1
|
Gao RR, Han C, Sui GY, Chen YB, Zhou L, Hu HZ, Wang YC, Liu Y, Li W. Huangqi and Danshen improve the chronic nephrotoxicity of cyclosporin A by regulating lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156582. [PMID: 40056636 DOI: 10.1016/j.phymed.2025.156582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND The clinical application of cyclosporine A (CsA) is limited due to nephrotoxicity. Lipid metabolism disorders play important roles in renal injury, but their role in CsA nephrotoxicity is not yet clear. Huangqi (Astragalus mongholicus Bunge) and Danshen (Salvia miltiorrhiza Bunge) (HD) play roles in ameliorating the nephrotoxicity of CsA, but their mechanisms still need to be fully clarified. OBJECTIVE This study innovatively aimed to analyse the coexpression of renal proteins and serum metabolites for the identification of key pathways and targets. This study provides novel insight into the mechanism by which HD ameliorates CsA-induced nephrotoxicity. METHODS We utilized HD to intervene in both in vivo and in vitro nephrotoxicity models induced by CsA. For the in vivo experiments, we constructed a coexpression network of renal proteins and serum metabolites, which was used to screen for key pathways. To validate these findings, we knocked down key proteins in vivo. For the in vitro studies, we employed MTT, Transwell, flow cytometry, and immunofluorescence assays to monitor the epithelial-mesenchymal transition (EMT) of HK-2 cells. Additionally, we used electron microscopy and Seahorse assays to examine the effects of HD on mitochondrial structure and function. Furthermore, we overexpressed Ppara to further confirm the mechanism by which HD improves renal function. RESULTS HD can improve renal pathological damage and function; regulate blood lipids, inflammation and oxidative stress indicators; and reduce apoptosis in renal tissues. Joint protein and metabolomics analyses revealed that two lipid metabolism-related pathways (the PPAR signalling pathway and linoleic acid metabolism pathway) were coenriched, involving six differential proteins (Cyp2e1, Cyp4a10, Gk, Lpl, Ppara, and Pck1) and two differentially abundant metabolites (alpha-Dimorphecolic acid and 12,13-EpOME). Western blot was used to verify differentially expressed proteins. HD improved mitochondrial damage and lipid accumulation, as demonstrated by transmission electron microscopy (TEM) analysis and Oil Red O staining. Knockdown of the key protein Ppara affected the expression of ACOX1 and exacerbated RF. In vitro verification demonstrated that HD significantly inhibited CsA-induced EMT in HK-2 cells and improved mitochondrial structure and function. Ppara overexpression promoted HD-mediated regulation of mitochondrial function, reduced apoptosis, and improved HK-2 RF. CONCLUSION HD can ameliorate CsA nephrotoxicity through renal protein-serum metabolism coexpression, the PPAR signalling pathway, and linoleic acid metabolism. HD-induced upregulation of Ppara to regulate lipid metabolism, improve mitochondrial function and reduce apoptosis are important mechanisms. The Ppara/ACOX1/TGF-β1 axis may play an important role in this process. These findings offer potential targets for the future development of therapeutic strategies and novel drugs.
Collapse
Affiliation(s)
- Ran-Ran Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Cong Han
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China.
| | - Gui-Yuan Sui
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Yi-Bing Chen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Le Zhou
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Hong-Zhen Hu
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Yi-Chuan Wang
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Yao Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, PR China.
| |
Collapse
|
2
|
Chen M, Fu B, Zhou H, Wu Q. Therapeutic potential and mechanistic insights of astragaloside IV in the treatment of arrhythmia: a comprehensive review. Front Pharmacol 2025; 16:1528208. [PMID: 40276608 PMCID: PMC12018449 DOI: 10.3389/fphar.2025.1528208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Arrhythmia, a common cardiovascular disorder, results from disturbances in cardiac impulse generation and conduction, leading to decreased cardiac output and myocardial oxygenation, with potentially life-threatening consequences. Despite advancements in therapeutic approaches, the incidence and mortality associated with arrhythmia remain high, and drug-related adverse effects continue to pose significant challenges. Traditional Chinese Medicine (TCM) has attracted considerable attention for its potential as a complementary and alternative approach in treating cardiovascular diseases, including arrhythmia. Astragalus, a prominent herb in TCM, is commonly used in clinical practice for its multi-faceted therapeutic properties, encompassing anti-arrhythmic, cardiotonic, anti-inflammatory, and immunomodulatory effects. Astragaloside IV, a primary active compound in Astragalus membranaceus, has demonstrated cardioprotective effects through mechanisms such as antioxidant, anti-inflammatory, and anti-apoptotic activities. Although evidence suggests that astragaloside IV holds promise in arrhythmia treatment, comprehensive reviews of its specific mechanisms and clinical applications in arrhythmia are scarce. This review systematically explores the pharmacological properties and underlying mechanisms of astragaloside IV in arrhythmia treatment. Utilizing a targeted search of databases including PubMed, Web of Science, Cochrane Library, Embase, CNKI, and Wanfang Data, we summarize recent findings and examine astragaloside IV's potential applications in arrhythmia prevention and treatment. Our analysis aims to provide a theoretical foundation for the development of novel arrhythmia treatment strategies, while offering insights into future research directions for clinical application.
Collapse
Affiliation(s)
- Meilian Chen
- Cardiac and Pulmonary Department, Quanzhou Hospital of Traditional Chinese Medicine, Fujian, China
| | - Binlan Fu
- Department of Internal Medicine, Chen Dai Central Health Center, Jinjiang, China
| | - Hao Zhou
- Department of Cardiology, The 966th Hospital of The PLA Joint Logistic Support Force, Dandong, China
| | - Qiaomin Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Chen F, Zhang H, Wei Q, Tang J, Yin L, Ban Y, Zhou Q. Disrupted gut microbiota promotes the progression of chronic kidney disease in 5/6 nephrectomy mice by Bacillus pumilus gavage. Front Cell Infect Microbiol 2025; 15:1548767. [PMID: 40171160 PMCID: PMC11959065 DOI: 10.3389/fcimb.2025.1548767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background Our previous study identified differences in the gut microbiota between patients with chronic kidney disease (CKD) and healthy individuals. We observed that antibiotic-treated mice exhibited symptoms similar to those of patients with CKD after receiving a gut microbiota transplant from patients with CKD. Bacillus pumilus (B. pumilus), an alien microorganism to both human and mouse gut microbiota, possesses antibiotic properties that can alter the microbial community structure. Therefore, this study aimed to explore how changes in the gut microbiota structure induced by the oral gavage of B. pumilus affect the progression of CKD. We sought to identify the gut microbes and metabolic pathways associated with CKD to lay the groundwork for future clinical probiotic applications in patients with CKD. Methods We constructed sham-operated and 5/6 nephrectomy mice as the sham control (SC) and CKD models, respectively. CKD models were divided into a control group (CG) and an intervention group (IG). After 16 weeks of normal feeding, the IG were treated with B. pumilus by oral gavage, while SC and CG were treated with PBS once daily, 5 days per week, for 7 weeks. Fecal samples were collected for 16s rRNA sequencing and metabolomic analysis, kidneys were harvested for histological examination, and the colon was used for RT-PCR analysis. Results B. pumilus intervention exacerbated gut microbial homeostasis in CKD mice and increased serum creatinine and urea nitrogen levels, further aggravating kidney damage. 16s rRNA and metabolomic analysis revealed that Parvibacter and Enterorhabdus were probiotics related to kidney function, while Odoribacter was associated with kidney injury. Metabolomic analysis showed that glycerophospholipid and lysine metabolism were upregulated in CKD model mice, correlating with kidney damage. Conclusion This study shows that changes in the gut microbiota can affect the kidneys through gut metabolism, confirming that the lack of probiotics and the proliferation of harmful bacteria leading to gut microbiota dysbiosis are drivers of CKD progression. Our findings provide a basis for clinical interventions using gut microbes and offer a reference for targeted probiotic therapy.
