1
|
Islam A, Mishra A, Ahsan R, Fareha S. Phytopharmaceuticals and Herbal Approaches to Target Neurodegenerative Disorders. Drug Res (Stuttg) 2023; 73:388-407. [PMID: 37308092 DOI: 10.1055/a-2076-7939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurodegeneration is characterized as the continuous functional and structural loss of neurons, resulting in various clinical and pathological manifestations and loss of functional anatomy. Medicinal plants have been oppressed from ancient years and are highly considered throughout the world as a rich source of therapeutic means for the prevention, treatment of various ailments. Plant-derived medicinal products are becoming popular in India and other nations. Further herbal therapies shows good impact on chronic long term illnesses including degenerative conditions of neurons and brain. The use of herbal medicines continues to expand rapidly across the world. The active phytochemical constituents of individual plants are sometimes insufficient to achieve the desirable therapeutic effects. Combining the multiple herbs in a particular ratio (polyherbalism) will give a better therapeutic effect and reduce toxicity. Herbal-based nanosystems are also being studied as a way to enhance the delivery and bioavailability of phytochemical compounds for the treatment of neurodegenerative diseases. This review mainly focuses on the importance of the herbal medicines, polyherbalism and herbal-based nanosystems and its clinical significance for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anas Islam
- Department of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Rabia Ahsan
- Department of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, India
| | - Syed Fareha
- Department of Bioengineering, Integral University,, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci Biobehav Rev 2023; 144:104961. [PMID: 36395982 DOI: 10.1016/j.neubiorev.2022.104961] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer disease (AD), Parkinson disease (PD), and Huntington disease (HD) represent a major socio-economic challenge in view of their high prevalence yet poor treatment outcomes affecting quality of life. The major challenge in drug development for these NDs is insufficient clarity about the mechanisms involved in pathogenesis and pathophysiology. Mitochondrial dysfunction, oxidative stress and inflammation are common pathways that are linked to neuronal abnormalities and initiation of these diseases. Thus, elucidating the shared initial molecular and cellular mechanisms is crucial for recognizing novel remedial targets, and developing therapeutics to impede or stop disease progression. In this context, use of multifunctional compounds at early stages of disease development unclogs new avenues as it acts on act on multiple targets in comparison to single target concept. In this review, we summarize overview of the major findings and advancements in recent years focusing on shared mechanisms for better understanding might become beneficial in searching more potent pharmacological interventions thereby reducing the onset or severity of various NDs.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78992 USA
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Graziosi A, Sita G, Corrieri C, Angelini S, d’Emmanuele di Villa Bianca R, Mitidieri E, Sorrentino R, Hrelia P, Morroni F. Effects of Subtoxic Concentrations of Atrazine, Cypermethrin, and Vinclozolin on microRNA-Mediated PI3K/Akt/mTOR Signaling in SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms232314538. [PMID: 36498866 PMCID: PMC9737829 DOI: 10.3390/ijms232314538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are different natural and synthetic chemicals that may interfere with several mechanisms of the endocrine system producing adverse developmental, metabolic, reproductive, and neurological effects in both human beings and wildlife. Among pesticides, numerous chemicals have been identified as EDCs. MicroRNAs (miRNAs) can regulate gene expression, making fine adjustments in mRNA abundance and regulating proteostasis. We hypothesized that exposure to low doses of atrazine, cypermethrin, and vinclozolin may lead to effects on miRNA expression in SH-SY5Y cells. In particular, the exposure of SH-SY5Y cells to subtoxic concentrations of vinclozolin is able to downregulate miR-29b-3p expression leading to the increase in the related gene expression of ADAM12 and CDK6, which may promote a pro-oncogenic response through the activation of the PI3K/Akt/mTOR pathway and counteracting p53 activity. A better understanding of the molecular mechanisms of EDCs could provide important insight into their role in human disease.
Collapse
Affiliation(s)
- Agnese Graziosi
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Sita
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Corrieri
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Study of Naples—Federico II, via Montesano 49, 80131 Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Study of Naples—Federico II, via Pansini 5, 80131 Naples, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-051-209-1798
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
4
|
Discovery of novel neuroprotective cinnamoyl-M30D hybrids targeting Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Protection against Amyloid-β Oligomer Neurotoxicity by Small Molecules with Antioxidative Properties: Potential for the Prevention of Alzheimer’s Disease Dementia. Antioxidants (Basel) 2022; 11:antiox11010132. [PMID: 35052635 PMCID: PMC8773221 DOI: 10.3390/antiox11010132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Soluble oligomeric assemblies of amyloid β-protein (Aβ), called Aβ oligomers (AβOs), have been recognized as primary pathogenetic factors in the molecular pathology of Alzheimer’s disease (AD). AβOs exert neurotoxicity and synaptotoxicity and play a critical role in the pathological progression of AD by aggravating oxidative and synaptic disturbances and tau abnormalities. As such, they are important therapeutic targets. From a therapeutic standpoint, it is not only important to clear AβOs or prevent their formation, it is also beneficial to reduce their neurotoxicity. In this regard, recent studies have reported that small molecules, most with antioxidative properties, show promise as therapeutic agents for reducing the neurotoxicity of AβOs. In this mini-review, we briefly review the significance of AβOs and oxidative stress in AD and summarize studies on small molecules with AβO-neurotoxicity-reducing effects. We also discuss mechanisms underlying the effects of these compounds against AβO neurotoxicity as well as their potential as drug candidates for the prevention and treatment of AD.
Collapse
|
6
|
Russjan E, Zając D, Sulejczak D, Kleczkowska P, Kaczyńska K. Contribution of opioid and neurotensin receptors in the anti-inflammatory activity of PK20 hybrid compound in murine airways. Clin Exp Pharmacol Physiol 2021; 48:1162-1170. [PMID: 33851456 DOI: 10.1111/1440-1681.13505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022]
Abstract
PK20 is an anti-inflammatory hybrid compound, composed of an endomorphin-2-like and neurotensin-like fragments. The aim of the present study is to assess the contribution of particular pharmacophores to the activity of the hybrid tested. For this purpose, airway hyperresponsiveness, accumulation of inflammatory cells in bronchoalveolar lavage fluid (BALF), concentration of mouse mast cell protease, malondialdehyde and secretory phospholipase 2 activity in lung tissue, as well as production of pro-inflammatory cytokines in BALF and lung were determined by using murine model of non-atopic asthma. Blocking either neurotensin receptors or mu opioid receptors did not alter the potential of PK20 in reducing airway hyperresponsiveness. In studies of inflammatory cells, the beneficial effect of the entire peptide occurs to be mediated by the stimulation of neurotensin receptors. However, regarding cytokine and biochemical assays, pretreatment with both receptor antagonists resulted in a different effect on its activity depending on the parameter studied. To conclude, the activation of both the opioid and neurotensin receptors seems to be necessary to induce the full anti-inflammatory activity of the hybrid compound.
Collapse
Affiliation(s)
- Ewelina Russjan
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Kleczkowska
- Department of Pharmacodynamics, Centre for Preclinical Research (CBP), Medical University of Warsaw, Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Xu M, Huang H, Mo X, Zhu Y, Chen X, Li X, Peng X, Xu Z, Chen L, Rong S, Yang W, Liu S, Liu L. Quercetin-3-O-Glucuronide Alleviates Cognitive Deficit and Toxicity in Aβ 1-42 -Induced AD-Like Mice and SH-SY5Y Cells. Mol Nutr Food Res 2021; 65:e2000660. [PMID: 33141510 DOI: 10.1002/mnfr.202000660] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/30/2020] [Indexed: 02/06/2023]
Abstract
SCOPE Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) related imbalance, Tau-hyperphosphorylation, and neuroinflammation, in which Aβ and neuroinflammation can induce brain insulin resistance (IR). Gut microbiome disorder is correlated with inflammation in AD. As of yet, there are no effective treatments clinically. Thus, it is focused on the potential benefit of quercetin-3-O-glucuronide (Q3G), a pharmacologically active flavonol glucuronide, on AD treatment by regulating brain IR and the gut microbiome. METHODS AND RESULTS AD mice model built through intracerebroventricular injection of Aβ1-42 and AD cell model developed through the SH-SY5Y cell line and Aβ1-42 are used to explore the protective effects of Q3G on AD. Neurobehavioral test, brain insulin signaling pathway, and high-throughput pyrosequencing of 16S rRNA are assessed. Data show that Q3G attenuates neuroinflammation and brain IR in Aβ1-42 -injected mice and relieves apoptosis in Aβ1-42 -treated SH-SY5Y cells by interrupting the downstream insulin signaling. Q3G ameliorates Aβ accumulation and Tau phosphorylation, restores CREB and BDNF levels in the hippocampus , and reverses Aβ1-42 -induced cognitive impairment. Besides, Q3G restores Aβ1-42 -induced reduction of short-chain fatty acids (SCFAs) and gut microbiota dysbiosis. CONCLUSION Q3G can alleviate brain IR through directly acting on the brain or modulating the gut-brain axis, ultimately to relieve Aβ1-42 -induced cognitive dysfunction.
