (OSAHS) is very common in clinical practice. Traditional Chinese medicine (TCM) rule of regulating the liver based on psycho-cardiology shows satisfactory effectiveness in the treatment of paroxysmal AF combined with OSAHS. However, its underlying pharmacological mechanism has not yet been elucidated. This study applied network pharmacology to identify 94 active components in the six TCM liver-regulating herbs and 182 corresponding targets from several databases and comprehensive literature studies, as well as retrieved AF combined with OSAHS-related targets. Cytoscape software was adopted to construct the component-component target network and component-putative target-AF combined with OSAHS target network. Then, we obtained 38 putative therapeutic targets against AF combined with OSAHS. After the production of a putative therapeutic target interaction network, topological analysis was adopted to determine the core targets of TCM liver-regulating herbs in the treatment of paroxysmal AF combined with OSAHS. For all putative therapeutic targets, biological process analysis and pathway enrichment analysis were utilized to investigate the possible mechanism of TCM liver-regulating herbs in the treatment of paroxysmal AF combined with OSAHS. Mechanistically, it included positive regulation of nitric oxide biosynthetic process, aging, response to hypoxia, TNF signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction, and calcium signaling pathway. Especially, six core targets of TCM liver-regulating herbs, namely, TNF, STAT3, AKT1, IL-6, TP53, and INS, were significant in the regulation of the above biological processes and pathways. This study demonstrates the multicomponent, multitarget, and multipathway feature of TCM liver-regulating herbs, provides an extensional foundation for further research, and facilitates the reasonable application of TCM liver-regulating herbs in treating paroxysmal AF combined with OSAHS.
Collapse
|
36
|
Zhou ZY, Xiao Y, Zhao WR, Zhang J, Shi WT, Ma ZL, Ye Q, Chen XL, Tang N, Tang JY. Pro-angiogenesis effect and transcriptome profile of Shuxinyin formula in zebrafish. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153083. [PMID: 31600690 DOI: 10.1016/j.phymed.2019.153083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Angiogenesis plays a critical role in ischemia disease like coronary heart disease. Shunxinyin formula has been developed for treating coronary heart disease according to the principle of traditional Chinese medicine while its underlying mechanism is not fully elucidated. PURPOSE Here, we hypothesize Shuxinyin formula could promote angiogenesis and microcirculation, and the underlying mechanism is also investigated. METHODS We established the chemical profile of Shuxinyin (SXY) extract utilizing a UHPLC-Q/Exactive analysis system and evaluated its pro-angiogenesis effect in zebrafish model. The underlying mechanisms were investigated by combination of pharmacological experiments with transcriptome analysis in zebrafish. Zebrafish treated with VEGF was served as the positive control in present study. RESULTS We found SXY significantly enhanced the sub-intestinal vessel plexus (SIVs) growth in zebrafish. Co-treatment and post-treatment SXY attenuated VEGF receptor tyrosine kinase inhibitor II (VRI)-induced deficiency of intersegmental vessels (ISVs) in a concentration dependent manner. Post-treatment VEGF, which is a well-known angiogenesis driver, also partially ameliorated VRI-induced ISVs deficiency. In addition, SXY inhibited the down-regulation of VEGF receptors, including kdr, flt1 and kdrl, induced by VRI in zebrafish. The pro-angiogenesis effect of SXY on VRI-induced ISVs deficiency was suppressed by PI3K and JNK inhibitors, and Akt inhibitor abolished the pro-angiogenesis effect of SXY. The transcriptome profile of SXY preventing from VRI-induced vascular growth deficiency revealed that the underlying mechanisms were also co-related to cell junction, apoptosis and autophagy. CONCLUSION We could conclude that SXY presented pro-angiogenesis effect and the action mechanisms were involved in VEGF/PI3K/Akt/MAPK signaling pathways, cell junction, apoptosis and autophagy.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ying Xiao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Zi-Lin Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Qing Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China
| | - Nuo Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China; Cardiac Rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20032, China.
| |
Collapse
|
37
|
Zhou B, Li T, Yang M, Pang J, Min L, Han J. Characterization of the hot and cold medicinal properties of traditional Chinese herbs by spontaneous photon emission ratio of mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112108. [PMID: 31349028 DOI: 10.1016/j.jep.2019.112108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE One important therapeutic characteristic of traditional Chinese medicine (TCM) for its properly-guided clinical prescription is considering the cold and hot medicinal properties of traditional Chinese herbs. According to the TCM theory, the hot and cold medicinal properties are defined by the general responses of a human body to a given herbal medicine. This definition is subjective and ambiguous which attenuates the modernization of TCM. Biological spontaneous photon emission (SE) is a normal phenomenon reflecting the transition of the quantum state of molecules inside an organism. The alteration of its level can indicate the changes of many aspects of the organism including metabolism. Thus, we can exploit this feature to develop a novel and scientific approach to quantitively and objectively characterize the hot and cold medicinal properties of traditional Chinese herbs. OBJECTIVE To determine whether SE can be used to characterize the hot and cold medicinal properties of traditional Chinese herbs, this study took advantage of the ultra-weak luminescence detection technology to examine the effects of traditional Chinese herbs with hot or cold medicinal property to the level of SE in mice. MATERIALS AND METHODS Mice were intragastrically administered with twenty traditional Chinese herbs harboring cold or hot property for ten consecutive days respectively. During the course of treatment, SE intensity of the abdomen and the back of each individual mouse were measured and recorded. At the end of the treatment, the total antioxidant capacity, superoxide dismutase activity, Na+-K+-ATPase activity and Ca2+-Mg2+-ATPase activity in the liver of all mice were examined. RESULTS Ratio between the SE intensity of the abdomen and back of mice (defined as SE ratio) was able to distinguish the cold and hot medicinal properties of traditional Chinese herbs. Mice treated with hot herbs and cold herbs have higher and lower SE ratios respectively compared with control mice. Furthermore, levels of selected biochemical indexes in the liver were correlated with most of the SE ratio changes induced by herbal treatment. CONCLUSIONS We have developed a novel and promising approach to quantitatively investigate herbal properties and we propose that SE ratio defined in this study can serve as a sensitive parameter to characterize the cold and hot medicinal properties of traditional Chinese herbs.
Collapse
Affiliation(s)
- Baochen Zhou
- Shandong Medical Biotechnological Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Taoyingnan Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Meina Yang
- Shandong Medical Biotechnological Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jingxiang Pang
- Shandong Medical Biotechnological Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Lingyuan Min
- Shandong Medical Biotechnological Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jinxiang Han
- Shandong Medical Biotechnological Center, Key Laboratory for Biotech-Drugs of the Ministry of Health, Shandong Academy of Medical Sciences, Jinan, 250062, China.
| |
Collapse
|