Collapse
Affiliation(s)
- Fei Chen
- Blood Purification Centre, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Hailin Zhang
- Blood Purification Centre, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Qianqian Wei
- Blood Purification Centre, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Jie Tang
- Nursing Department, Yixing Traditional Chinese Medicine Hospital, Wuxi, China
| | - Lixia Yin
- Blood Purification Centre, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Yanan Ban
- Blood Purification Centre, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Qifan Zhou
- Blood Purification Centre, The First People’s Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
4
|
Wang H, Wang J, Chen Y, Yang D, Xiong L. Global research progress and trends in traditional Chinese medicine for chronic kidney disease since the 21st century: a bibliometric analysis. Front Med (Lausanne) 2025; 11:1480832. [PMID: 39895816 PMCID: PMC11782275 DOI: 10.3389/fmed.2024.1480832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Objective This study analyzed literature on traditional Chinese medicine (TCM) in treating chronic kidney disease (CKD) to identify research trends and provide guidance for future studies and clinical practice. Methods The study used data from Web of Science from 2000 to 2024 to analyze English-language literature on CKD and TCM. Bibliometric analysis was done using R software and the bibliometric package, with scientific mapping and visualization analysis conducted using tools like Citespace, VOSviewer, and ScimagoGraphica to explore research trends and connections. Results This study revealed that a total of 1,153 relevant documents were retrieved, and the number of published articles showed an increasing trend, reaching a peak in 2022. In terms of article publication, China ranked first with 760 articles, closely followed by the United States with 132 articles. Guangzhou University of Traditional Chinese Medicine published 60 papers, the most among academic institutions, followed by Shanghai University of Traditional Chinese Medicine with 54 papers. In terms of individual authors, Liu Xinhui holds the record for the highest number of published articles, totaling 17, followed by Li Ping and Li Shunmin. The prevalent keywords include "chronic kidney disease," "TCM," and "oxidative stress." Currently, the prominent areas of research interest include network pharmacology, gut microbiota, oxidative stress, and related topics. The current research trend in this field is towards the adoption of novel methodologies such as network pharmacology and the emphasis on exploring the relationship between gut microbiota and CKD. Conclusion Global research on TCM in the treatment of CKD is showing a positive development trend, but further research on safety, efficacy evaluation, and international cooperation is still needed. The development trend is to adopt new scientific research methods and focus on exploring the mechanism of TCM in treating CKD.
Collapse
Affiliation(s)
- Heyong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Jun Wang
- School Clinic, Luoyang Vocational College of Culture and Tourism, Luoyang, Henan Province, China
| | - Yang Chen
- Department of Nephrology, Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Dianxing Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lanyue Xiong
- Department of Cardiovascular, Chengdu First People's Hospital, Chengdu, China
| |
Collapse
|
5
|
Li Y, Luo Y, Hu Y, Li S, Li G, Zhang W, Gu X, Wang J, Li S, Cheng H. Network pharmacology and multi-omics validation of the Jianpi-Yishen formula in the treatment of chronic kidney disease. Front Immunol 2025; 15:1512519. [PMID: 39877349 PMCID: PMC11772200 DOI: 10.3389/fimmu.2024.1512519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Objective Chronic kidney disease (CKD) is a major global health problem. In clinical practice, the Chinese patent herbal medicine Jianpi-Yishen (JPYS) formula is commonly used to treat CKD. However, the molecular mechanisms by which JPYS targets and modulates the host immune response remain unclear. Methods This study utilized network pharmacology, RNA sequencing (RNA-seq), and metabolic analyses using in vivo and in vitro models to investigate the impact of the JPYS formula on inflammation and the immune system. Specifically, the study focused on macrophage polarization and metabolic changes that may slow down the progression of CKD. Results A total of 14,946 CKD-related targets were identified from the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases through network pharmacology analyses. 227 potential targets of the JPYS formula were predicted using the TCMSP database. Additionally, network diagram demonstrated that 11 targets were associated with macrophage activity. In vivo studies indicated that the JPYS formula could reduce blood urea nitrogen and serum creatinine in adenine-induced CKD rats. Furthermore, the formula inhibited inflammatory damage and abnormal macrophage infiltration in this CKD model. RNA-seq, proteomic and metabolic analyses identified the regulation of amino acid metabolism by betaine, specifically referring to glycine, serine, and threonine metabolism, as a key target of the JPYS formula in slowing the progression of CKD. In addition, in vitro studies suggested that JPYS may enhance tryptophan metabolism in M1 macrophage polarization and betaine metabolism in M2 macrophage polarization. Conclusions The JPYS formula has been shown to have beneficial impact on CKD; a key mechanism is the mitigation of inflammatory damage through the interaction between amino acid metabolism and macrophage polarization. Of specific importance in this context are the roles of tryptophan in M1 polarization and betaine in M2 polarization.
Collapse
Affiliation(s)
- Yuyan Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yueming Luo
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yilan Hu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Siting Li
- Beijing Tongrentang Hospital of Traditional Chinese Medicine, Beijing, China
| | - Guandong Li
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wanyangchuan Zhang
- Department of Minimally Invasive Intervention and Vascular Surgery, Chongqing Red Cross Hospital (People’s Hospital of Jiangbei District), Chongqing, China
| | - Xiufen Gu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianting Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hong Cheng
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
6
|
Zuo Y, Zha D, Zhang Y, Yang W, Jiang J, Wang K, Zhang R, Chen Z, He Q. Dysregulation of the 3β-hydroxysteroid dehydrogenase type 2 enzyme and steroid hormone biosynthesis in chronic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1358124. [PMID: 39525849 PMCID: PMC11543464 DOI: 10.3389/fendo.2024.1358124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/10/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Chronic kidney disease (CKD) presents a critical global health challenge, marked by the progressive decline of renal function. This study explores the role of the 3β-hydroxysteroid dehydrogenase type 2 enzyme (HSD3B2) and the steroid hormone biosynthesis pathway in CKD pathogenesis and progression. Methods Using an adenine-induced CKD mouse model, we conducted an untargeted metabolomic analysis of plasma samples to identify key metabolite alterations associated with CKD. Immunohistochemistry, Western blotting, and qPCR analyses were performed to confirm HSD3B2 expression in both human and mouse tissues. Additionally, Nephroseq and Human Protein Atlas data were utilized to assess the correlation between HSD3B2 and kidney function. Functional studies were conducted on HK2 cells with HSD3B2 knockdown to evaluate the impact on cell proliferation and apoptosis. Results Metabolic characteristics revealed significant shifts in CKD, with 61 metabolites increased and 65 metabolites decreased, highlighting the disruption in steroid hormone biosynthesis pathways influenced by HSD3B2. A detailed examination of seven key metabolites underscored the enzyme's central role. HSD3B2 exhibited a strong correlation with kidney function, supported by data from Nephroseq and the Human Protein Atlas. Immunohistochemistry, Western blotting, and qPCR analyses confirmed a drastic reduction in HSD3B2 expression in CKD-affected kidneys. Suppressed proliferation and increased apoptosis rates in HSD3B2 knocked down HK2 cells further demonstrated the enzyme's significance in regulating renal pathophysiology. Discussion These findings underscore the potential of HSD3B2 as a clinical diagnostic and therapeutic target in CKD. While further studies are warranted to fully elucidate the mechanisms, our results provide valuable insights into the intricate interplay between steroid hormone biosynthesis and CKD. This offers a promising avenue for precision medicine approaches and personalized treatment strategies.
Collapse
Affiliation(s)
- Yiyi Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Dongqing Zha
- Division of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wan Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kangning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Runze Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ziyi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qing He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Huang X, Peng Y, Lu L, Gao L, Wu S, Lu J, Liu X. Huangqi-Danshen Decoction Against Renal Fibrosis in UUO Mice via TGF-β1 Induced Downstream Signaling Pathway. Drug Des Devel Ther 2024; 18:4119-4134. [PMID: 39296670 PMCID: PMC11410030 DOI: 10.2147/dddt.s457100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
Background Huangqi-Danshen decoction (HDD) is a Chinese medicinal herb pair with good efficacy in treating chronic kidney disease, but its mechanism needs to be clarified. Aim To uncover the underlying mechanism of HDD antagonizing renal fibrosis through network pharmacology (NP) analysis and experimental validation. Materials and Methods The chemical components of water extract of HDD were analyzed by combining the ultra-high performance liquid chromatography coupled with Q-Exactive mass spectrum analysis (UHPLC-QE-MS) and HERB database. NP was used to identify core common targets of HDD components and renal fibrosis. Subsequently, male C57BL/6 mice were divided into Sham, unilateral ureteral obstruction (UUO) and UUO+HDD groups. Renal function, histopathology, Western blotting, and immunohistochemistry analyses were used to evaluate the protective effect of HDD on UUO mice. The effects of HDD on signaling pathways were validated in both UUO mice and transforming growth factor-β1 (TGF-β1)-induced HK-2 cells. Results By combining UHPLC-QE-MS analysis and HERB database, 25 components were screened in HDD extract. There were 270 intersection targets of the 25 components and renal fibrosis. Based on their scores in protein-protein interaction analysis and degree values in component-pathway-target triadic network, 6 core common targets of the 25 components and renal fibrosis were identified, namely phosphoinositide 3-kinase (PI3K), signal transducer and activator of transcription 3 (Stat3), non-receptor tyrosine kinase Src (Src), epidermal growth factor receptor (EGFR), matrix metalloproteinase 9 (MMP9), and MMP2. HDD ameliorated renal tubular damage and collagen deposition and downregulated fibrosis-related proteins expression in UUO mice. Furthermore, HDD was demonstrated to reduce PI3K, Stat3, Src, EGFR, and MMP2 expressions, and enhance MMP9 expression in the kidney of UUO mice and in TGF-β1-induced HK-2 cells. Conclusion HDD can alleviate renal fibrosis which may be related to regulating the expression of essential proteins in the epithelial-mesenchymal transition and extracellular matrix production/degradation signaling pathways.
Collapse
Affiliation(s)
- Xi Huang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yu Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Lingfei Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Liwen Gao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Shanshan Wu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Xiao Y, Liu R, Zhang X, Li Y, Peng F, Tang W. Analysis of cantharidin-induced kidney injury and the protective mechanism of resveratrol in mice determined by liquid chromatography/mass spectrometry-based metabonomics. J Appl Toxicol 2024; 44:990-1004. [PMID: 38448202 DOI: 10.1002/jat.4596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cantharidin (CTD) is the main active component in the traditional Chinese medicine Mylabris and an effective anti-tumor agent. However, it is relatively toxic and exhibits nephrotoxicity, which limits its clinical use. However, its toxic mechanism is not clear. The toxic effects of CTD exposure on the kidney and the protective effect of resveratrol (RES) were studied in a mouse model, by determination of serum biochemical and renal antioxidant indicators, histopathological and ultrastructural observation, and metabonomics. After CTD exposure, serum uric acid, creatinine, and tissue oxidative stress indicators increased, and the renal glomerular and tubular epithelial cells showed clear pathological damage. Ultrastructure observation revealed marked mitochondrial swelling, endoplasmic reticulum dilation, and the presence of autophagy lysosomes in glomerular epithelial cells. RES ameliorated the renal injury induced by CTD. Metabonomics analysis indicated that CTD can induce apoptosis and oxidative damage in kidney cells, mainly by disrupting sphingolipid and glutathione metabolism, increasing sphingosine and sphingomyelin levels, and decreasing glutathione levels. RES counteracts these effects by regulating renal cell proliferation, the inflammatory response, oxidative stress, and apoptosis, by improving the levels of phosphatidylcholine (PC), LysoPC, and lysophosphatidyl glycerol in the glycerophospholipid metabolism pathway, thereby reducing CTD-induced nephrotoxicity. The mechanisms of CTD-induced renal injury and the protective effect of RES were revealed by metabonomics, providing a basis for evaluating clinical treatment regimens to reduce CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ruxia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoyue Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yaofeng Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fang Peng
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
9
|
Chen Z, Wu S, Huang L, Li J, Li X, Zeng Y, Chen Z, Chen M. Colonic microflora and plasma metabolite-based comparative analysis of unilateral ureteral obstruction-induced chronic kidney disease after treatment with the Chinese medicine FuZhengHuaYuJiangZhuTongLuo and AST-120. Heliyon 2024; 10:e24987. [PMID: 38333870 PMCID: PMC10850519 DOI: 10.1016/j.heliyon.2024.e24987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background Many researchers have investigated the use of Chinese herbs to delay the progression of chronic kidney disease (CKD) through their effects on colonic microflora and microbiota-derived metabolites. However, whether FuZhengHuaYuJiangZhuTongLuo (FZHY) has effects that are similar to those of AST-120 on CKD needs to be elucidated. Methods In this study, we compared the effects of FZHY and AST-120 on the colonic microbiota and plasma metabolites in the CKD rat model. We developed a unilateral ureteral obstruction (UUO)-induced CKD rat model and then administered FZHY and AST-120 to these model rats. Non-targeted metabolomic LC-MS analysis, 16S rRNA sequencing, and histopathological staining were performed on plasma, stool, and kidney tissues, respectively, and the joint correlation between biomarkers and metabolites of candidate bacteria was analyzed. Results Our results showed that administering FZHY and AST-120 effectively ameliorated UUO-induced abnormal renal function and renal fibrosis and regulated the composition of microbiota and metabolites. Compared to the UUO model group, the p_Firmicutes and o_Peptostreptococcales_Tissierellales were increased, while 14 negative ion metabolites were upregulated and 21 were downregulated after FZHY treatment. Additionally, 40 positive ion metabolites were upregulated and 63 were downregulated. On the other hand, AST-120 treatment resulted in an increase in the levels of g_Prevotellaceae_NK3B31_group and f_Prevotellaceae, as well as 12 upregulated and 23 downregulated negative ion metabolites and 56 upregulated and 63 downregulated positive ion metabolites. Besides, FZHY increased the levels of candidate bacterial biomarkers that were found to be negatively correlated with some poisonous metabolites, such as 4-hydroxyretinoic acid, and positively correlated with beneficial metabolites, such as l-arginine. AST-120 increased the levels of candidate bacterial biomarkers that were negatively correlated with some toxic metabolites, such as glycoursodeoxycholic acid, 4-ethylphenol, and indole-3-acetic acid. Conclusion FZHY and AST-120 effectively reduced kidney damage, in which, the recovery of some dysregulated bacteria and metabolites are probably involved. As their mechanisms of regulation were different, FZHY might play a complementary role to AST-120 in treating CKD.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Shaobo Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Li Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Jing Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xueying Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yu Zeng
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Zejun Chen
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu Traditional Chinese and Western Medicine Hospital, Chengdu First People's Hospital, Chengdu, Sichuan 610072, China
| | - Ming Chen
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| |
Collapse
|
10
|
Liu Y, Xiang R, Lu W, Qin X. Symptom-oriented network pharmacology revealed the mechanism of HuangQi-DanShen herb pair against cerebral ischemia coupled with comprehensive chemical characterization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116845. [PMID: 37437791 DOI: 10.1016/j.jep.2023.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the clinical practice of traditional Chinese medicine, HuangQi-DanShen (HD) is an important drug pair for the treatment of cerebral ischemia (CI). AIM OF THE STUDY Elucidate the mechanism of HD against CI based on symptom-oriented network pharmacology coupled with comprehensive chemical characterization. MATERIALS AND METHODS UHPLC-Q-Exactive Orbitrap-MS technology was firstly used to obtain the chemical profile of HD constituents. A comprehensive strategy combining in-house library, diagnostic ions, Compound Discover software and network databases was then established to identify its chemical constitutes. Symptomatic treatment is a treatment aimed at relieving or eliminating symptoms which is often characterized as a stop-gap measure due to its inability to cure the disease fundamentally. Nevertheless, symptomatic treatment is an indispensable part of clinical practice and has an important place in medical therapeutics. Therefore, network pharmacology technique were used to elucidate molecular mechanisms from the symptoms of CI. Finally, some literatures were further mined to support our conclusions. RESULTS A total of 190 ingredients were identified in HD. Symptom-oriented network pharmacology analysis indicated that compounds of HD relieved "blood" through the regulation of ADORA2A, ADORA1, PTPN11, MMP9 and EGFR, relieved "qi" via the regulation of ADORA2A, EGFR, MMP9 and CA2. The therapeutic effect of HD on "faint" was linked to PTPN11 and MMP9, while the regulation of "dyskinesia" was related to ADORA2A and EGFR, and ADORA1, PTPN11 and MMP9 were associated withe its effect on "speech disorder". ADORA1, ADORA2A and MMP9 were key to the HD component in treating "visual disturbance". CONCLUSION The approach of symptom-oriented network pharmacology coupled with comprehensive chemical characterization proposed a further orientation for exploring the mechanisms of HD against CI.
Collapse
Affiliation(s)
- Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Ruoxin Xiang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Wentian Lu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, PR China.
| |
Collapse
|
11
|
Liu X, Gao L, Huang X, Deng R, Wu S, Peng Y, Lu J. Huangqi-Danshen decoction protects against cisplatin-induced acute kidney injury in mice. Front Pharmacol 2023; 14:1236820. [PMID: 38034992 PMCID: PMC10687478 DOI: 10.3389/fphar.2023.1236820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Acute kidney injury (AKI) induced by cisplatin remains a major impediment to the clinical application of cisplatin, necessitating urgent exploration for promising solutions. Huangqi-Danshen decoction (HDD), a Chinese herbal preparation, has been shown by our group to have a reno-protective effect in adenine-induced chronic kidney disease mice and diabetic db/db mice. However, the effect of HDD on cisplatin-induced AKI and its underlying mechanisms are unknown. Methods: The AKI model was established by intraperitoneal injection of cisplatin (20 mg/kg) in C57BL/6 mice. The mice in the treatment group were administrated with HDD (6.8 g/kg/d) for 5 consecutive days before cisplatin challenge. After 72 h cisplatin injection, blood and kidney tissue were subsequently collected for biochemical detection, histopathological evaluation, Western blot analysis, immunohistochemical staining, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling assay. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to detect changes in renal metabolites. Results: The results showed that HDD significantly reduced serum creatinine and blood urea nitrogen levels and alleviated renal histopathological injury in cisplatin-induced AKI mice. And HDD treatment demonstrated a significant inhibition in apoptosis, inflammation, and oxidative stress in AKI mice. Moreover, non-target metabolomics revealed that HDD significantly restored 165 altered metabolites in AKI mice. Subsequent enrichment analysis and pathway analysis of these metabolites indicated that nicotinate and nicotinamide metabolism was the primary pathway affected by HDD intervention. Further investigation showed that HDD could upregulate nicotinamide adenine dinucleotide (NAD+) biosynthesis-related enzymes quinolinate phosphoribosyltransferase, nicotinamide mononucleotide adenylyltransferase 1, and nicotinamide phosphoribosyltransferase to replenish NAD+ content in the kidney of AKI mice. Conclusion: In summary, HDD exerted a protective effect against cisplatin-induced AKI and suppressed apoptosis, inflammation, and oxidative stress in the kidney of AKI mice, which may be attributed to the modulation of NAD+ biosynthesis.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Liwen Gao
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xi Huang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ruyu Deng
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Shanshan Wu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yu Peng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Li XL, Guo ZF, Wen XD, Li MN, Yang H. A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices. J Chromatogr A 2023; 1710:464417. [PMID: 37778098 DOI: 10.1016/j.chroma.2023.464417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Liquid chromatography-tandem with high-resolution mass spectrometry (LCHRMS) has proven challenging for annotating multiple small molecules within complex matrices due to the complexities of chemical structure and raw LCHRMS data, as well as limitations in previous literatures and reference spectra related to those molecules. In this study, we developed a molecular networking assisted automatic database screening (MN/auto-DBS) strategy to examine the combined effect of MS1 exact mass screening and MS2 similarity analysis. We compiled all previously reported compounds from the relevant literatures. With the development of a Python software, the in-house database (DB) was created by automatically calculating the m/z and data from experimental MS1 hits were rapid screened with DB. We then performed a feature-based molecular network analysis on the auto-MS2 data for supplementary identification of unreported compounds, including clustered FBMN and annotated GNPS compounds. Finally, the results from both strategies were merged and manually curated for correct structural assignment. To demonstrate the applicability of MN/auto-DBS, we selected the Huangqi-Danshen herb pair (HD), commonly used in prescriptions or patent medicines to treat diabetic nephropathy and cerebrovascular disease. A total of 223 compounds were annotated, including 65 molecules not previously reported in HD, such as aromatic polyketides, coumarins, and diarylheptanoids. Using MN/auto-DBS, we can profile and mine a wide range of complex matrices for potentially new compounds.
Collapse
Affiliation(s)
- Xin-Lu Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China
| | - Zi-Fan Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiao-Dong Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China.
| | - Meng-Ning Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China.
| |
Collapse
|
13
|
Huang X, Gao L, Deng R, Peng Y, Wu S, Lu J, Liu X. Huangqi-Danshen decoction reshapes renal glucose metabolism profiles that delays chronic kidney disease progression. Biomed Pharmacother 2023; 164:114989. [PMID: 37315436 DOI: 10.1016/j.biopha.2023.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Huangqi-Danshen decoction (HDD), a Chinese herbal preparation, is effective in clinical treatment of chronic kidney disease (CKD). However, the underlying mechanism remains to be clarified. In this study, we aimed to investigate the role of HDD in the regulation of renal glucose metabolism in a CKD mouse model. The 0.2% adenine-induced CKD mouse model was administered HDD extract at a dose of 6.8 g/kg/day for 4 weeks. Detection of renal glucose metabolites was performed by ultra-performance liquid chromatography-tandem mass spectrometry. The expression of renal fibrosis and glucose metabolism-related proteins was tested by Western blotting, immunohistochemistry, and immunofluorescence. The results showed that HDD treatment could significantly reduce serum creatinine (0.36 ± 0.10 mg/dL vs. 0.51 ± 0.07 mg/dL, P < 0.05) and blood urea nitrogen (40.02 ± 3.73 mg/dL vs. 62.91 ± 10 mg/dL, P < 0.001) levels, and improve renal pathological injury and fibrosis. Aberrant glucose metabolism was found in the kidneys of CKD mice, manifested by enhanced glycolysis and pentose phosphate pathway, and tricarboxylic acid cycle inhibition, which could be partially restored by HDD treatment. Furthermore, HDD regulated the expression of hexokinase 2, phosphofructokinase, pyruvate kinase M2, pyruvate dehydrogenase E1, oxoglutarate dehydrogenase, and glucose-6-phosphate dehydrogenase in CKD mice. In conclusion, HDD protected against adenine-induced CKD, reshaped glucose metabolism profiles, and restored the expression of key enzymes of glucose metabolism in the kidneys of CKD mice. This study sheds light on targeting glucose metabolism for the treatment of CKD and screening small molecule compounds from herbal medicine to slow CKD progression.
Collapse
Affiliation(s)
- Xi Huang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Liwen Gao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Ruyu Deng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Yu Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Shanshan Wu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China.
| |
Collapse
|
14
|
Qi J, Luo Q, Zhang Q, Wu M, Zhang L, Qin L, Xue Q, Nie X. Yi-Shen-Xie-Zhuo formula alleviates cisplatin-induced AKI by regulating inflammation and apoptosis via the cGAS/STING pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116327. [PMID: 36889420 DOI: 10.1016/j.jep.2023.116327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-Shen-Xie-Zhuo formula (YSXZF) is a traditional Chinese medicine prescription developed from the classic prescription Mulizexie powder documented in the book of Golden Chamber Synopsis and the Buyanghuanwu Decoction recorded in the book of Correction of Errors in Medical Classics. According to our years of clinical experience, YSXZF can effectively improve qi deficiency and blood stasis in kidney disease. However, its mechanisms need further clarification. AIM OF THE STUDY Apoptosis and inflammation play key roles in acute kidney disease (AKI). The Yi-Shen-Xie-Zhuo formula, consisting of four herbs, is commonly used for treating renal disease. However, the underlying mechanism and bioactive components remain unexplored. This study aimed to investigate the protective effects of YSXZF against apoptosis and inflammation in a cisplatin-treated mouse model, and identify the main bioactive components of YSXZF. MATERIALS AND METHODS C57BL/6 mice were administered cisplatin (15 mg/kg) with or without YSXZF (11.375 or 22.75 g/kg/d). HKC-8 cells were treated with cisplatin (20 μM) with or without YSXZF (5% or 10%) for 24 h. Renal function, morphology, and cell damage were evaluated. UHPLC-MS was used to analyze the herbal components and metabolites in the YSXZF-containing serum. RESULTS Blood urea nitrogen (BUN), serum creatinine, serum and urine neutrophil gelatinase-associated lipocalin (NGAL) levels were clearly increased in the cisplatin-treated group. Administration of YSXZF reversed these changes; it improved renal histology, downregulated kidney injury molecule 1 (KIM-1) expression, and lowered the number of TdT-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. YSXZF significantly downregulated cleaved caspase-3 and BAX, and upregulated BCL-2 proteins in renal tissues. YSXZF suppressed increase in cGAS/STING activation and inflammation. In vitro treatment with YSXZF markedly reduced cisplatin-induced HKC-8 cell apoptosis, relieved cGAS/STING activation and inflammation, improved mitochondrial membrane potential (MMP), and lowered reactive oxygen species (ROS) overgeneration. Small RNA interference (siRNA)-mediated silencing of cGAS or STING inhibited the protective effects of YSXZF. Twenty-three bioactive constituents from the YSXZF-containing serum were identified as key components. CONCLUSION This is the first study to demonstrate that YSXZF protects against AKI by suppressing inflammation and apoptosis via the cGAS/STING signaling pathway.
Collapse
Affiliation(s)
- Jieying Qi
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Qin Luo
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Qiaoying Zhang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Mengni Wu
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Lili Zhang
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Linsen Qin
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Qi Xue
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Xiaoli Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
15
|
Kamt SF, Liu J, Yan LJ. Renal-Protective Roles of Lipoic Acid in Kidney Disease. Nutrients 2023; 15:1732. [PMID: 37049574 PMCID: PMC10097220 DOI: 10.3390/nu15071732] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The kidney is a crucial organ that eliminates metabolic waste and reabsorbs nutritious elements. It also participates in the regulation of blood pressure, maintenance of electrolyte balance and blood pH homeostasis, as well as erythropoiesis and vitamin D maturation. Due to such a heavy workload, the kidney is an energy-demanding organ and is constantly exposed to endogenous and exogenous insults, leading to the development of either acute kidney injury (AKI) or chronic kidney disease (CKD). Nevertheless, there are no therapeutic managements to treat AKI or CKD effectively. Therefore, novel therapeutic approaches for fighting kidney injury are urgently needed. This review article discusses the role of α-lipoic acid (ALA) in preventing and treating kidney diseases. We focus on various animal models of kidney injury by which the underlying renoprotective mechanisms of ALA have been unraveled. The animal models covered include diabetic nephropathy, sepsis-induced kidney injury, renal ischemic injury, unilateral ureteral obstruction, and kidney injuries induced by folic acid and metals such as cisplatin, cadmium, and iron. We highlight the common mechanisms of ALA's renal protective actions that include decreasing oxidative damage, increasing antioxidant capacities, counteracting inflammation, mitigating renal fibrosis, and attenuating nephron cell death. It is by these mechanisms that ALA achieves its biological function of alleviating kidney injury and improving kidney function. Nevertheless, we also point out that more comprehensive, preclinical, and clinical studies will be needed to make ALA a better therapeutic agent for targeting kidney disorders.
Collapse
Affiliation(s)
- Sulin F. Kamt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China;
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| |
Collapse
|
16
|
Liu W, Huang J, Liu T, Hu Y, Shi K, Zhou Y, Zhang N. Changes in gut microbial community upon chronic kidney disease. PLoS One 2023; 18:e0283389. [PMID: 36952529 PMCID: PMC10035866 DOI: 10.1371/journal.pone.0283389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
With the increasing incidence and mortality of chronic kidney disease (CKD), targeted therapies for CKD have been explored constantly. The important role of gut microbiota on CKD has been emphasized increasingly, it is necessary to analyze the metabolic mechanism of CKD patients from the perspective of gut microbiota. In this study, bioinformatics was used to analyze the changes of gut microbiota between CKD and healthy control (HC) groups using 315 samples from NCBI database. Diversity analysis showed significant changes in evenness compared to the HC group. PCoA analysis revealed significant differences between the two groups at phylum level. In addition, the F/B ratio was higher in CKD group than in HC group, suggesting the disorder of gut microbiota, imbalance of energy absorption and the occurrence of metabolic syndrome in CKD group. The study found that compared with HC group, the abundance of bacteria associated with impaired kidney was increased in CKD group, such as Ralstonia and Porphyromonas, which were negatively associated with eGFR. PICRUSt2 was used to predict related functions and found that different pathways between the two groups were mainly related to metabolism, involving the metabolism of exogenous and endogenous substances, as well as Glycerophospholipid metabolism, which provided evidence for exploring the relationship between gut microbiota and lipid metabolism. Therefore, in subsequent studies, special attention should be paid to these bacteria and metabolic pathway, and animal experiments and metabolomics studies should be conducted explore the association between bacterial community and CKD, as well as the therapeutic effects of these microbial populations on CKD.
Collapse
Affiliation(s)
- Wu Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Huang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Tong Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Yutian Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Kaifeng Shi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhou
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate Student, Beijing University of Chinese Medicine, Beijing, China
| | - Ning Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Liu X, Deng R, Chen Y, Huang S, Lu J, Zheng L, Xiong G, Li S. Jian-Pi-Yi-Shen Formula Improves Adenine-Induced Chronic Kidney Disease via Regulating Tryptophan Metabolism and Aryl Hydrocarbon Receptor Signaling. Front Pharmacol 2022; 13:922707. [PMID: 35865941 PMCID: PMC9294467 DOI: 10.3389/fphar.2022.922707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) is an important complementary and alternative branch of chronic kidney disease (CKD) therapy. Jian-Pi-Yi-Shen formula (JPYSF) is a TCM formula used for treating CKD with good efficacy. However, the underlying mechanisms of JPYSF in treating CKD remain to be elucidated. The purpose of the present study was to investigate the renoprotective effect and potential mechanism of JPYSF in treating CKD. CKD rat model was induced by feeding a diet containing 0.75% w/w adenine for 4 weeks. JPYSF was given by gavage every day, starting from the 3rd week of the adenine-containing diet and continuing for 4 weeks at the dose of 10.89 g/kg. Renal injury was evaluated by serum creatinine (Scr), blood urea nitrogen (BUN), histopathology, and fibrotic markers expression. Serum levels of tryptophan metabolites were detected by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Aryl hydrocarbon receptor (AHR) signaling was tested by Western blot analysis. The results found that JPYSF treatment significantly lowered Scr and BUN levels, improved renal pathological injury, and down-regulated fibrotic markers expression in CKD rats. Furthermore, JPYSF significantly reduced the levels of 10 tryptophan metabolites in the serum of CKD rats and restored the level of tryptophan. Additionally, the kidney expression of AHR signaling was enhanced in CKD rats and was further suppressed in JPYSF treated rats. These results suggested that JPYSF protected against adenine-induced CKD via modulating tryptophan metabolism and AHR activation.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Xinhui Liu, ; Guoliang Xiong, ; Shunmin Li,
| | - Ruyu Deng
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, China
| | - Yulian Chen
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Xinhui Liu, ; Guoliang Xiong, ; Shunmin Li,
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Xinhui Liu, ; Guoliang Xiong, ; Shunmin Li,
| |
Collapse
|
18
|
Wei X, Wang Y, Weng J, Lao Y, Deng R, Lu J, Yang S, Liu X. Combination of Perindopril Erbumine and Huangqi-Danshen Decoction Protects Against Chronic Kidney Disease via Sirtuin3/Mitochondrial Dynamics Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5812105. [PMID: 35677375 PMCID: PMC9170396 DOI: 10.1155/2022/5812105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/11/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
Background Chronic kidney disease (CKD) is a major public health problem worldwide. Treatment with renin-angiotensin system inhibitors can achieve only partial efficacy on renal function decline and renal fibrosis in CKD patients. Huangqi-Danshen decoction (HDD) is a basic Chinese herbal pair which is commonly used to treat CKD with good efficacy. Objectives The current study aimed to investigate the effect of perindopril erbumine (PE), an angiotensin-converting enzyme inhibitor, combined with HDD on adenine-induced CKD rat model and explore the possible mechanism from Sirtuin3/mitochondrial dynamics pathway. Method CKD rat model was established by feeding of 0.75% w/w adenine containing diet for 3 weeks. At the same time, the treatment groups were given PE (0.42 mg/kg/d) or HDD (4.7 g/kg/d) or PE combined with HDD by gavage for 4 weeks. Renal function was evaluated by the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). The renal pathological injury was observed by periodic acid-Schiff (PAS) and Masson's trichrome staining. Proteins expression was determined by Western blot analysis. Mitochondrial morphology was observed by transmission electron microscopy. Results PE in combination with HDD significantly improved renal function, reduced tubular injury and interstitial fibrosis in adenine-induced CKD rats. Moreover, PE + HDD treatment mainly activated the Sirtuin3 expression level. In addition, PE + HDD exhibited bidirectional regulation on mitochondrial dynamics by suppressing mitochondrial fission protein dynaminrelated protein 1 expression and elevating mitochondrial fusion protein optic atrophy 1 expression, resulted in restraint of mitochondrial fragmentation. Conclusion The combination of PE and HDD attenuated adenine-induced CKD in rats, which was possibly associated with Sirtuin3/mitochondrial dynamics pathway.
Collapse
Affiliation(s)
- Xian Wei
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Yuzhi Wang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Jiali Weng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Yunlan Lao
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Ruyu Deng
- Shenzhen Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| |
Collapse
|
19
|
Yeung MHY, Leung KL, Choi LY, Yoo JS, Yung S, So PK, Wong CM. Lipidomic Analysis Reveals the Protection Mechanism of GLP-1 Analogue Dulaglutide on High-Fat Diet-Induced Chronic Kidney Disease in Mice. Front Pharmacol 2022; 12:777395. [PMID: 35299724 PMCID: PMC8921774 DOI: 10.3389/fphar.2021.777395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022] Open
Abstract
Many clinical studies have suggested that glucagon-like peptide-1 receptor agonists (GLP-1RAs) have renoprotective properties by ameliorating albuminuria and increasing glomerular filtration rate in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) by lowering ectopic lipid accumulation in the kidney. However, the mechanism of GLP-1RAs was hitherto unknown. Here, we conducted an unbiased lipidomic analysis using ultra-high-performance liquid chromatography/electrospray ionization-quadrupole time-of-flight mass spectrometry (UHPLC/ESI-Q-TOF-MS) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to reveal the changes of lipid composition and distribution in the kidneys of high-fat diet-fed mice after treatment with a long-acting GLP-1RA dulaglutide for 4 weeks. Treatment of dulaglutide dramatically improved hyperglycemia and albuminuria, but there was no substantial improvement in dyslipidemia and ectopic lipid accumulation in the kidney as compared with controls. Intriguingly, treatment of dulaglutide increases the level of an essential phospholipid constituent of inner mitochondrial membrane cardiolipin at the cortex region of the kidneys by inducing the expression of key cardiolipin biosynthesis enzymes. Previous studies demonstrated that lowered renal cardiolipin level impairs kidney function via mitochondrial damage. Our untargeted lipidomic analysis presents evidence for a new mechanism of how GLP-1RAs stimulate mitochondrial bioenergetics via increasing cardiolipin level and provides new insights into the therapeutic potential of GLP-1RAs in mitochondrial-related diseases.
Collapse
Affiliation(s)
- Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Ka Long Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lai Yuen Choi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Jung Sun Yoo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Susan Yung
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
GU C, GAO Y, HAN R, GUO M, LIU H, GAO J, LIU Y, LI B, SUN L, BU R, LIU Y, HAO J, MENG Y, AN M, CAO X, SU C, LI G. Metabolomics of clinical samples reveal the treatment mechanism of lanthanum hydroxide on vascular calcification in chronic kidney disease. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:361-377. [PMID: 35908957 PMCID: PMC9363596 DOI: 10.2183/pjab.98.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Previous studies showed that lanthanum hydroxide (LH) has a therapeutic effect on chronic kidney disease (CKD) and vascular calcification, which suggests that it might have clinical value. However, the target and mechanism of action of LH are unclear. Metabolomics of clinical samples can be used to predict the mechanism of drug action. In this study, metabolomic profiles in patients with end-stage renal disease (ESRD) were used to screen related signaling pathways, and we verified the influence of LH on the ROS-PI3K-AKT-mTOR-HIF-1α signaling pathway by western blotting and quantitative real-time RT-qPCR in vivo and in vitro. We found that ROS and SLC16A10 genes were activated in patients with ESRD. The SLC16A10 gene is associated with six significant metabolites (L-cysteine, L-cystine, L-isoleucine, L-arginine, L-aspartic acid, and L-phenylalanine) and the PI3K-AKT signaling pathway. The results showed that LH inhibits the ESRD process and its cardiovascular complications by inhibiting the ROS-PI3K-AKT-mTOR-HIF-1α signaling pathway. Collectively, LH may be a candidate phosphorus binder for the treatment of vascular calcification in ESRD.
Collapse
Affiliation(s)
- Chao GU
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yuan GAO
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ruilan HAN
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Min GUO
- Department of Clinical Pharmacy, Ordos Central Hospital, Ordos City, Inner Mongolia Autonomous Region, China
| | - Hong LIU
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jie GAO
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yang LIU
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Bing LI
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Lijun SUN
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ren BU
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yang LIU
- Department of Clinical Pharmacy, Ordos Central Hospital, Ordos City, Inner Mongolia Autonomous Region, China
| | - Jian HAO
- Renal Division, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan MENG
- Renal Division, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ming AN
- Department of Pharmaceutical analysis, School of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Xiaodong CAO
- Department of Pharmacology, GLP Center, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Changhai SU
- Department of Clinical Pharmacy, Ordos Central Hospital, Ordos City, Inner Mongolia Autonomous Region, China
| | - Gang LI
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, Inner Mongolia Autonomous Region, China
- Mongolian Medicine Collaborative Innovation Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
21
|
Jian-Pi-Yi-Shen Formula Alleviates Chronic Kidney Disease in Two Rat Models by Modulating QPRT/NAD +/SIRT3/Mitochondrial Dynamics Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6625345. [PMID: 34938344 PMCID: PMC8687808 DOI: 10.1155/2021/6625345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
Objective Jian-Pi-Yi-Shen formula (JPYSF) is a traditional Chinese herbal decoction and has been used for treating chronic kidney disease (CKD) in clinics for decades. However, the potential mechanisms have not been fully elucidated. This study was designed to test the efficacy of JPYSF in treating CKD and explore the underlying mechanism. Methods Two CKD rat models were established by 5/6 nephrectomy (5/6 Nx) and feeding with adenine-containing feed, respectively. The intervention dose of JPYSF was 10.89 g/kg/d by gastric irrigation. Renal function was assessed by serum creatinine (Scr) and blood urea nitrogen (BUN). Periodic acid-Schiff (PAS) and Masson's trichrome staining were used to evaluate renal histopathological changes. The levels of nicotinamide adenine dinucleotide (NAD+) were measured by using the enzyme-linked immunosorbent assay kit. The proteins expressions of renal fibrosis, quinolinate phosphoribosyltransferase (QPRT), sirtuin 3 (SIRT3), and mitochondrial dynamics were determined and quantified by Western blot analysis. Results The results show that administration of JPYSF significantly lowered Scr and BUN levels, improved renal tubular atrophy and interstitial fibrosis, and decreased renal extracellular matrix deposition in two CKD rat models. In addition, CKD rats exhibited suppressed QPRT/NAD+/SIRT3 signal, increased mitochondrial fission, and decreased mitochondrial fusion. JPYSF treatment promoted QPRT/NAD+/SIRT3 signal and restored mitochondrial fission/fusion balance. Conclusion In conclusion, administration of JPYSF effectively alleviated CKD progression in two rat models, which may be related with regulation of the QPRT/NAD+/SIRT3/mitochondrial dynamics pathway.
Collapse
|
22
|
Ma F, Song Y, Sun M, Wang A, Jiang S, Mu G, Tuo Y. Exopolysaccharide Produced by Lactiplantibacillus plantarum-12 Alleviates Intestinal Inflammation and Colon Cancer Symptoms by Modulating the Gut Microbiome and Metabolites of C57BL/6 Mice Treated by Azoxymethane/Dextran Sulfate Sodium Salt. Foods 2021; 10:3060. [PMID: 34945611 PMCID: PMC8701795 DOI: 10.3390/foods10123060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Exopolysaccharide produced by Lactiplantibacillus plantarum-12 (LPEPS) exhibited the anti-proliferating effect on human colon cancer cell line HT-29 in vitro. The purpose of the study was to determine the alleviating effects of LPEPS on colon cancer development of the C57BL/6 mice treated by azoxymethane/dextran sulfate sodium salt (AOM/DSS). The C57BL/6 mice treated by AOM/DSS were orally administered LPEPS daily for 85 days. The results showed that LPEPS oral administration enhanced colon tight-junction protein expression and ameliorated colon shortening and tumor burden of the AOM/DSS treated mice. Furthermore, LPEPS oral administration significantly reduced pro-inflammatory factors TNF-α, IL-8, and IL-1β levels and increased anti-inflammatory factor IL-10 level in the serum of the AOM/DSS-treated mice. LPEPS oral administration reversed the alterations of gut flora in AOM/DSS-treated mice, as evidenced by the increasing of the abundance of Bacteroidetes, Bacteroidetes/Firmicutes ratio, Muribaculaceae, Burkholderiaceae, and norank_o__Rhodospirillales and the decreasing of the abundance of Firmicutes, Desulfovibrionaceae, Erysipelotrichaceae, and Helicobacteraceae. The fecal metabolites of the AOM/DSS-treated mice were altered by LPEPS oral administration, involving lipid metabolism and amino acid metabolism. Together, these results suggested that LPEPS oral administration alleviated AOM/DSS-induced colon cancer symptoms of the C57BL/6 mice by modulating gut microbiota and metabolites, enhancing intestine barrier, inhibiting NF-κB pathway, and activating caspase cascade.
Collapse
Affiliation(s)
- Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Arong Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (F.M.); (Y.S.); (M.S.); (A.W.); (S.J.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
23
|
Guo Y, Liu F, Chen M, Tian Q, Tian X, Xiong Q, Huang C. Huangjinsan ameliorates adenine-induced chronic kidney disease by regulating metabolic profiling. J Sep Sci 2021; 44:4384-4394. [PMID: 34688222 DOI: 10.1002/jssc.202100542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022]
Abstract
Chronic kidney disease is an increasingly serious public health problem worldwide. Our recent studies have shown that Huangjinsan has a renal protective effect on chronic kidney disease, but the specific mechanism by which this effect occurs is not clear. To study the therapeutic effect of Huangjinsan on chronic kidney disease and to explore its possible mechanism of action through nontargeted metabolomics methods, a chronic kidney disease rat model was induced by adenine, and the Huangjinsan extract was given by oral gavage. Body weight, the kidney index, pathological sections, and a series of biochemical indicators were measured. High-performance liquid chromatography quadrupole time-of-flight mass spectrometry was used to analyze the changes in the plasma metabolome. Huangjinsan significantly reduced indicators of kidney damage, including total protein, albumin, the total protein to creatinine ratio, and the albumin to creatinine ratio in urine, as well as IL-2, MCP-1α, and blood urea levels in plasma. Based on nontargeted metabolomics, 13 metabolites related to chronic kidney disease were discovered. These metabolites are closely related to glycerophospholipid metabolism, arginine and proline metabolism, and sphingolipid metabolism. We found that Huangjinsan can restore the renal function of adenine-induced chronic kidney disease by regulating the metabolic profile.
Collapse
Affiliation(s)
- Yuejiao Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P. R. China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - MingCang Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qiang Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qiang Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P. R. China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
24
|
Mo Y, Jie X, