1
|
Almasabi SHA, Almasoudi HH, Albargy H, Alabbas MMA, Al-Mansour FSH. Alternative use of droxidopa for treating cervical cancer: inhibiting transferase, cell cycle signalling, and transport proteins via multitarget docking, DFT, MD simulations, and binding free energy studies. Med Oncol 2025; 42:143. [PMID: 40156772 DOI: 10.1007/s12032-025-02700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Cervical cancer develops due to the uncontrolled growth of abnormal cells in the cervix, mainly triggered by a persistent infection with high-risk types of human papillomavirus (HPV), a sexually transmitted virus. Factors that increase the risk include having multiple sexual partners, engaging in sexual activity at an early age, smoking, and a compromised immune system. Globally, it ranks as the fourth most prevalent cancer among women, with over 600000 new cases and 340000 deaths each year. The disease disproportionately impacts women in low- and middle-income countries, where access to screening and vaccination is often limited. Drug resistance emerges when cancer cells evade treatment through genetic mutations, altered targets, and efflux pump overexpression. Multitargeted docking identifies compounds interacting with multiple targets where a drug can inhibit crucial pathways, improving efficacy and reducing resistance chances. In this study, we examined Transferase, Cell Cycle Signalling, and Transport Proteins associated with PDB IDs 2WVI, 2B9R, 3VHX, and 3KND. These targets were subjected to multitargeted docking using an FDA-approved drug library. Droxidopa was identified as a multitargeted drug, with docking scores ranging from - 5.99 to - 11.37 kcal/mol and MM/GBSA scores between - 20.13 and - 43.00 kcal/mol. The interaction fingerprints identified the most interacted residues with counts are 4GLN, 4GLU, 3ARG, and 3TRP, and the Pharmacokinetics and DFT analysis favoured the compound's suitability. Furthermore, 5 ns (nanoseconds) WaterMap for hydration sites and 100 ns MD simulation in NPT ensemble at 330 K temperature have resulted in acceptable deviations, fluctuations, and many intermolecular interactions, and binding free energy computations have favoured droxidopa's use against cervical cancer-however, experimental studies are needed before its use including the in-vitro and in-vivo studies.
Collapse
Affiliation(s)
- Saleh Hussain A Almasabi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Hassan Albargy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Riyadh, Saudi Arabia
| | - Meshal Mansour A Alabbas
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Fares Saeed H Al-Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia.
| |
Collapse
|
2
|
Raj M, Meena A, Seth R, Mathur A, Luqman S. An update on nanoformulations with FDA approved drugs for female reproductive cancer. J Microencapsul 2025:1-34. [PMID: 40114400 DOI: 10.1080/02652048.2025.2474457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Female reproductive cancers, including ovarian, cervical, breast, gestational trophoblastic and endometrial cancer, present significant challenges in therapy and patient prognosis. Conventional chemotherapy often lacks selectivity, leading to systemic toxicity and reduced treatment efficacy. Nanotechnology has emerged as a promising approach to improve drug delivery and therapeutic outcomes. Encapsulation of FDA-approved drugs within nanocarriers such as liposomes, polymeric nanoparticles, and lipid nanoparticles enables controlled drug release, reduces off-target effects, and enhances drug accumulation at tumor sites. This targeted delivery minimizes damage to healthy tissues and improves patient survival rates. Additionally, nanoformulations facilitate combination therapy, overcoming drug resistance and maximizing therapeutic efficacy. Despite promising results, challenges like scalability, reproducibility, and regulatory approvals hinder widespread clinical applications. Developing personalized nanoformulations tailored to individual patient profiles offers potential for precision cancer therapy. This study explores the role of nanoformulations in enhancing the therapeutic potential of FDA-approved drugs for treating female reproductive cancers.
Collapse
Affiliation(s)
- Mahima Raj
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Fan Y, Ye L, Wang S, Wang J, Wang K, Li Y. Role of lncRNA TPRG1-AS1 in the development of cervical squamous cell carcinoma and its prognostic value. Discov Oncol 2024; 15:754. [PMID: 39692778 DOI: 10.1007/s12672-024-01654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE Cervical squamous cell carcinoma (CSCC) has a poor prognosis due to persistent HPV infection. LncRNA TPRG1-AS1 is linked to regulating the development of many cancers, so the regulatory mechanism and prognostic value of TPRG1-AS1 in CSCC were explored. METHODS 138 patients with cervical cancer were included. TPRG1-AS1 expression and miR-590-3p were analyzed by qRT-PCR. The association between TPRG1-AS1 and clinicopathological features was investigated. Independent prognostic factors of CSCC were analyzed by multifactorial Cox regression. Patient survival was analyzed using Kaplan-Meier plotter curves. CCK-8 was employed to evaluate the proliferative capacity of the cells. Transwell assays were performed to evaluate the effects of TPRG1-AS1 and miR-590-3p on cell migration and invasion performance, and the target of both was reported by DLR assay. RESULTS TPRG1-AS1 levels were ascended in CSCC, and miR-590-3p levels were reduced. TPRG1-AS1 and miR-590-3p target binding and expression correlated negatively. Knockdown of TPRG1-AS1 expression could facilitate high miR-590-3p expression, which reduced cell proliferation, migration, and invasion ability. TPRG1-AS1 is an independent prognostic factor. CONCLUSION TPRG1-AS1 has potential as a prognostic marker for CSCC. Silencing the expression of TPRG1-AS1 could contribute to the high miR-590-3p expression thereby slowing down the progression of CSCC.
Collapse
Affiliation(s)
- Yang Fan
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia, 750011, China
| | - Lan Ye
- Department of Gynecology, Shanghai Putuo Maternity & Infant Health Hospital, Shanghai, 200062, China
| | - Shuyu Wang
- Chemistry Teaching and Research Section, Henan Medical College, No. 8, Shuanghu Avenue, Longhu Town, Xinzheng, Zhengzhou, 451191, Henan, China
| | - Junwei Wang
- Shanghai Medicilon Inc., Shanghai, 201299, China
| | - Ke Wang
- Chemistry Teaching and Research Section, Henan Medical College, No. 8, Shuanghu Avenue, Longhu Town, Xinzheng, Zhengzhou, 451191, Henan, China.
| | - Ying Li
- Department of Gynecology, The Second Affiliated Hospital of Xuzhou Medical University, No.99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
4
|
Yi J, Liu X, Cheng S, Chen L, Zeng S. Multi-scale window transformer for cervical cytopathology image recognition. Comput Struct Biotechnol J 2024; 24:314-321. [PMID: 38681132 PMCID: PMC11046249 DOI: 10.1016/j.csbj.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
Cervical cancer is a major global health issue, particularly in developing countries where access to healthcare is limited. Early detection of pre-cancerous lesions is crucial for successful treatment and reducing mortality rates. However, traditional screening and diagnostic processes require cytopathology doctors to manually interpret a huge number of cells, which is time-consuming, costly, and prone to human experiences. In this paper, we propose a Multi-scale Window Transformer (MWT) for cervical cytopathology image recognition. We design multi-scale window multi-head self-attention (MW-MSA) to simultaneously integrate cell features of different scales. Small window self-attention is used to extract local cell detail features, and large window self-attention aims to integrate features from smaller-scale window attention to achieve window-to-window information interaction. Our design enables long-range feature integration but avoids whole image self-attention (SA) in ViT or twice local window SA in Swin Transformer. We find convolutional feed-forward networks (CFFN) are more efficient than original MLP-based FFN for representing cytopathology images. Our overall model adopts a pyramid architecture. We establish two multi-center cervical cell classification datasets of two-category 192,123 images and four-category 174,138 images. Extensive experiments demonstrate that our MWT outperforms state-of-the-art general classification networks and specialized classifiers for cytopathology images in the internal and external test sets. The results on large-scale datasets prove the effectiveness and generalization of our proposed model. Our work provides a reliable cytopathology image recognition method and helps establish computer-aided screening for cervical cancer. Our code is available at https://github.com/nmyz669/MWT, and our web service tool can be accessed at https://huggingface.co/spaces/nmyz/MWTdemo.
Collapse
Affiliation(s)
- Jiaxiang Yi
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
| | - Xiuli Liu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
| | - Shenghua Cheng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Li Chen
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoqun Zeng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Siddique R, Thangavelu L, S R, Almalki WH, Kazmi I, Kumar A, Mahajan S, Kalra H, Alzarea SI, Pant K. lncRNAs and cyclin-dependent kinases: Unveiling their critical roles in cancer progression. Pathol Res Pract 2024; 258:155333. [PMID: 38723325 DOI: 10.1016/j.prp.2024.155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of RNA molecules that do not code for proteins but play critical roles in gene regulation. One such role involves the modulation of cell cycle progression and proliferation through interactions with cyclin-dependent kinases (CDKs), key regulators of cell division. Dysregulation of CDK activity is a hallmark of cancer, contributing to uncontrolled cell growth and tumor formation. These lncRNA-CDK interactions are part of a complex network of molecular mechanisms underlying cancer pathogenesis, involving various signaling pathways and regulatory circuits. Understanding the interplay between lncRNAs, CDKs, and cancer biology holds promise for developing novel therapeutic strategies targeting these molecular targets for more effective cancer treatment. Furthermore, targeting CDKs, key cell cycle progression and proliferation regulators, offers another avenue for disrupting cancer pathways and overcoming drug resistance. This can open new possibilities for individualized treatment plans and focused therapeutic interventions.
Collapse
Affiliation(s)
- Raihan Siddique
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India.
| | - RenukaJyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Hitesh Kalra
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| |
Collapse
|
6
|
Lin X, Zheng W, Zhao X, Zeng M, Li S, Peng S, Song T, Sun Y. Microbiome in gynecologic malignancies: a bibliometric analysis from 2012 to 2022. Transl Cancer Res 2024; 13:1980-1996. [PMID: 38737701 PMCID: PMC11082697 DOI: 10.21037/tcr-23-1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/29/2024] [Indexed: 05/14/2024]
Abstract
Microbiome and microbial dysbiosis have been proven to be involved in the carcinogenesis and treatment of gynecologic malignancies. However, there is a noticeable gap in the literature, as no comprehensive papers have covered general information, research status, and research frontiers in this field. This study addressed this gap by exploring the relationship between the gut and female reproductive tract (FRT) microbiome and gynecological cancers from a bibliometric perspective. Using VOSviewer 1.6.18, CiteSpace 6.1.R6, and HistCite Pro 2.1 software, we analyzed data retrieved from the Web of Science (WOS) Core Collection (WoSCC) database. Our dataset, consisting of 204 articles published from 2012 to 2022, revealed a consistent and upward publication trend. The United States and the United Kingdom were the primary driving forces, attributed to their prolificacy, high-quality output, and extensive cooperation. The University of Arizona Cancer Center, which is affiliated with the United States, ranked first among the top ten most prolific institutions. Frontiers in Cellular and Infection Microbiology emerged as the leading publisher. Herbst-Kralovetz MM led as the most productive author. Mitra A was the most influential author. Cervical cancer is notably associated with the microbiome, while endometrial and ovarian cancers are receiving increased attention in the last year. Intersections between the gut microbiome and estrogen are of growing importance. Current research focuses on identifying specific microbial species for etiological diagnosis, while frontiers mainly focus on the anticancer potential of microorganisms, such as regulating the effects of immune checkpoint inhibitors. In conclusion, this study sheds light on a novel and burgeoning direction of research, providing a one-stop overview of the microbiome in gynecologic malignancies. Its findings aim to help young researchers to identify research directions and future trends for ongoing investigations.
Collapse
Affiliation(s)
- Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengyao Zeng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sizheng Peng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Yang L, Yang Q, Lin L, Zhang C, Dong L, Gao X, Zhang Z, Zeng C, Wang PG. LectoScape: A Highly Multiplexed Imaging Platform for Glycome Analysis and Biomedical Diagnosis. Anal Chem 2024; 96:6558-6565. [PMID: 38632928 DOI: 10.1021/acs.analchem.3c04925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Glycosylation, a fundamental biological process, involves the attachment of glycans to proteins, lipids, and RNA, and it plays a crucial role in various biological pathways. It is of great significance to obtain the precise spatial distribution of glycosylation modifications at the cellular and tissue levels. Here, we introduce LectoScape, an innovative method enabling detailed imaging of tissue glycomes with up to 1 μm resolution through image mass cytometry (IMC). This method utilizes 12 distinct, nonoverlapping lectins selected via microarray technology, enabling the multiplexed detection of a wide array of glycans. Furthermore, we developed an efficient labeling strategy for these lectins. Crucially, our approach facilitates the concurrent imaging of diverse glycan motifs, including N-glycan and O-glycan, surpassing the capabilities of existing technologies. Using LectoScape, we have successfully delineated unique glycan structures in various cell types, enhancing our understanding of the glycan distribution across human tissues. Our method has identified specific glycan markers, such as α2,3-sialylated Galβ1, 3GalNAc in O-glycan, and terminal GalNAc, as diagnostic indicators for cervical intraepithelial neoplasia. This highlights the potential of LectoScape in cancer diagnostics through the detection of abnormal glycosylation patterns.
Collapse
Affiliation(s)
- Lujie Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chi Zhang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lingkai Dong
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Chen Zeng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
8
|
El Rhabori S, El Aissouq A, Daoui O, Elkhattabi S, Chtita S, Khalil F. Design of new molecules against cervical cancer using DFT, theoretical spectroscopy, 2D/3D-QSAR, molecular docking, pharmacophore and ADMET investigations. Heliyon 2024; 10:e24551. [PMID: 38318045 PMCID: PMC10839811 DOI: 10.1016/j.heliyon.2024.e24551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Cervical cancer is a major health problem of women. Hormone therapy, via aromatase inhibition, has been proposed as a promising way of blocking estrogen production as well as treating the progression of estrogen-dependent cancer. To overcome the challenging complexities of costly drug design, in-silico strategy, integrating Structure-Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD), was applied to large representative databases of 39 quinazoline and thioquinazolinone compound derivatives. Quantum chemical and physicochemical descriptors have been investigated using density functional theory (DFT) and MM2 force fields, respectively, to develop 2D-QSAR models, while CoMSIA and CoMFA descriptors were used to build 3D-QSAR models. The robustness and predictive power of the reliable models were verified, via several validation methods, leading to the design of 6 new drug-candidates. Afterwards, 2 ligands were carefully selected using virtual screening methods, taking into account the applicability domain, synthetic accessibility, and Lipinski's criteria. Molecular docking and pharmacophore modelling studies were performed to examine potential interactions with aromatase (PDB ID: 3EQM). Finally, the ADMET properties were investigated in order to select potential drug-candidates against cervical cancer for experimental in vitro and in vivo testing.
Collapse
Affiliation(s)
- Said El Rhabori
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| | - Abdellah El Aissouq
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Morocco
| | - Fouad Khalil
- Laboratory of Processes, Materials and Environment (LPME), Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology - Fez, Morocco
| |
Collapse
|
9
|
Hamid HA, Lin X, Qin YK, Akim AM, Zhang L, Wang J, Wang H, Li Y, Teng X, Zhang S, Xu H, Lin X. Best practices for managing malodorous and infected wounds in advanced cervical cancer. Int Wound J 2024; 21:e14574. [PMID: 38379231 PMCID: PMC10834147 DOI: 10.1111/iwj.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 02/22/2024] Open
Abstract
This cross-sectional study was conducted to examine the most effective strategies for managing malodorous and infected wounds in patients who have been diagnosed with advanced cervical cancer. The research was conducted in Liupanshui, China. The study specifically examined demographic profiles, wound characteristics and effectiveness of wound management approaches. The study incorporated the heterogeneous sample of 289 participants who fulfilled the inclusion criteria. Data collection was conducted via structured questionnaires and medical record evaluations. Descriptive statistics and statistical analyses, such as regression analysis, were utilized to evaluate demographic attributes, wound profiles and effects of different approaches to wound management. The findings unveiled the heterogeneous demographic composition of patients, encompassing differences in socioeconomic standing, educational attainment and age. A wide range of wound characteristics were observed, as 65.7% of lesions during the acute phase with diameter between 2 and 5 centimetres, while 41.5% of lesions had this range. The most prevalent types of infections were those caused by fungi (48.4%), followed by bacterial infections lacking resistance (38.1%). A moderate degree of odour intensity was prevalent, affecting 45.0% of the cases. With maximal odour reduction of 80%, a mean healing time of 25 days and patient satisfaction rating of 4.5 out of 5, Negative Pressure Wound Therapy demonstrated itself to be the most efficacious treatment method. Additional approaches, such as photodynamic therapy and topical antibiotic therapy, demonstrated significant effectiveness, as evidenced by odour reductions of 70% and 75%, respectively, and patient satisfaction ratings of 4.3 and 4.2. Thus, the study determined challenges associated with management of malodorous and infected lesions among patients with advanced cervical cancer. The results underscored the significance of individualized care approaches, drew attention to efficacious wound management techniques and identified critical determinants that impacted patient recuperation. The findings of this study hold potential for advancing palliative care for individuals diagnosed with advanced cervical cancer.
Collapse
Affiliation(s)
- Habibah Abdul Hamid
- Obstetrics & Gynecology Department, Faculty of Medicine and Health SciencesUniversity Putra MalaysiaSerdangMalaysia
| | - Xiaoqian Lin
- Obstetrics & Gynecology Department, Faculty of Medicine and Health SciencesUniversity Putra MalaysiaSerdangMalaysia
- Liupanshui City Women and Children's Health Hospital of Guizhou ProvinceLiupanshuiChina
| | | | - Abdah Md Akim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra MalaysiaSerdangMalaysia
| | - Longjiu Zhang
- Liupanshui City People's Hospital of Guizhou provinceLiupanshuiChina
| | - Jue Wang
- Liupanshui City People's Hospital of Guizhou provinceLiupanshuiChina
| | - Hui Wang
- Liupanshui City Women and Children's Health Hospital of Guizhou ProvinceLiupanshuiChina
| | - Ying Li
- Liupanshui City Women and Children's Health Hospital of Guizhou ProvinceLiupanshuiChina
| | - Xiaofei Teng
- Liupanshui City Women and Children's Health Hospital of Guizhou ProvinceLiupanshuiChina
| | - Shangmeng Zhang
- Liupanshui City Women and Children's Health Hospital of Guizhou ProvinceLiupanshuiChina
| | - Huanyu Xu
- Liupanshui City Women and Children's Health Hospital of Guizhou ProvinceLiupanshuiChina
| | - Xiaoqing Lin
- Shuicheng District Maternal and Children's Health HospitalLiupanshuiChina
| |
Collapse
|
10
|
Palagudi M, Para S, Golla N, Meduri KC, Duvvuri SP, Vityala Y, Sajja DC, Damineni U. Adverse Effects of Cancer Treatment in Patients With Cervical Cancer. Cureus 2024; 16:e54106. [PMID: 38487144 PMCID: PMC10938271 DOI: 10.7759/cureus.54106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In lower- to middle-income countries such as India, the literature on the adverse effects (AEs) of cancer treatment in patients with cervical cancer is very limited. This knowledge gap provides an opportunity to investigate and improve the quality of life for women with cervical cancer. OBJECTIVE The purpose of this study was to assess the AEs of various cancer treatment combinations in patients with cervical cancer. METHODS This observational, retrospective study analysed 1,030 women with cervical cancer, with a descriptive cross-sectional design, based on a review of medical records from patients who were followed up during the morbidity consultation conducted by a multidisciplinary team of doctors. The AEs of cancer treatment for women with cervical cancer were recorded in these medical records between October 14, 2019, and November 21, 2022, at 10 major public tertiary hospitals in India. RESULTS This study analysed 1,030 women with cervical cancer aged between 21 and 80 years (mean age: 48.8 ± 13.9 years; p=0.30). Patients between the ages of 36-50 years reported the most AEs (30.2%; 95% confidence interval (CI): 29.1-32.8) among other age groups. Combined radiation therapy and chemotherapy (CT) was the type of cancer treatment in which there were more AEs, presenting in 56.0% (95% CI: 55-60.1) of patients. Adverse effects associated with the gastrointestinal system were observed in the majority (92.5%, 95% CI: 90.2-96.9) of cervical cancer patients. CONCLUSION Exposure to different cancer treatments, particularly combination therapy, induces AEs in patients during and after cervical cancer treatment.
Collapse
Affiliation(s)
- Mahesh Palagudi
- Department of General Medicine, P.E.S. Institute of Medical Sciences and Research, Kuppam, IND
| | - Sneha Para
- Department of General Medicine, Maheshwara Medical College and Hospital, Hyderabad, IND
| | - Nagasree Golla
- Department of General Medicine, I. K. Akhunbaev Kyrgyz State Medical Academy, Bishkek, KGZ
| | | | - Sai Praneeth Duvvuri
- Department of General Medicine, Maheshwara Medical College and Hospital, Hyderabad, IND
| | - Yethindra Vityala
- Department of Research, AJ Research Centre, AJ Institute of Medical Sciences and Research Centre, Mangalore, IND
- Department of Pathology, International Higher School of Medicine, International University of Kyrgyzstan, Bishkek, KGZ
| | | | - Ujwala Damineni
- Department of General Medicine, Maheshwara Medical College and Hospital, Hyderabad, IND
| |
Collapse
|
11
|
Zong Y, Chang Y, Huang K, Liu J, Zhao Y. The role of BATF2 deficiency in immune microenvironment rearrangement in cervical cancer - New biomarker benefiting from combination of radiotherapy and immunotherapy. Int Immunopharmacol 2024; 126:111199. [PMID: 37995570 DOI: 10.1016/j.intimp.2023.111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Despite the significant progress in immunotherapy for certain cancers, including cervical cancer, most patients remain unresponsive or derive limited benefits from combined radiotherapy and chemotherapy. The factors underlying treatment resistance are unknown and there are few reliable predictive biomarkers. BATF2 is a member of the basic leucine zipper transcription factor family and is involved in immune response and immune cell development. However, the role of BATF2 in the immune microenvironment of patients with cervical cancer after radiotherapy remains unclear. In this study, immunohistochemistry and multicolour immunofluorescence analyses of patient tumor samples were used to assess BATF2 expression. We found that cervical cancer patients with high BATF2 expression had higher infiltration levels of CD4+ T cells, CD8+ T cells, and macrophages within the tumor than those with low expression levels. Furthermore, BATF2 expression was positively correlated with the prognosis of patients after concurrent chemoradiotherapy. A wild-type mouse model with BATF2-knockdown U14 cell-derived subcutaneous tumors and a Batf2-/- mouse model with wild-type U14 cell-derived subcutaneous tumors were used to assess CD8+ T cell infiltration and function. As expected, the knockdown of BATF2 in the U14 cell line substantially promoted tumor growth, which was mediated by a reduction in CD8+ T cell infiltration and antitumor function in vivo. Additionally, the Batf2-/- mouse model demonstrated that host BATF2 is also involved in controlling tumor growth. Furthermore, the combination of radiotherapy and anti-PD-1 therapy showed synergistic antitumour effects. These findings collectively suggest that BATF2 may serve as a potent positive regulator of the tumor immune microenvironment of cervical cancer after radiotherapy, and has the potential to be a prognostic biomarker to guide the application of a combination of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kexin Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430022, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Abdel-Aziz HR, Mohamed NA, Elsehrawy MG. Knowledge, Attitude, and Practice on Cervical Cancer Prevention among Female University Students in Al -Kharj, Saudi Arabia. SAGE Open Nurs 2024; 10:23779608241279152. [PMID: 39220806 PMCID: PMC11366098 DOI: 10.1177/23779608241279152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Background Cervical Cancer (CC) is the fourth most frequent malignancy worldwide among females with significant death rates. It ranks as the 8th most frequent cancer in Saudi female. CC is preventable, with likelihood of full treatment by early detection, because of its long pre-invasive period. Lack of awareness and practice on CC prevention and screening increase the risk of disease. Objective to examine knowledge, attitude, and practice on CC prevention among Saudi female university students. Methods A facility-based cross-sectional study with a convenience sample included 594 female university students studying at health and non-health colleges of Prince Sattam bin Abdulaziz University in Al-Kharj City, Saudi Arabia. All female students were asked to complete an online questionnaire on knowledge, attitude, and practice on CC prevention. Results A total of 594 respondents to the questionnaire, 88.7% of them had unsatisfactory knowledge about CC. Out of a total of 27 points, students' knowledge mean score was 9.3 ± 6.4. Conversely the majority of students (94.4%) had positive attitude toward CC; the mean attitude score was 34.52 ± 5.04 out of 45. Regarding students practice, less than 7% of students were vaccinated against HPV and only 3.7% were screened for cancer cervix. Married females, health colleges students, and high attitude score were significant predictors for the students' knowledge about cancer cervix (P < 0.05). Conclusion Majority of the respondents displayed lack of knowledge; however, they had a positive attitude toward CC. Very alarmingly, almost all of students had inadequate practice regarding CC prevention. So, the study recommends developing and implementing educational programs and strategies for female university students to improve their knowledge and practice related to cervix cancer. Results of this study provide evidence that can help in formulating effective awareness strategies and educational programs for women that would help in CC prevention.
Collapse
Affiliation(s)
- Hassanat Ramadan Abdel-Aziz
- College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Gerontological Nursing Department, Faculty of Nursing, Zagazig University, Zagazig, Egypt
| | - Nermen Abdelftah Mohamed
- College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Medical Surgical Nursing Department, Faculty of Nursing, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed Gamal Elsehrawy
- College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Nursing Administration Department, Faculty of Nursing, Port Said University, Port Said, Egypt
| |
Collapse
|
13
|
Shao H, Li X, Wu P, Chen Z, Zhang C, Gu H. A Cellular Senescence-Related Signature Predicts Cervical Cancer Patient Outcome and Immunotherapy Sensitivity. Reprod Sci 2023; 30:3661-3676. [PMID: 37580647 PMCID: PMC10691978 DOI: 10.1007/s43032-023-01305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/22/2023] [Indexed: 08/16/2023]
Abstract
Cervical cancer (CC) is one of the most prevalent gynecological malignancies. The rate of mortality and morbidity among patients with CC is high. Cellular senescence is involved in tumorigenesis as well as in the cancer progression. However, the involvement of cellular senescence in CC development is still unclear and requires further investigation. In this study, we retrieved data on cellular senescence-related genes (CSRGs) from the "CellAge" Database. We used the TCGA-CESC and CGCI-HTMCP-CC datasets as the training and validation sets, respectively. Finally, a signature was constructed using "univariate" and "Least Absolute Shrinkage and Selection Operator" (LASSO) Cox regression analysis, which contains eight CSRGs. Using this signature, we calculated the risk scores of all patients in the training and validation cohorts and categorized them into the low-risk group (LR-G) and the high-risk group (HR-G). Results showed that, compared to patients in the HR-G, those in the LR-G demonstrated a more positive clinical prognosis, more abundant immune cell infiltrations, and a more active immune response. The signature could also modulate the expression of SASP factors. In vitro studies showed an increased expression of SERPINE1 and IL-1α genes included in the signature in CC cells and tissues. Our findings help to deepen our insights into the etiology of CC, which could be beneficial for prognostic prediction and immunotherapy in clinical practice.
Collapse
Affiliation(s)
- Huijing Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xia Li
- Department of Obstetrics and Gynecology, Huai'an Maternal and Child Health Care Center, Huaian, 223000, Jiangsu, China
| | - Pengfei Wu
- Department of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Caihong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Hang Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Hasankhani MB, Jahani Y, Bazrafshan A, Yazdizadeh A, Karamoozian A. Factors Affecting Survival of Patients with Cervical Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2216-2224. [PMID: 37899927 PMCID: PMC10612564 DOI: 10.18502/ijph.v52i10.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/14/2023] [Indexed: 10/31/2023]
Abstract
Background Cervical cancer is the fourth leading cause of cancer-related death among women worldwide. We aimed to identify the factors affecting the survival rate of cervical cancer patients, as these factors are vital for preventing the progression and effective treatment of cancer. Methods In this retrospective cohort study, 254 patients with cervical cancer who were registered in The Kerman Population-Based Cancer Registry (KPBCR) between 2012 and 2022 and whose status was known to be alive or dead were enrolled. Since the proportional hazard assumption was not established for the type of treatment, the extended Cox model was used to determine the variables influencing the survival of the patients. Results The mean survival time of the patients was 91.28 ± 3.02 months. The results of fitting the extended Cox model showed that the risk of death increases by 1.02 per year of age at diagnosis (HR=1.02; 95% CI: 1.00, 1.04). Moreover, for a one-unit increase in body mass index (BMI), the risk of death increased by 0.93 (HR=0.93; 95% CI: 0.88, 0.98). The risk of death in patients with disease stages III&IV was 3.08 times that of patients with disease stages I&II (HR=3.08; 95% CI: 1.05, 9.03). The risk of death in patients receiving at least one of the radiotherapy and chemotherapy treatments after 18 months was 7.11 times that of patients undergoing surgery (HR=7.11; 95% CI: 1.69, 29.91). Conclusion The age of diagnosis, BMI, disease stage, and type of treatment significantly affect the survival of patients. Thus, raising women's awareness of periodical examinations and early diagnosis can reduce the risk of death and prevent cervical cancer progression.
Collapse
Affiliation(s)
- Mohammadreza Balooch Hasankhani
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Yunes Jahani
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Bazrafshan
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ashraf Yazdizadeh
- Deputy of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karamoozian
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Borade SA, Naharwal S, Bhambri H, Mandal SK, Bajaj K, Chitkara D, Sakhuja R. Synthesis of modified bile acids via palladium-catalyzed C(sp 3)-H (hetero)arylation. Org Biomol Chem 2023; 21:6719-6729. [PMID: 37555287 DOI: 10.1039/d3ob00916e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A Pd(II)-catalyzed strategy for the diastereo- and regioselective (hetero)arylation of unactivated C(sp3)-H bonds in bile acids is accomplished with aryl and heteroaryl iodides under solvent-free conditions using the 8-aminoquinoline auxiliary as a directing group. This methodology demonstrated excellent functional group tolerance with respect to aryl/heteroaryl iodides on O-protected N-(quinolin-8-yl)cholyl/deoxycholyl amides to afford β-C(sp3)-H (hetero)arylated products in good-to-excellent yields. Moreover, the 8-aminoquinoline (AQ) auxiliary can easily be removed to obtain modified bile acids.
Collapse
Affiliation(s)
- Somnath Arjun Borade
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Sushma Naharwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Himanshi Bhambri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P. O., Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P. O., Mohali, Punjab 140306, India
| | - Kiran Bajaj
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| |
Collapse
|
16
|
Fan Z, Wu X, Li C, Chen H, Liu W, Zheng Y, Chen J, Li X, Sun H, Jiang T, Grzegorzek M, Li C. CAM-VT: A Weakly supervised cervical cancer nest image identification approach using conjugated attention mechanism and visual transformer. Comput Biol Med 2023; 162:107070. [PMID: 37295389 DOI: 10.1016/j.compbiomed.2023.107070] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Cervical cancer is the fourth most common cancer among women, and cytopathological images are often used to screen for this cancer. However, manual examination is very troublesome and the misdiagnosis rate is high. In addition, cervical cancer nest cells are denser and more complex, with high overlap and opacity, increasing the difficulty of identification. The appearance of the computer aided automatic diagnosis system solves this problem. In this paper, a weakly supervised cervical cancer nest image identification approach using Conjugated Attention Mechanism and Visual Transformer (CAM-VT), which can analyze pap slides quickly and accurately. CAM-VT proposes conjugated attention mechanism and visual transformer modules for local and global feature extraction respectively, and then designs an ensemble learning module to further improve the identification capability. In order to determine a reasonable interpretation, comparative experiments are conducted on our datasets. The average accuracy of the validation set of three repeated experiments using CAM-VT framework is 88.92%, which is higher than the optimal result of 22 well-known deep learning models. Moreover, we conduct ablation experiments and extended experiments on Hematoxylin and Eosin stained gastric histopathological image datasets to verify the ability and generalization ability of the framework. Finally, the top 5 and top 10 positive probability values of cervical nests are 97.36% and 96.84%, which have important clinical and practical significance. The experimental results show that the proposed CAM-VT framework has excellent performance in potential cervical cancer nest image identification tasks for practical clinical work.
Collapse
Affiliation(s)
- Zizhen Fan
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xiangchen Wu
- Suzhou Ruiqian Technology Company Ltd., Suzhou, China
| | - Changzhong Li
- Suzhou Ruiqian Technology Company Ltd., Suzhou, China
| | - Haoyuan Chen
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Wanli Liu
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yuchao Zheng
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Jing Chen
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xiaoyan Li
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Hongzan Sun
- Shengjing Hospital, China Medical University, Shenyang, China.
| | - Tao Jiang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; International Joint Institute of Robotics and Intelligent Systems, Chengdu University of Information Technology, Chengdu, China
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Luebeck, Luebeck, Germany; Department of Knowledge Engineering, University of Economics in Katowice, Katowice, Poland
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
| |
Collapse
|
17
|
Shi YY, Wang AJ, Liu XL, Dai MY, Cai HB. Stapled peptide PROTAC induced significantly greater anti-PD-L1 effects than inhibitor in human cervical cancer cells. Front Immunol 2023; 14:1193222. [PMID: 37325638 PMCID: PMC10262918 DOI: 10.3389/fimmu.2023.1193222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that target immune checkpoints that suppress immune cell activity. Low efficiency and high resistance are currently the main barriers to their clinical application. As a representative technology of targeted protein degradation, proteolysis-targeting chimeras (PROTACs) are considered to have potential for addressing these limitations. Methods We synthesized a stapled peptide-based PROTAC (SP-PROTAC) that specifically targeted palmitoyltransferase ZDHHC3 and resulted in the decrease of PD-L1 in human cervical cancer cell lines. Flow cytometry, confocal microscopy, protein immunoblotting, Cellular Thermal Shift Assay (CETSA), and MTT assay analyses were conducted to evaluate the effects of the designed peptide and verify its safety in human cells. Results In cervical cancer celllines C33A and HeLa, the stapled peptide strongly downregulated PD-L1 to < 50% of baseline level at 0.1 μM. DHHC3 expression decreased in both dosedependentand time-dependent manners. MG132, the proteasome inhibitor, can alleviate the SP-PROTAC mediated degradation of PD-L1 in human cancer cells. In a co-culture model of C33A and T cells, treatment with the peptide induced IFN-γ and TNF-α release in a dose-dependent manner by degrading PD-L1. These effects were more significant than that of the PD-L1 inhibitor, BMS-8. Conclusions Cells treated with 0.1 μM of SP-PROTAC or BMS-8 for 4 h revealed that the stapled peptide decreased PD-L1 more effectively than BMS-8. DHHC3-targeting SP-PROTAC decreased PD-L1 in human cervical cancer more effectively than the inhibitor BMS-8.
Collapse
Affiliation(s)
- Yu-Ying Shi
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - An-Jin Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Xue-Lian Liu
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Meng-Yuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Hong-Bing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| |
Collapse
|
18
|
Rajagopal K, Kalusalingam A, Bharathidasan AR, Sivaprakash A, Shanmugam K, Sundaramoorthy M, Byran G. In Silico Drug Design of Anti-Breast Cancer Agents. Molecules 2023; 28:molecules28104175. [PMID: 37241915 DOI: 10.3390/molecules28104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a condition marked by abnormal cell proliferation that has the potential to invade or indicate other health issues. Human beings are affected by more than 100 different types of cancer. Some cancer promotes rapid cell proliferation, whereas others cause cells to divide and develop more slowly. Some cancers, such as leukemia, produce visible tumors, while others, such as breast cancer, do not. In this work, in silico investigations were carried out to investigate the binding mechanisms of four major analogs, which are marine sesquiterpene, sesquiterpene lactone, heteroaromatic chalcones, and benzothiophene against the target estrogen receptor-α for targeting breast cancer using Schrödinger suite 2021-4. The Glide module handled the molecular docking experiments, the QikProp module handled the ADMET screening, and the Prime MM-GB/SA module determined the binding energy of the ligands. The benzothiophene analog BT_ER_15f (G-score -15.922 Kcal/mol) showed the best binding activity against the target protein estrogen receptor-α when compared with the standard drug tamoxifen which has a docking score of -13.560 Kcal/mol. TRP383 (tryptophan) has the highest interaction time with the ligand, and hence it could act for a long time. Based on in silico investigations, the benzothiophene analog BT_ER_15f significantly binds with the active site of the target protein estrogen receptor-α. Similar to the outcomes of molecular docking, the target and ligand complex interaction motif established a high affinity of lead candidates in a dynamic system. This study shows that estrogen receptor-α targets inhibitors with better potential and low toxicity when compared to the existing market drugs, which can be made from a benzothiophene derivative. It may result in considerable activity and be applied to more research on breast cancer.
Collapse
Affiliation(s)
- Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643001, Tamilnadu, India
| | - Anandarajagopal Kalusalingam
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Negeri Sembilan, Malaysia
| | - Anubhav Raj Bharathidasan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643001, Tamilnadu, India
| | - Aadarsh Sivaprakash
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643001, Tamilnadu, India
| | - Krutheesh Shanmugam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643001, Tamilnadu, India
| | - Monall Sundaramoorthy
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643001, Tamilnadu, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty 643001, Tamilnadu, India
| |
Collapse
|
19
|
Abdullah H, Ismail I, Suppian R, Zakaria NM. Natural Gallic Acid and Methyl Gallate Induces Apoptosis in Hela Cells through Regulation of Intrinsic and Extrinsic Protein Expression. Int J Mol Sci 2023; 24:ijms24108495. [PMID: 37239840 DOI: 10.3390/ijms24108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Induction of apoptosis is one of the targeted approaches in cancer therapies. As previously reported, natural products can induce apoptosis in in vitro cancer treatments. However, the underlying mechanisms of cancer cell death are poorly understood. The present study aimed to elucidate cell death mechanisms of gallic acid (GA) and methyl gallate (MG) from Quercus infectoria toward human cervical cancer cell lines (HeLa). The antiproliferative activity of GA and MG was characterised by an inhibitory concentration using 50% cell populations (IC50) by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Cervical cancer cells, HeLa, were treated with GA and MG for 72 h and calculated for IC50 values. The IC50 concentration of both compounds was used to elucidate the apoptotic mechanism using acridine orange/propidium iodide (AO/PI) staining, cell cycle analysis, the Annexin-V FITC dual staining assay, apoptotic proteins expressions (p53, Bax and Bcl-2) and caspase activation analysis. GA and MG inhibited the growth of HeLa cells with an IC50 value of 10.00 ± 0.67 µg/mL and 11.00 ± 0.58 µg/mL, respectively. AO/PI staining revealed incremental apoptotic cells. Cell cycle analysis revealed an accumulation of cells at the sub-G1 phase. The Annexin-V FITC assay showed that cell populations shifted from the viable to apoptotic quadrant. Moreover, p53 and Bax were upregulated, whereas Bcl-2 was markedly downregulated. Activation of caspase 8 and 9 showed an ultimate apoptotic event in HeLa cells treated with GA and MG. In conclusion, GA and MG significantly inhibited HeLa cell growth through apoptosis induction by the activation of the cell death mechanism via extrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Hasmah Abdullah
- Faculty of Resilience, Rabdan Academy, Al Dhafeer Street, Abu Dhabi 22401, United Arab Emirates
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ilyana Ismail
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Rapeah Suppian
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nor Munirah Zakaria
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
20
|
Shao H, Li X, Wu P, Chen Z, Zhang C, Gu H. A Cellular Senescence-Related Signature Predicts Cervical Cancer Patient Outcome and Immunotherapy Sensitivity. RESEARCH SQUARE 2023:rs.3.rs-2769887. [PMID: 37131778 PMCID: PMC10153369 DOI: 10.21203/rs.3.rs-2769887/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cervical cancer (CC) is among the most prevalent gynaecological malignancy. The rate of mortality and morbidity of patients with CC is high. Cellular senescence is involved in tumorigenesis as well as cancer progression. However, the involvement of cellular senescence in CC development is still unclear and requires further investigation. We retrieved data on cellular senescence-related genes (CSRGs) from the "CellAge" Database. We used TCGA-CESC and the CGCI-HTMCP-CC datasets as the training and validation sets, respectively. Eight CSRGs signatures based on the data extracted from these sets were constructed using "univariate" and "Least Absolute Shrinkage and Selection Operator Cox regression analyses". Using this model, we calculated the risk scores of all patients in the training and validation cohort and categorised these patients into the low-risk group (LR-G) and the high-risk group (HR-G). Finally, compared to patients in the HR-G, CC patients in the LR-G demonstrated a more positive clinical prognosis; the expression of senescence-associated secretory phenotype (SASP) markers and immune cell infiltration was higher, and these patients had more active immune responses. In vitro studies showed increased SERPINE1 and IL-1α ((genes included in the signature) expression in CC cells and tissues. The eight-gene prognostic signatures could modulate the expression of SASP factors and the tumour immune micro-environment (TIME). It could be used as a reliable biomarker for predicting the patient's prognosis and response to immunotherapy in CC.
Collapse
Affiliation(s)
- Huijing Shao
- The First Affiliated Hospital of Naval Medical University: Changhai Hospital
| | - Xia Li
- Huaian First People's Hospital
| | - Pengfei Wu
- fu dan da xue fu shu yi yuan fu chan ke yi yuan: Obstetrics and Gynecology Hospital of Fudan University
| | - Zixi Chen
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine: Shanghai PuTuo District Center Hospital
| | - Caihong Zhang
- The First Affiliated Hospital of Naval Medical University: Changhai Hospital
| | - Hang Gu
- The First Affiliated Hospital of Naval Medical University: Changhai Hospital
| |
Collapse
|
21
|
Chauhan NK, Singh K, Kumar A, Kolambakar SB. HDFCN: A Robust Hybrid Deep Network Based on Feature Concatenation for Cervical Cancer Diagnosis on WSI Pap Smear Slides. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4214817. [PMID: 37101692 PMCID: PMC10125740 DOI: 10.1155/2023/4214817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/06/2023] [Accepted: 03/18/2023] [Indexed: 04/28/2023]
Abstract
Cervical cancer is a critical imperilment to a female's health due to its malignancy and fatality rate. The disease can be thoroughly cured by locating and treating the infected tissues in the preliminary phase. The traditional practice for screening cervical cancer is the examination of cervix tissues using the Papanicolaou (Pap) test. Manual inspection of pap smears involves false-negative outcomes due to human error even in the presence of the infected sample. Automated computer vision diagnosis revamps this obstacle and plays a substantial role in screening abnormal tissues affected due to cervical cancer. Here, in this paper, we propose a hybrid deep feature concatenated network (HDFCN) following two-step data augmentation to detect cervical cancer for binary and multiclass classification on the Pap smear images. This network carries out the classification of malignant samples for whole slide images (WSI) of the openly accessible SIPaKMeD database by utilizing the concatenation of features extracted from the fine-tuning of the deep learning (DL) models, namely, VGG-16, ResNet-152, and DenseNet-169, pretrained on the ImageNet dataset. The performance outcomes of the proposed model are compared with the individual performances of the aforementioned DL networks using transfer learning (TL). Our proposed model achieved an accuracy of 97.45% and 99.29% for 5-class and 2-class classifications, respectively. Additionally, the experiment is performed to classify liquid-based cytology (LBC) WSI data containing pap smear images.
Collapse
Affiliation(s)
- Nitin Kumar Chauhan
- USIC&T, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
- Department of ECE, Indore Institute of Science & Technology, Indore 453331, India
| | - Krishna Singh
- DSEU Okhla Campus-I, Formerly G. B. Pant Engineering College, New Delhi 110020, India
| | - Amit Kumar
- Department of ECE, Indore Institute of Science & Technology, Indore 453331, India
- Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | |
Collapse
|
22
|
Razlog R, Kruger CA, Abrahamse H. Cytotoxic Effects of Combinative ZnPcS 4 Photosensitizer Photodynamic Therapy (PDT) and Cannabidiol (CBD) on a Cervical Cancer Cell Line. Int J Mol Sci 2023; 24:ijms24076151. [PMID: 37047123 PMCID: PMC10094677 DOI: 10.3390/ijms24076151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The most prevalent type of gynecological malignancy globally is cervical cancer (CC). Complicated by tumor resistance and metastasis, it remains the leading cause of cancer deaths in women in South Africa. Early CC is managed by hysterectomy, chemotherapy, radiation, and more recently, immunotherapy. Although these treatments provide clinical benefits, many patients experience adverse effects and secondary CC spread. To minimize this, novel and innovative treatment methods need to be investigated. Photodynamic therapy (PDT) is an advantageous treatment modality that is non-invasive, with limited side effects. The Cannabis sativa L. plant isolate, cannabidiol (CBD), has anti-cancer effects, which inhibit tumor growth and spread. This study investigated the cytotoxic combinative effect of PDT and CBD on CC HeLa cells. The effects were assessed by exposing in vitro HeLa CC-cultured cells to varying doses of ZnPcS4 photosensitizer (PS) PDT and CBD, with a fluency of 10 J/cm2 and 673 nm irradiation. HeLa CC cells, which received the predetermined lowest dose concentrations (ICD50) of 0.125 µM ZnPcS4 PS plus 0.5 µM CBD to yield 50% cytotoxicity post-laser irradiation, reported highly significant and advantageous forms of cell death. Flow cytometry cell death pathway quantitative analysis showed that only 13% of HeLa cells were found to be viable, 7% were in early apoptosis and 64% were in late favorable forms of apoptotic cell death, with a minor 16% of necrosis post-PDT. Findings suggest that this combined treatment approach can possibly induce primary cellular destruction, as well as limit CC metastatic spread, and so warrants further investigation.
Collapse
Affiliation(s)
- Radmila Razlog
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| |
Collapse
|
23
|
Sravani AB, Ghate V, Lewis S. Human papillomavirus infection, cervical cancer and the less explored role of trace elements. Biol Trace Elem Res 2023; 201:1026-1050. [PMID: 35467267 PMCID: PMC9898429 DOI: 10.1007/s12011-022-03226-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is an aggressive type of cancer affecting women worldwide. Many affected individuals rely on smear tests for the diagnosis, surgery, chemotherapy, or radiation for their treatment. However, due to a broad set of undesired results and side-effects associated with the existing protocols, the search for better diagnostic and therapeutic interventions is a never-ending pursuit. In the purview, the bio-concentration of trace elements (copper, selenium, zinc, iron, arsenic, manganese, and cadmium) is seen to fluctuate during the occurrence of cervical cancer and its progression from pre-cancerous to metastatic nature. Thus, during the occurrence of cervical cancer, the detection of trace elements and their supplementation will prove to be highly advantageous in developing diagnostic tools and therapeutics, respectively. This review provides a detailed overview of cervical cancer, its encouragement by human papillomavirus infections, the mechanism of pathology, and resistance. Majorly, the review emphasizes the less explored role of trace elements, their contribution to the growth and inhibition of cervical cancer. Numerous clinical trials have been listed, thereby providing a comprehensive reference to the exploration of trace elements in the management of cervical cancer.
Collapse
Affiliation(s)
- Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
24
|
Maurya R, Nath Pandey N, Kishore Dutta M. VisionCervix: Papanicolaou cervical smears classification using novel CNN-Vision ensemble approach. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Li X, Abdel-Maksoud MA, Iqbal I, Mubarak A, Farrag MA, Haris M, Alghamdi S, Ain QU, Almekhlafi S. Deciphering cervical cancer-associated biomarkers by integrated multi-omics approach. Am J Transl Res 2022; 14:8843-8861. [PMID: 36628250 PMCID: PMC9827308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/13/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Cervical Squamous Cell Carcinoma (CESC) is one of the most fatal female malignancies, and the underlying molecular mechanisms governing this disease have not been fully explored. In this research, we planned to conduct the analysis of Gene Expression Omnibus (GEO) cervical squamous cell carcinoma microarray datasets by a detailed in silico approach and to explore some novel biomarkers of CESC. METHODS The top commonly differentially expressed genes (DEGs) from the GSE138080 and GSE113942 datasets were analyzed by Limma package-based GEO2R tool. The protein-protein interaction (PPI) network of the DEGs was drawn through Search Tool for the Retrieval of Interacting Genes (STRING), and top 6 hub genes were obtained from Cytoscape. Expression analysis and validation of hub genes expression in CESC samples and cell lines were done using UALCAN, OncoDB, GENT2, and HPA. Additionally, cBioPortal, Gene set enrichment analysis (GSEA) tool, Kaplan-Meier (KM) plotter, ShinyGO, and DGIdb databases were also used to check some important values of hub genes in CESC. RESULTS Out of 79 DEGs, the minichromosome maintenance complex component 4 (MCM4), nucleolar and spindle-associated protein 1 (NUSAP1), cell division cycle associated 5 (CDCA5), cell division cycle 45 (CDC45), denticleless E3 ubiquitin protein ligase homolog (DTL), and chromatin licensing and DNA replication factor 1 (CDT1) genes were regarded as hub genes in CESC. Further analysis revealed that the expressions of all these hub genes were significantly elevated in CESC cell lines and samples of diverse clinical attributes. In this study, we also documented some important correlations between hub genes and some other diverse measures, including DNA methylation, genetic alterations, and Overall Survival (OS). Last, we also identify hub genes associated ceRNA network and 31 important chemotherapeutic drugs. CONCLUSION Through detailed in silico methodology, we identified 6 hub genes, including MCM4, NUSAP1, CDCA5, CDC45, DTL, and CDT1, which are likely to be associated with CESC development and diagnosis.
Collapse
Affiliation(s)
- Xuhong Li
- Department of Gynaecology and Obstetrics, Shanghai Eighth People’s HospitalShanghai, China
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. 2455, Riyadh 11451, Saudi Arabia
| | - Iqra Iqbal
- Azra Naheed Medical CollegeLahore, Pakistan
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Haris
- Department of Anatomy, Institute of Basic Medical Sciences, Khyber Medical UniversityPeshawar, Pakistan
| | - Sumaiah Alghamdi
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. 2455, Riyadh 11451, Saudi Arabia
| | - Qurat Ul Ain
- Anhui Provincial Hospital, Division of Life Science and Medicine, University of Science and Technology ChinaHefei, Anhui, China
| | - Sally Almekhlafi
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Ghosh P, Tiwari H, Lakkakula J, Roy A, Emran TB, Rashid S, Alghamdi S, Rajab BS, Almehmadi M, Allahyani M, Aljuaid A, Alsaiari AA, Sharma R, Babalghith AO. A decade's worth of impact: Dox loaded liposomes in anticancer activity. MATERIALS TODAY ADVANCES 2022; 16:100313. [DOI: 10.1016/j.mtadv.2022.100313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
27
|
Arip M, Tan LF, Jayaraj R, Abdullah M, Rajagopal M, Selvaraja M. Exploration of biomarkers for the diagnosis, treatment and prognosis of cervical cancer: a review. Discov Oncol 2022; 13:91. [PMID: 36152065 PMCID: PMC9509511 DOI: 10.1007/s12672-022-00551-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 12/19/2022] Open
Abstract
As the fourth most diagnosed cancer, cervical cancer (CC) is one of the major causes of cancer-related mortality affecting females globally, particularly when diagnosed at advanced stage. Discoveries of CC biomarkers pave the road to precision medicine for better patient outcomes. High throughput omics technologies, characterized by big data production further accelerate the process. To date, various CC biomarkers have been discovered through the advancement in technologies. Despite, very few have successfully translated into clinical practice due to the paucity of validation through large scale clinical studies. While vast amounts of data are generated by the omics technologies, challenges arise in identifying the clinically relevant data for translational research as analyses of single-level omics approaches rarely provide causal relations. Integrative multi-omics approaches across different levels of cellular function enable better comprehension of the fundamental biology of CC by highlighting the interrelationships of the involved biomolecules and their function, aiding in identification of novel integrated biomarker profile for precision medicine. Establishment of a worldwide Early Detection Research Network (EDRN) system helps accelerating the pace of biomarker translation. To fill the research gap, we review the recent research progress on CC biomarker development from the application of high throughput omics technologies with sections covering genomics, transcriptomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Masita Arip
- Allergy & Immunology Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Lee Fang Tan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Rama Jayaraj
- Charles Darwin University, Darwin, NT, 0909, Australia
| | - Maha Abdullah
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Jalan Serdang, 43400, Serdang, Selangor, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Malarvili Selvaraja
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
28
|
Emodin Sensitizes Cervical Cancer Cells to Vinblastine by Inducing Apoptosis and Mitotic Death. Int J Mol Sci 2022; 23:ijms23158510. [PMID: 35955645 PMCID: PMC9369386 DOI: 10.3390/ijms23158510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
In recent years, studies on the effects of combining novel plant compounds with cytostatics used in cancer therapy have received considerable attention. Since emodin sensitizes tumor cells to chemotherapeutics, we evaluated changes in cervical cancer cells after its combination with the antimitotic drug vinblastine. Cellular changes were demonstrated using optical, fluorescence, confocal and electron microscopy. Cell viability was assessed by MTT assay. The level of apoptosis, caspase 3/7, Bcl-2 protein, ROS, mitochondrial membrane depolarization, cell cycle and degree of DNA damage were analyzed by flow cytometry. The microscopic image showed indicators characteristic for emodin- and vinblastine-induced mitotic catastrophe, i.e., multinucleated cells, giant cells, cells with micronuclei, and abnormal mitotic figures. These compounds also increased blocking of cells in the G2/M phase, and the generated ROS induced swelling and mitochondrial damage. This translated into the growth of apoptotic cells with active caspase 3/7 and inactivation of Bcl-2 protein and active ATM kinase. Emodin potentiated the cytotoxic effect of vinblastine, increasing oxidative stress, mitotic catastrophe and apoptosis. Preliminary studies show that the combined action of both compounds, may constitute an interesting form of anticancer therapy.
Collapse
|
29
|
Ahmed M. Functional, Diagnostic and Therapeutic Aspects of Bile. Clin Exp Gastroenterol 2022; 15:105-120. [PMID: 35898963 PMCID: PMC9309561 DOI: 10.2147/ceg.s360563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/03/2022] [Indexed: 11/23/2022] Open
Abstract
Bile is a unique body fluid synthesized in our liver. Enterohepatic circulation preserves bile in our body through its efficient synthesis, transport, absorption, and reuptake. Bile is the main excretory route for bile salts, bilirubin, and potentially harmful exogenous lipophilic substances. The primary way of eliminating cholesterol is bile. Although bile has many organic and inorganic contents, bile acid is the most physiologically active component. Bile acids have a multitude of critical physiologic functions in our body. These include emulsification of dietary fat, absorption of fat and fat-soluble vitamins, maintaining glucose, lipid, and energy homeostasis, sustenance of intestinal epithelial integrity and epithelial cell proliferation, reducing inflammation in the intestine, and prevention of enteric infection due to its antimicrobial properties. But bile acids can be harmful in certain altered conditions like cholecystectomy, terminal ileal disease or resection, cholestasis, duodenogastric bile reflux, duodenogastroesophageal bile reflux, and bile acid diarrhea. Bile acids can have malignant potentials as well. There are also important diagnostic and therapeutic roles of bile acid and bile acid modulation.
Collapse
Affiliation(s)
- Monjur Ahmed
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
30
|
Kori M, Arga KY, Mardinoglu A, Turanli B. Repositioning of Anti-Inflammatory Drugs for the Treatment of Cervical Cancer Sub-Types. Front Pharmacol 2022; 13:884548. [PMID: 35770086 PMCID: PMC9234276 DOI: 10.3389/fphar.2022.884548] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth most commonly diagnosed cancer worldwide and, in almost all cases is caused by infection with highly oncogenic Human Papillomaviruses (HPVs). On the other hand, inflammation is one of the hallmarks of cancer research. Here, we focused on inflammatory proteins that classify cervical cancer patients by considering individual differences between cancer patients in contrast to conventional treatments. We repurposed anti-inflammatory drugs for therapy of HPV-16 and HPV-18 infected groups, separately. In this study, we employed systems biology approaches to unveil the diagnostic and treatment options from a precision medicine perspective by delineating differential inflammation-associated biomarkers associated with carcinogenesis for both subtypes. We performed a meta-analysis of cervical cancer-associated transcriptomic datasets considering subtype differences of samples and identified the differentially expressed genes (DEGs). Using gene signature reversal on HPV-16 and HPV-18, we performed both signature- and network-based drug reversal to identify anti-inflammatory drug candidates against inflammation-associated nodes. The anti-inflammatory drug candidates were evaluated using molecular docking to determine the potential of physical interactions between the anti-inflammatory drug and inflammation-associated nodes as drug targets. We proposed 4 novels anti-inflammatory drugs (AS-601245, betamethasone, narciclasin, and methylprednisolone) for the treatment of HPV-16, 3 novel drugs for the treatment of HPV-18 (daphnetin, phenylbutazone, and tiaprofenoic acid), and 5 novel drugs (aldosterone, BMS-345541, etodolac, hydrocortisone, and prednisolone) for the treatment of both subtypes. We proposed anti-inflammatory drug candidates that have the potential to be therapeutic agents for the prevention and/or treatment of cervical cancer.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- *Correspondence: Beste Turanli, ; Adil Mardinoglu,
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- *Correspondence: Beste Turanli, ; Adil Mardinoglu,
| |
Collapse
|
31
|
Bahall V, De Barry L, Barrow M, Ramnarace R. Metastatic gastric adenocarcinoma to the uterine cervix-a case report and review of the literature. World J Surg Oncol 2022; 20:177. [PMID: 35659690 PMCID: PMC9164898 DOI: 10.1186/s12957-022-02648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Poorly differentiated diffuse-type gastric adenocarcinoma often presents at an advanced stage. While gastric cancer typically metastasizes to the liver, lung and bone, metastasis to the uterine cervix is extremely rare. To our knowledge, less than forty cases have been described in the medical literature. CASE PRESENTATION We report a case of a 47-year-old woman who presented to us with symptomatic uterine leiomyomas and subsequently underwent a successful total laparoscopic hysterectomy and bilateral salpingo-oophorectomy. The diagnosis of metastatic cancer involving the cervix was established incidentally on histopathology, which demonstrated atypical signet ring cells in the lymphovascular spaces of the cervix. Further investigations for a primary malignancy revealed a poorly differentiated diffuse-type gastric adenocarcinoma. CONCLUSION Gastric cancer involving the uterine cervix is rare and associated with a poor prognosis. When presented with isolated cervical metastases, the gastrointestinal tract should be considered as a possible primary source. Due to the limited publications on this clinical entity, we expect to raise awareness and study this unique manifestation of gastric cancer by presenting our case.
Collapse
Affiliation(s)
- Vishal Bahall
- Department of Obstetrics and Gynaecology, San Fernando General Hospital, South-West Regional Health Authority, San Fernando, Trinidad and Tobago.
| | - Lance De Barry
- Department of Obstetrics and Gynaecology, San Fernando General Hospital, South-West Regional Health Authority, San Fernando, Trinidad and Tobago
| | - Mickhaiel Barrow
- Department of Pathology, Port of Spain General Hospital, North-West Regional Health Authority, San Fernando, Trinidad and Tobago
| | - Rene Ramnarace
- Department of Medicine, San Fernando General Hospital, South-West Regional Health Authority, San Fernando, Trinidad and Tobago
| |
Collapse
|
32
|
Al Mudawi N, Alazeb A. A Model for Predicting Cervical Cancer Using Machine Learning Algorithms. SENSORS 2022; 22:s22114132. [PMID: 35684753 PMCID: PMC9185380 DOI: 10.3390/s22114132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
A growing number of individuals and organizations are turning to machine learning (ML) and deep learning (DL) to analyze massive amounts of data and produce actionable insights. Predicting the early stages of serious illnesses using ML-based schemes, including cancer, kidney failure, and heart attacks, is becoming increasingly common in medical practice. Cervical cancer is one of the most frequent diseases among women, and early diagnosis could be a possible solution for preventing this cancer. Thus, this study presents an astute way to predict cervical cancer with ML algorithms. Research dataset, data pre-processing, predictive model selection (PMS), and pseudo-code are the four phases of the proposed research technique. The PMS section reports experiments with a range of classic machine learning methods, including decision tree (DT), logistic regression (LR), support vector machine (SVM), K-nearest neighbors algorithm (KNN), adaptive boosting, gradient boosting, random forest, and XGBoost. In terms of cervical cancer prediction, the highest classification score of 100% is achieved with random forest (RF), decision tree (DT), adaptive boosting, and gradient boosting algorithms. In contrast, 99% accuracy has been found with SVM. The computational complexity of classic machine learning techniques is computed to assess the efficacy of the models. In addition, 132 Saudi Arabian volunteers were polled as part of this study to learn their thoughts about computer-assisted cervical cancer prediction, to focus attention on the human papillomavirus (HPV).
Collapse
|
33
|
Wang G, Guan J, Yang Q, Wu F, Shao J, Zhou Q, Guo Z, Ren Y, Zhu H, Chen Z. Development of a Bile Acid-Related Gene Signature for Predicting Survival in Patients with Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9076175. [PMID: 35592684 PMCID: PMC9113879 DOI: 10.1155/2022/9076175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common diseases that threaten millions of lives annually. Evidence supports that bile acid (BA) affects HCC through inflammation, DNA damage, or other mechanisms. Methods A total of 127 BA-associated genes were analyzed in HCC tumor and nontumor samples using The Cancer Genome Atlas data. Genes correlated to the prognosis of patients with HCC were identified using univariate and multivariate Cox regression analyses. Furthermore, a prediction model with identified genes was constructed to evaluate the risk of patients with HCC for prognosis. Results Out of 26 genes with differential expressions between the HCC and nontumor samples, 19 and 7 genes showed upregulated and downregulated expressions, respectively. Three genes, NPC1, ABCC1, and SLC51B, were extrapolated to construct a prediction model for the prognosis of patients with HCC. Conclusion The three-gene prediction model was more reliable than the pathological staging characters of the tumor for the prognosis and survival of patients with HCC. In addition, the upregulated genes facilitating the transport of BAs are associated with poor prognosis of patients with HCC, and genes of de novo synthesis of BAs benefit patients with HCC.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Yang
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengtian Wu
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junwei Shao
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qihui Zhou
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zixuan Guo
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Ren
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Chen
- Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Siseho KN, Omoruyi BE, Okeleye BI, Okudoh VI, Amukugo HJ, Aboua YG. Women's perception of cervical cancer pap smear screening. Nurs Open 2022; 9:1715-1722. [PMID: 35243808 PMCID: PMC8994960 DOI: 10.1002/nop2.1196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/16/2022] [Accepted: 01/30/2022] [Indexed: 12/02/2022] Open
Abstract
Aim The study examines limiting factors associated with cervical cancer Pap smear screening among participants of reproductive age attending a healthcare facility in Namibia. Design A cross‐sectional descriptive and exploratory study was conducted. Methods The data were collected using a face‐to‐face interview (qualitative) and a structured questionnaire (quantitative). A total of 49 participants (10 qualitative and 39 quantitative) aged 17–45 years participated in the study. Results The study revealed that 80% of participants have limited knowledge of cervical cancer, while 49% have never done the test before and 8% were not informed of the screening and risk of the disease. Furthermore, 49% of participants responded that the screening fees are not affordable. Meanwhile, all participants (100%) complained of the long waiting period. Other main barriers for not screening were missed announcements and unsuitable time allocation. Knowledge on cervical cancer and turn‐up for Pap smear screening test was low among participants of reproductive age.
Collapse
Affiliation(s)
- Kristine N. Siseho
- Faculty of ScienceSchool of Nursing and Public HealthUniversity of NamibiaWindhoekNamibia
| | - Beauty Etinosa Omoruyi
- Applied Microbial and Health Biotechnology InstituteCape Peninsula University of TechnologyBellvilleSouth Africa
| | - Benjamin I. Okeleye
- Department of Biotechnology and Consumer ScienceCape Peninsula University of TechnologyCape TownSouth Africa
| | - Vincent I. Okudoh
- Department of Biotechnology and Consumer ScienceCape Peninsula University of TechnologyCape TownSouth Africa
| | - Hans J. Amukugo
- Faculty of ScienceSchool of Nursing and Public HealthUniversity of NamibiaWindhoekNamibia
| | - Yapo G. Aboua
- Department of Health SciencesFaculty of Health and Applied SciencesNamibia University of Science and TechnologyWindhoekNamibia
| |
Collapse
|
35
|
Zhang Y, Zhang Y, Shi XJ, Li JX, Wang LH, Xie CE, Wang YL. Chenodeoxycholic Acid Enhances the Effect of Sorafenib in Inhibiting HepG2 Cell Growth Through EGFR/Stat3 Pathway. Front Oncol 2022; 12:836333. [PMID: 35252007 PMCID: PMC8891169 DOI: 10.3389/fonc.2022.836333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is a highly invasive disease with a high mortality rate. Our previous study found that Chenodeoxycholic acid (CDCA) as an endogenous metabolite can enhance the anti-tumor effect. Sorafenib has limited overall efficacy as a first-line agent in HCC, and combined with CDCA may improve its efficacy.MethodsHepG2 cells and Balb/c nude mice were used respectively for in vitro and in vivo experiments. Flow cytometry, Western blotting, HE and immunohistochemical staining and immunofluorescence were used to study the effects of CDCA combined with sorafenib on HepG2 cell growth and apoptosis-related proteins. Magnetic bead coupling, protein profiling and magnetic bead immunoprecipitation were used to find the targets of CDCA action. The effect of CDCA on EGFR/Stat3 signaling pathway was further verified by knocking down Stat3 and EGFR. Finally, fluorescence confocal, and molecular docking were used to study the binding site of CDCA to EGFR.ResultsIn this study, we found that CDCA enhanced the effect of sorafenib in inhibiting the proliferation, migration and invasion of HepG2 cells. Magnetic bead immunoprecipitation and protein profiling revealed that CDCA may enhance the effect of sorafenib by affecting the EGFR/Stat3 signaling pathway. Further results from in vitro and in vivo gene knockdown experiments, confocal experiments and molecular docking showed that CDCA enhances the efficacy of sorafenib by binding to the extracellular structural domain of EGFR.ConclusionThis study reveals the mechanism that CDCA enhances the inhibitory effect of sorafenib on HepG2 cell growth in vitro and in vivo, providing a potential new combination strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Jun Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun-Xiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Heng Wang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-E Xie
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yun-Liang Wang
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yun-Liang Wang,
| |
Collapse
|
36
|
Nazneen F, Millat MS, Barek MA, Aziz MA, Uddin MS, Jafrin S, Aka TD, Islam MS. Genetic Polymorphism of miR-218-2 (rs11134527) in Cervical Cancer: A Case-Control Study on the Bangladeshi Women. Microrna 2022; 10:219-224. [PMID: 34989332 DOI: 10.2174/2211536610666210715102554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The prevalence of Cervical Cancer (CC) is disproportionately higher in developing countries. It is the second most frequent cancer type among Bangladeshi women and the major cause of morbidity and mortality. However, no previous data reported the association of miR-218-2 gene polymorphisms in Bangladeshi cervical cancer patients. AIM This case-control study was designed to find the link between the rs11134527 polymorphism in miR-218-2 and CC. METHODS A total of 488 subjects were recruited, comprising 256 cervical cancer patients and 232 healthy females. Genotyping was conducted with the tetra-primer ARMS-PCR technique to detect the association. RESULTS The results of genotype data showed that rs11134527 was in the Hardy-Weinberg equilibrium in both CC cases and controls (P >0.05). Overall, the polymorphism was found to be significantly associated with an increased risk of cervical cancer with AG genotype (AG vs. GG: OR = 2.26, 95% Cl = 1.40-3.66, P = 0.0008), AA genotype (AA vs. GG: OR = 3.64, 95% Cl = 2.17-6.10, P <0.0001), dominant model (AG+AA vs. GG: OR = 2.75, 95% Cl = 1.75-4.31, P <0.0001), recessive model (AA vs. GG+AG: OR = 2.08, 95% Cl = 1.41-3.08, P = 0.0002), and A allele (A vs. G: OR = 1.94, 95% Cl = 1.51-2.51, P <0.0001). All of these correlations remained statistically significant after performing Bonferroni correction (P <0.008). CONCLUSION Our study suggests that the rs11134527 polymorphism in the miR-218-2 gene contributes to the susceptibility of CC in Bangladeshi women.
Collapse
Affiliation(s)
- Farhana Nazneen
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814,Bangladesh
| | - Md Shalahuddin Millat
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814,Bangladesh
| | - Md Abdul Barek
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814,Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814,Bangladesh
| | - Md Sarowar Uddin
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814,Bangladesh
| | - Sarah Jafrin
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814,Bangladesh
| | - Tutun Das Aka
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814,Bangladesh
| | - Md Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814,Bangladesh
| |
Collapse
|
37
|
Lee KP, Baek S, Yoon MS, Park JS, Hong BS, Lee SJ, Oh SJ, Kwon SH, Lee R, Lee DH, Park KS, Moon BS. Potential anticancer effect of aspirin and 2'-hydroxy-2,3,5'-trimethoxychalcone-linked polymeric micelles against cervical cancer through apoptosis. Oncol Lett 2021; 23:31. [PMID: 34966447 PMCID: PMC8669688 DOI: 10.3892/ol.2021.13149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Although early diagnosis and treatment of cancers in women are achievable through continuous diagnostic tests, cervical cancer (CVC) still has a high mortality rate. In the present study, we investigated whether certain nanoparticles (NPs), comprising aspirin conjugated 2′-hydroxy-2,3,5′-trimethoxychalcone chemicals, could induce the apoptosis of cancer cells. HeLa cells were treated with NPs and the cell viability was evaluated using WST-1 assay. Protein expression of Ki-67 was measured using immunocytochemistry. In addition, the apoptotic effect of NPs was determined using TUNEL assay. To investigate the apoptosis signaling pathways, reverse transcription quantitative PCR was performed and lipid accumulation was observed via holotomographic microscopy. The IC50 value of the NPs was 4.172 µM in HeLa cells. Furthermore, 10 µM NPs significantly inhibited the cell proliferation and stimulated the apoptosis of HeLa cells. In addition, apoptosis and mitochondrial dysfunction were induced by the NPs through lipid accumulation in HeLa cells, leading to apoptotic signaling cascades. Taken together, the results from the present study demonstrated that the NPs developed promoted apoptosis though efficient lipid accumulation in HeLa cells, suggesting that they may provide a novel way to improve the efficacy of CVC anticancer treatment.
Collapse
Affiliation(s)
- Kang Pa Lee
- Research and Development Center, UMUST R&D Corporation, Seoul 01411, Republic of Korea.,Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Suji Baek
- Research and Development Center, UMUST R&D Corporation, Seoul 01411, Republic of Korea
| | - Myeong Sik Yoon
- Department of Pharmaceutical Engineering, Hoseo University, Cheonan, Chungnam 31499, Republic of Korea
| | - Ji Soo Park
- Department of Pharmaceutical Engineering, Hoseo University, Cheonan, Chungnam 31499, Republic of Korea
| | - Bok Sil Hong
- Department of Nursing, Cheju Halla University, Jeju 63092, Republic of Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung Hae Kwon
- Seoul Center, Korean Basic Science Institute, Seoul 02841, Republic of Korea
| | - Ruda Lee
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kang-Seo Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| |
Collapse
|
38
|
Mitra T, Elangovan S. Cervical cancer development, chemoresistance, and therapy: a snapshot of involvement of microRNA. Mol Cell Biochem 2021; 476:4363-4385. [PMID: 34453645 DOI: 10.1007/s11010-021-04249-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is one of the leading causes of death in women due to cancer and a major concern in the developing world. Persistent human papilloma virus (HPV) infection is the major causative agent for CC. Besides HPV infection, genetic and epigenetic factors including microRNA (miRNA) also contribute to the malignant transformation. Earlier studies have revealed that miRNAs participate in cell proliferation, invasion and metastasis, angiogenesis, and chemoresistance processes by binding and inversely regulating the target oncogenes or tumor suppressor genes. Based on functions and mechanistic insights, miRNAs have been identified as cellular modulators that have an enormous role in diagnosis, prognosis, and cancer therapy. Signatures of miRNA could be used as diagnostic markers which are necessary for early diagnosis and management of CC. The therapeutic potential of miRNAs has been shown in CC; however, more comprehensive clinical trials are required for the clinical translation of miRNA-based diagnostics and therapeutics. Understanding the molecular mechanism of miRNAs and their target genes has been useful to develop miRNA-based therapeutic strategies for CC and overcome chemoresistance. In this review, we summarize the role of miRNAs in the development, progression, and metastasis of CC as well as chemoresistance. Further, we discuss the diagnostic and therapeutic potential of miRNAs to overcome chemoresistance and treatment of CC.
Collapse
Affiliation(s)
- Tandrima Mitra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
39
|
Li HL, Cheng Y, Zhou ZW, Long HZ, Luo HY, Wen DD, Cheng L, Gao LC. Isoliensinine induces cervical cancer cell cycle arrest and apoptosis by inhibiting the AKT/GSK3α pathway. Oncol Lett 2021; 23:8. [PMID: 34820007 PMCID: PMC8607237 DOI: 10.3892/ol.2021.13126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Isoliensinine is a bis-benzylisoquinoline alkaloid that can be isolated from the lotus Nelumbo nucifera Gaertn. It has been reported to exert a variety of anti-cancer properties. In the present study, the potential effects of isoliensinine on cervical cancer Siha, HeLa, Caski and C33A cell lines were investigated by using Cell Counting Kit-8 (CCK-8), flow cytometry, western blotting and reverse transcription-PCR (RT-PCR) to measure cell proliferation, the cell cycle and apoptosis, in addition to elucidating the underlying molecular mechanism. Protein levels of p21, CDK2, Cyclin E, Mcl-1, cleaved Caspase-9, AKT, phosphorylated-AKT, glycogen synthase kinase (Gsk)3α, PTEN, and mRNA levels of p21, p15, p27, CDK2, CDK4, Cyclin E, Cyclin D, Gsk3α, Gsk3β and PTEN were measured. Molecular docking assays were used to calculate the strength of binding of isoliensinine to AKT using AutoDock 4.0. Isoliensinine was found to induce cell cycle arrest at the G0/G1 phase by upregulating p21 expression and downregulating CDK2 and cyclin E in cervical cancer cells. In addition, in previous research, isoliensinine promoted cell apoptosis by downregulating myeloid-cell leukemia 1 expression and activating caspase-9. Upstream, isoliensinine significantly downregulated AKT (S473) phosphorylation and GSK3α expression in a dose- and time-dependent manner. The AKT inhibitor AKTi-1/2 enhanced the function of isoliensinine on cell cycle arrest and apoptosis through the AKT/GSK3α pathway. AutoDock analysis showed that isoliensinine can bind to the AKT protein. These findings suggest that isoliensinine can induce cervical cancer cell cycle arrest and apoptosis by inhibiting the AKT/GSK3α pathway, which represents a novel strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Hong-Li Li
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Yan Cheng
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Affiliated to School of Pharmacy, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zi-Wei Zhou
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Affiliated to School of Pharmacy, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui-Zhi Long
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Affiliated to School of Pharmacy, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong-Yu Luo
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Affiliated to School of Pharmacy, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Dan-Dan Wen
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China
| | - Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Li-Chen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, Hunan 410000, P.R. China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Affiliated to School of Pharmacy, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
40
|
Liu W, Li C, Rahaman MM, Jiang T, Sun H, Wu X, Hu W, Chen H, Sun C, Yao Y, Grzegorzek M. Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: From convolutional neural networks to visual transformers. Comput Biol Med 2021; 141:105026. [PMID: 34801245 DOI: 10.1016/j.compbiomed.2021.105026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022]
Abstract
Cervical cancer is a very common and fatal type of cancer in women. Cytopathology images are often used to screen for this cancer. Given that there is a possibility that many errors can occur during manual screening, a computer-aided diagnosis system based on deep learning has been developed. Deep learning methods require a fixed dimension of input images, but the dimensions of clinical medical images are inconsistent. The aspect ratios of the images suffer while resizing them directly. Clinically, the aspect ratios of cells inside cytopathological images provide important information for doctors to diagnose cancer. Therefore, it is difficult to resize directly. However, many existing studies have resized the images directly and have obtained highly robust classification results. To determine a reasonable interpretation, we have conducted a series of comparative experiments. First, the raw data of the SIPaKMeD dataset are pre-processed to obtain standard and scaled datasets. Then, the datasets are resized to 224 × 224 pixels. Finally, 22 deep learning models are used to classify the standard and scaled datasets. The results of the study indicate that deep learning models are robust to changes in the aspect ratio of cells in cervical cytopathological images. This conclusion is also validated via the Herlev dataset.
Collapse
Affiliation(s)
- Wanli Liu
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Md Mamunur Rahaman
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Tao Jiang
- School of Control Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Hongzan Sun
- Shengjing Hospital, China Medical University, Shenyang, 110001, China
| | - Xiangchen Wu
- Suzhou Ruiguan Technology Company Ltd., Suzhou, 215000, China
| | - Weiming Hu
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Haoyuan Chen
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Changhao Sun
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China; Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Luebeck, Luebeck, Germany
| |
Collapse
|
41
|
The Involvement of Natural Polyphenols in the Chemoprevention of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168812. [PMID: 34445518 PMCID: PMC8396230 DOI: 10.3390/ijms22168812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
From all types of cancer, cervical cancer manages to be in top four most frequent types, with a 6.5% rate of occurrence. The infectious vector that induces the disease, the high-risk Human papillomavirus (HPV), which is a sexually transmitted virus, is capable of transforming the host cell by modulating some of the principal signaling pathways responsible for cell cycle arrest, proliferation, and survival. Fortunately, like other cancer types, cervical cancer can be treated by chirurgical interventions or chemoradiotherapy, but these methods are not exactly the lucky clover of modern medicine because of the adverse effects they have. That is the reason why in the last years the emphasis has been on alternative medicine, more specifically on phytochemicals, as a substantial number of studies showed that diet contributes to cancer prevention and treatment. All these studies are trying to find new chemopreventive agents with less toxicity but high effectiveness both in vitro and in vivo. The aim of this review is to evaluate the literature in order to underline the advantages and disadvantages of polyphenols, a class of dietary compounds, as chemopreventive and chemotherapeutic agents. This review also aims to present polyphenols from different perspectives, starting with mechanisms of action and ending with their toxicity. The bigger picture illustrates that polyphenols have great potential in cervical cancer prevention, with strong effects on gene modulation.
Collapse
|
42
|
Wahid M, Dar SA, Jawed A, Mandal RK, Akhter N, Khan S, Khan F, Jogiah S, Rai AK, Rattan R. Microbes in gynecologic cancers: Causes or consequences and therapeutic potential. Semin Cancer Biol 2021; 86:1179-1189. [PMID: 34302959 DOI: 10.1016/j.semcancer.2021.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022]
Abstract
Gynecologic cancers, starting in the reproductive organs of females, include cancer of cervix, endometrium, ovary commonly and vagina and vulva rarely. The changes in the composition of microbiome in gut and vagina affect immune and metabolic signaling of the host cells resulting in chronic inflammation, angiogenesis, cellular proliferation, genome instability, epithelial barrier breach and metabolic dysregulation that may lead to the onset or aggravated progression of gynecologic cancers. While microbiome in gynecologic cancers is just at horizon, certain significant microbiome signature associations have been found. Cervical cancer is accompanied with high loads of human papillomavirus, Fusobacteria and Sneathia species; endometrial cancer is reported to have presence of Atopobium vaginae and Porphyromonas species and significantly elevated levels of Proteobacteria and Firmicutes phylum bacteria, with Chlamydia trachomatis, Lactobacillus and Mycobacterium reported in ovarian cancer. Balancing microbiome composition in gynecologic cancers has the potential to be used as a therapeutic target. For example, the Lactobacillus species may play an important role in blocking adhesions of incursive pathogens to vaginal epithelium by lowering the pH, producing bacteriocins and employing competitive exclusions. The optimum or personalized balance of the microbiota can be maintained using pre- and probiotics, and fecal microbiota transplantations loaded with specific bacteria. Current evidence strongly suggest that a healthy microbiome can train and trigger the body's immune response to attack various gynecologic cancers. Furthermore, microbiome modulations can potentially contribute to improvements in immuno-oncology therapies.
Collapse
Affiliation(s)
- Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Raju Kumar Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha'il, Ha'il, Saudi Arabia
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sudhisa Jogiah
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Women's Health Services, Henry Ford Hospital, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
43
|
Rahaman MM, Li C, Yao Y, Kulwa F, Wu X, Li X, Wang Q. DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Comput Biol Med 2021; 136:104649. [PMID: 34332347 DOI: 10.1016/j.compbiomed.2021.104649] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023]
Abstract
Cervical cancer, one of the most common fatal cancers among women, can be prevented by regular screening to detect any precancerous lesions at early stages and treat them. Pap smear test is a widely performed screening technique for early detection of cervical cancer, whereas this manual screening method suffers from high false-positive results because of human errors. To improve the manual screening practice, machine learning (ML) and deep learning (DL) based computer-aided diagnostic (CAD) systems have been investigated widely to classify cervical Pap cells. Most of the existing studies require pre-segmented images to obtain good classification results. In contrast, accurate cervical cell segmentation is challenging because of cell clustering. Some studies rely on handcrafted features, which cannot guarantee the classification stage's optimality. Moreover, DL provides poor performance for a multiclass classification task when there is an uneven distribution of data, which is prevalent in the cervical cell dataset. This investigation has addressed those limitations by proposing DeepCervix, a hybrid deep feature fusion (HDFF) technique based on DL, to classify the cervical cells accurately. Our proposed method uses various DL models to capture more potential information to enhance classification performance. Our proposed HDFF method is tested on the publicly available SIPaKMeD dataset and compared the performance with base DL models and the late fusion (LF) method. For the SIPaKMeD dataset, we have obtained the state-of-the-art classification accuracy of 99.85%, 99.38%, and 99.14% for 2-class, 3-class, and 5-class classification. This method is also tested on the Herlev dataset and achieves an accuracy of 98.32% for 2-class and 90.32% for 7-class classification. The source code of the DeepCervix model is available at: https://github.com/Mamunur-20/DeepCervix.
Collapse
Affiliation(s)
- Md Mamunur Rahaman
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Frank Kulwa
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Xiangchen Wu
- Suzhou Ruiguan Technology Company Ltd., Suzhou, 215000, China
| | - Xiaoyan Li
- Cancer Hospital of China Medical University, Liaoning Hospital and Institute, Shenyang, 110042, China.
| | - Qian Wang
- Cancer Hospital of China Medical University, Liaoning Hospital and Institute, Shenyang, 110042, China
| |
Collapse
|
44
|
Zhang J, Lu H, Zhang S, Wang T, Zhao H, Guan F, Zeng P. Leveraging Methylation Alterations to Discover Potential Causal Genes Associated With the Survival Risk of Cervical Cancer in TCGA Through a Two-Stage Inference Approach. Front Genet 2021; 12:667877. [PMID: 34149809 PMCID: PMC8206792 DOI: 10.3389/fgene.2021.667877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multiple genes were previously identified to be associated with cervical cancer; however, the genetic architecture of cervical cancer remains unknown and many potential causal genes are yet to be discovered. METHODS To explore potential causal genes related to cervical cancer, a two-stage causal inference approach was proposed within the framework of Mendelian randomization, where the gene expression was treated as exposure, with methylations located within the promoter regions of genes serving as instrumental variables. Five prediction models were first utilized to characterize the relationship between the expression and methylations for each gene; then, the methylation-regulated gene expression (MReX) was obtained and the association was evaluated via Cox mixed-effect model based on MReX. We further implemented the aggregated Cauchy association test (ACAT) combination to take advantage of respective strengths of these prediction models while accounting for dependency among the p-values. RESULTS A total of 14 potential causal genes were discovered to be associated with the survival risk of cervical cancer in TCGA when the five prediction models were separately employed. The total number of potential causal genes was brought to 23 when conducting ACAT. Some of the newly discovered genes may be novel (e.g., YJEFN3, SPATA5L1, IMMP1L, C5orf55, PPIP5K2, ZNF330, CRYZL1, PPM1A, ESCO2, ZNF605, ZNF225, ZNF266, FICD, and OSTC). Functional analyses showed that these genes were enriched in tumor-associated pathways. Additionally, four genes (i.e., COL6A1, SYDE1, ESCO2, and GIPC1) were differentially expressed between tumor and normal tissues. CONCLUSION Our study discovered promising candidate genes that were causally associated with the survival risk of cervical cancer and thus provided new insights into the genetic etiology of cervical cancer.
Collapse
Affiliation(s)
- Jinhui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haojie Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Shuo Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huashuo Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fengjun Guan
- Department of Pediatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
- Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
45
|
Maneenet J, Omar AM, Sun S, Kim MJ, Daodee S, Monthakantirat O, Boonyarat C, Chulikhit Y, Awale S. Benzylisoquinoline alkaloids from Nelumbo nucifera Gaertn. petals with antiausterity activities against the HeLa human cervical cancer cell line. Z NATURFORSCH C 2021; 76:401-406. [PMID: 34019754 DOI: 10.1515/znc-2020-0304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/02/2021] [Indexed: 11/15/2022]
Abstract
Ethanolic extract of Nelumbo nucifera petals showed preferential cytotoxic activity against HeLa human cervical cancer cell line with a PC50 value of 10.4 μg/mL. This active extract was subjected to a phytochemical investigation study which led to the isolation of nine benzylisoquinoline alkaloids (1-9). The isolated compounds exhibited potent antiausterity activities. Moreover, under nutrient-deprived conditions, (-)-lirinidine (8) induced remarkable alterations in HeLa cell morphology including cell shrinkage and plasma blebbing leading to total cell death within 10 h. Mechanistically, 8 was found to inhibit Akt/mTOR signaling pathway. It also induced apoptosis by promoting caspase-3 activation and inhibiting Bcl-2 expression. Therefore, benzylisoquinoline alkaloids skeleton can be considered as a promising scaffold for the anticancer drug development against cervical cancer.
Collapse
Affiliation(s)
- Juthamart Maneenet
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Japan.,Graduate School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Ashraf M Omar
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Sijia Sun
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Min Jo Kim
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Supawadee Daodee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Orawon Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chantana Boonyarat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Japan
| |
Collapse
|
46
|
Soheili M, Keyvani H, Soheili M, Nasseri S. Human papilloma virus: A review study of epidemiology, carcinogenesis, diagnostic methods, and treatment of all HPV-related cancers. Med J Islam Repub Iran 2021; 35:65. [PMID: 34277502 PMCID: PMC8278030 DOI: 10.47176/mjiri.35.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Human papillomavirus (HPV) infection is considered as the most common viral sexually transmitted infection worldwide. This poses an increasingly interdisciplinary medical challenge. Since there is vast scattered information in databases about HPV and the correlated diseases, we decided to collect useful data so that the experts can get a more comprehensive view of HPV. Methods: In this article, HPV-associated diseases, prevalence, prevention, and new treatments are discussed. The retrieved articles reporting the latest data about the required information for our review were selected through searching in Web of Science, Scopus, Medline (PubMed), EMBASE, Cochrane Library, Ovid, and CINHAL with language limitations of English and German. Results: There are 2 groups of HPVs: (1) low-risk HPV types that can lead to genital warts, and (2) high-risk HPV types that are involved in HPV-associated oncogenesis. About 70% of all sexually active women are infected and most of these infections heal within many weeks or months. In the case of HPV-persistence, a risk of preneoplasia or carcinoma exists. These types of viruses are responsible for the existence of genitoanal, gastrointestinal, urinary tract, and head and neck tumors. There is still no definite successful treatment. The detection of HPV-related condylomata occurs macroscopically in women and men, and the diagnosis of the precursors of cervical carcinoma in women is possible by Pap smear. Conclusion: For extragenital manifestations, there is no structured early detection program. Meanwhile, studies on HPV vaccines confirm that they should be used for the primary prevention of HPV-dependent diseases. However, we need more research to find out the real advantages and disadvantages of vaccines.
Collapse
Affiliation(s)
- Maryam Soheili
- School of Kinesiology and Health Science, York University, Toronto, Canada
| | - Hossein Keyvani
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Soheili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Human Revivification Society of Congress 60, Tehran, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine and Medical Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
47
|
Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P, Bertero L, Benedetto C. Gut Microbiota and Gynecological Cancers: A Summary of Pathogenetic Mechanisms and Future Directions. ACS Infect Dis 2021; 7:987-1009. [PMID: 33848139 DOI: 10.1021/acsinfecdis.0c00839] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, important relationships between the microbiota and human health have emerged. A link between alterations of microbiota composition (dysbiosis) and cancer development has been recently demonstrated. In particular, the composition and the oncogenic role of intestinal bacterial flora has been extensively investigated in preclinical and clinical studies focusing on gastrointestinal tumors. Overall, the development of gastrointestinal tumors is favored by dysbiosis as it leads to depletion of antitumor substances (e.g., short-chain fatty acids) produced by healthy microbiota. Moreover, dysbiosis leads to alterations of the gut barrier, promotes a chronic inflammatory status through activation of toll-like receptors, and causes metabolic and hormonal dysregulations. However, the effects of these imbalances are not limited to the gastrointestinal tract and they can influence gynecological tumor carcinogenesis as well. The purpose of this Review is to provide a synthetic update about the mechanisms of interaction between gut microbiota and the female reproductive tract favoring the development of neoplasms. Furthermore, novel therapeutic approaches based on the modulation of microbiota and their role in gynecological oncology are discussed.
Collapse
Affiliation(s)
- Fulvio Borella
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Andrea Roberto Carosso
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Mario Preti
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Giammarco Collemi
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Obstetrics and Gynecology Unit 1, Sant’ Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
48
|
Ferrall L, Lin KY, Roden RBS, Hung CF, Wu TC. Cervical Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 2021; 27:4953-4973. [PMID: 33888488 DOI: 10.1158/1078-0432.ccr-20-2833] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
It is a sad fact that despite being almost completely preventable through human papillomavirus (HPV) vaccination and screening, cervical cancer remains the fourth most common cancer to affect women worldwide. Persistent high-risk HPV (hrHPV) infection is the primary etiologic factor for cervical cancer. Upward of 70% of cases are driven by HPV types 16 and 18, with a dozen other hrHPVs associated with the remainder of cases. Current standard-of-care treatments include radiotherapy, chemotherapy, and/or surgical resection. However, they have significant side effects and limited efficacy against advanced disease. There are a few treatment options for recurrent or metastatic cases. Immunotherapy offers new hope, as demonstrated by the recent approval of programmed cell death protein 1-blocking antibody for recurrent or metastatic disease. This might be augmented by combination with antigen-specific immunotherapy approaches, such as vaccines or adoptive cell transfer, to enhance the host cellular immune response targeting HPV-positive cancer cells. As cervical cancer progresses, it can foster an immunosuppressive microenvironment and counteract host anticancer immunity. Thus, approaches to reverse suppressive immune environments and bolster effector T-cell functioning are likely to enhance the success of such cervical cancer immunotherapy. The success of nonspecific immunostimulants like imiquimod against genital warts also suggest the possibility of utilizing these immunotherapeutic strategies in cervical cancer prevention to treat precursor lesions (cervical intraepithelial neoplasia) and persistent hrHPV infections against which the licensed prophylactic HPV vaccines have no efficacy. Here, we review the progress and challenges in the development of immunotherapeutic approaches for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Louise Ferrall
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland
| | - Ken Y Lin
- Department of Obstetrics and Gynecology and Women's Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Richard B S Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland
| | - T-C Wu
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland. .,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland.,Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, Maryland.,Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
49
|
Taneja N, Chawla B, Awasthi AA, Shrivastav KD, Jaggi VK, Janardhanan R. Knowledge, Attitude, and Practice on Cervical Cancer and Screening Among Women in India: A Review. Cancer Control 2021; 28:10732748211010799. [PMID: 33926235 PMCID: PMC8204637 DOI: 10.1177/10732748211010799] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/21/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cervical Cancer is the second most common cancer among women in the world leading to 90% deaths in low and middle income countries. About 96,922 new Cervical Cancer cases are diagnosed annually in India. OBJECTIVE To study the knowledge, attitude and practice on Cervical Cancer and screening among women in India. MATERIALS AND METHODS Health sciences electronic databases PubMed and Google Scholar were searched for studies published between 2012 to March 2020. Keywords used for the search were ("Cervical Cancer screening"), ("knowledge"),("attitude"), ("practice") AND ("India"). 19 articles were included in the review based on the eligibility criteria. Statistical software SPSS-V.23 was used for the statistical application. RESULTS 7688 women were included in the study. Age of study participants ranged from 12-65 years. Overall knowledge on Cervical Cancer among women was 40.22%. Knowledge of risk factors and signs and symptoms was fairly adequate among the women. 32.68% of women knew that early age of marriage was a risk factor for Cervical Cancer followed by 23.01% women who mentioned that early age of initiation of sexual activity was a common risk factor for Cervical Cancer. Inter menstrual bleeding and foul smelling discharge was the most common sign and symptom reported in 30.75% and 28.86% women respectively. Knowledge, attitude and practice regarding Cervical Cancer screening was seen in 20.31%, 43.64% and 13.22% of women respectively. CONCLUSION Effective information, education and communication strategies are required to improve the level of awareness of women on Cervical Cancer.
Collapse
Affiliation(s)
- Neha Taneja
- Laboratory of Disease Dynamics & Molecular Epidemiology, Amity Institute of Public Health, Amity University, Noida, Uttar Pradesh, India
| | - Bhavika Chawla
- Laboratory of Disease Dynamics & Molecular Epidemiology, Amity Institute of Public Health, Amity University, Noida, Uttar Pradesh, India
| | - Aanchal Anant Awasthi
- Laboratory of Health Data Analytics & Visualization Environment, Amity Institute of Public Health, Amity University, Noida, Uttar Pradesh, India
| | - Kumar Dron Shrivastav
- Laboratory of Health Data Analytics & Visualization Environment, Amity Institute of Public Health, Amity University, Noida, Uttar Pradesh, India
| | - Vinita Kumar Jaggi
- Department of Surgical Oncology (Gynecological Oncology Division), Delhi State Cancer Institute, New Delhi, India
| | - Rajiv Janardhanan
- Laboratory of Disease Dynamics & Molecular Epidemiology, Amity Institute of Public Health, Amity University, Noida, Uttar Pradesh, India
- Laboratory of Health Data Analytics & Visualization Environment, Amity Institute of Public Health, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
50
|
Gupta MK, Ramakrishna V. Identification of targeted molecules in cervical cancer by computational approaches. A THERANOSTIC AND PRECISION MEDICINE APPROACH FOR FEMALE-SPECIFIC CANCERS 2021:213-222. [DOI: 10.1016/b978-0-12-822009-2.00011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|