Collapse
Affiliation(s)
- Mengdai Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Hao Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yalun Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xi Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Zihui Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, 2 Huangjiahu West Road, Wuhan, 430065, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shuang Liu
- Hubei Center for Disease Control and Prevention, 6 Zhuodao Quan North Road, Wuhan, 430070, China
- Hubei Provincial Key Laboratory for Applied Toxicology, 666 Gaoxin Road, Wuhan, 430075, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| |
Collapse
|
8
|
Turab Naqvi AA, Hasan GM, Hassan MI. Targeting Tau Hyperphosphorylation via Kinase Inhibition: Strategy to Address Alzheimer's Disease. Curr Top Med Chem 2021; 20:1059-1073. [PMID: 31903881 DOI: 10.2174/1568026620666200106125910] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 01/10/2023]
Abstract
Microtubule-associated protein tau is involved in the tubulin binding leading to microtubule stabilization in neuronal cells which is essential for stabilization of neuron cytoskeleton. The regulation of tau activity is accommodated by several kinases which phosphorylate tau protein on specific sites. In pathological conditions, abnormal activity of tau kinases such as glycogen synthase kinase-3 β (GSK3β), cyclin-dependent kinase 5 (CDK5), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and microtubule affinity regulating kinase (MARK) lead to tau hyperphosphorylation. Hyperphosphorylation of tau protein leads to aggregation of tau into paired helical filaments like structures which are major constituents of neurofibrillary tangles, a hallmark of Alzheimer's disease. In this review, we discuss various tau protein kinases and their association with tau hyperphosphorylation. We also discuss various strategies and the advancements made in the area of Alzheimer's disease drug development by designing effective and specific inhibitors for such kinases using traditional in vitro/in vivo methods and state of the art in silico techniques.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi - 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj - 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi - 110025, India
| |
Collapse
|
9
|
Curcumin and Its Derivatives as Theranostic Agents in Alzheimer's Disease: The Implication of Nanotechnology. Int J Mol Sci 2020; 22:ijms22010196. [PMID: 33375513 PMCID: PMC7795367 DOI: 10.3390/ijms22010196] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a polyphenolic natural compound with diverse and attractive biological properties, which may prevent or ameliorate pathological processes underlying age-related cognitive decline, Alzheimer's disease (AD), dementia, or mode disorders. AD is a chronic neurodegenerative disorder that is known as one of the rapidly growing diseases, especially in the elderly population. Moreover, being the eminent cause of dementia, posing problems for families, societies as well a severe burden on the economy. There are no effective drugs to cure AD. Although curcumin and its derivatives have shown properties that can be considered useful in inhibiting the hallmarks of AD, however, they have low bioavailability. Furthermore, to combat diagnostic and therapeutic limitations, various nanoformulations have also been recognized as theranostic agents that can also enhance the pharmacokinetic properties of curcumin and other bioactive compounds. Nanocarriers have shown beneficial properties to deliver curcumin and other nutritional compounds against the blood-brain barrier to efficiently distribute them in the brain. This review spotlights the role and effectiveness of curcumin and its derivatives in AD. Besides, the gut metabolism of curcumin and the effects of nanoparticles and their possible activity as diagnostic and therapeutic agents in AD also discussed.
Collapse
|
10
|
Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8363245. [PMID: 32832006 PMCID: PMC7422410 DOI: 10.1155/2020/8363245] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury. Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of neurodegenerative diseases.
Collapse
|
11
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin in Health and Diseases: Alzheimer's Disease and Curcumin Analogues, Derivatives, and Hybrids. Int J Mol Sci 2020; 21:ijms21061975. [PMID: 32183162 PMCID: PMC7139886 DOI: 10.3390/ijms21061975] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Worldwide, Alzheimer’s disease (AD) is the most common neurodegenerative multifactorial disease influencing the elderly population. Nowadays, several medications, among them curcumin, are used in the treatment of AD. Curcumin, which is the principal component of Curcuma longa, has shown favorable effects forsignificantly preventing or treating AD. During the last decade, the scientific community has focused their research on the optimization of therapeutic properties and on the improvement of pharmacokinetic properties of curcumin. This review summarizes bibliographical data from 2009 to 2019 on curcumin analogues, derivatives, and hybrids, as well as their therapeutic, preventic, and diagnostic applications in AD. Recent advances in the field have revealed that the phenolic hydroxyl group could contribute to the anti-amyloidogenic activity. Phenyl methoxy groups seem to contribute to the suppression of amyloid-β peptide (Aβ42) and to the suppression of amyloid precursor protein (APP) andhydrophobic interactions have also revealed a growing role. Furthermore, flexible moieties, at the linker, are crucial for the inhibition of Aβ aggregation. The inhibitory activity of derivatives is increased with the expansion of the aromatic rings. The promising role of curcumin-based compounds in diagnostic imaging is highlighted. The keto-enol tautomerism seems to be a novel modification for the design of amyloid-binding agents. Molecular docking results, (Q)SAR, as well as in vitro and in vivo tests highlight the structures and chemical moieties that are correlated with specific activity. As a result, the knowledge gained from the existing research should lead to the design and synthesis ofinnovative and multitargetedcurcumin analogues, derivatives, or curcumin hybrids, which would be very useful drug and tools in medicine for both diagnosis and treatment of AD.
Collapse
|
12
|
Chrysophanol improves memory ability of d-galactose and Aβ 25-35 treated rat correlating with inhibiting tau hyperphosphorylation and the CaM-CaMKIV signal pathway in hippocampus. 3 Biotech 2020; 10:111. [PMID: 32117672 DOI: 10.1007/s13205-020-2103-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/01/2020] [Indexed: 12/25/2022] Open
Abstract
This study was aimed to investigate the effect of Chrysophanol (CHR) on Alzheimer's disease. We also attempted to understand the potential mechanisms. An Alzheimer's disease rat model was established using an intraperitoneal injection of d-galactose combined with an intracerebral injection of amyloid-β peptide (25-35), and the effect of CHR on the learning and memory ability, the hippocampal neurons change, the ultrastructure of the hippocampal CA1 region, the protein levels of CaM, CaMKK, CaMKIV, p-CaMKIV and p-tau in the hippocampus of rats were studied. The results showed that CHR significantly improved the cognitive deficits, alleviated hippocampal neurons damage, prevented the ultrastructure alteration of neurons in hippocampal CA1 region, and reduced the protein levels of CaM, CaMKK, p-CaMKIV and p-tau in the hippocampus of AD rats. These results suggested that Chrysophanol could improve memory ability of Alzheimer's disease rat by inhibiting tau hyperphosphorylation and the CaM-CaMKIV signal pathway.
Collapse
|
13
|
Muñoz VR, Gaspar RC, Esteca MV, Baptista IL, Vieira RFL, da Silva ASR, de Moura LP, Cintra DE, Ropelle ER, Pauli JR. Physical exercise increases ROCK activity in the skeletal muscle of middle-aged rats. Mech Ageing Dev 2020; 186:111213. [PMID: 32032622 DOI: 10.1016/j.mad.2020.111213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
The physical exercise is a potential strategy to control age-related metabolic disorders, such as insulin resistance, impaired glucose homeostasis, and type 2 diabetes. Rho-kinase (ROCK) increases skeletal muscle glucose uptake through Insulin Receptor Substrate 1 (IRS1) phosphorylation. Here, we investigated the role of physical exercise in ROCK pathway in the skeletal muscle of Fischer middle-aged rats. Firstly, we observed the ROCK distribution in different skeletal muscle fiber types. ROCK signaling pathway (ROCK1 and ROCK2) and activity (pMYPT1) were higher in the soleus, which was associated with increased insulin signaling pathway (pIR, pIRS1, pPDK, pGSK3β). Middle-aged rats submitted to physical exercise, showed the upregulation of ROCK2 content and normalized RhoA (ROCK activator enzyme) levels in soleus muscle compared with middle-aged sedentary rats. These molecular changes in middle-aged exercised rats were accompanied by higher insulin signaling (pIRS1, pGSK3β, pAS160, GLUT4) in the soleus muscle. Reinforcing these findings, when pharmacological inhibition of ROCK activity was performed (using Y-27632), the insulin signaling pathway and glucose metabolism-related genes (Tpi, Pgk1, Pgam2, Eno3) were decreased in the soleus muscle of exercised rats. In summary, ROCK signaling seems to contribute with whole-body glucose homeostasis (∼50 %) through its higher upregulation in the soleus muscle in middle-aged exercised rats.
Collapse
Affiliation(s)
- Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Marcos Vinicius Esteca
- Laboratory of Cellular and Tissue Biology, Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Igor Luchini Baptista
- Laboratory of Cellular and Tissue Biology, Faculty of Applied Sciences, University of Campinas (UNICAMP), Limeira, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys Esper Cintra
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|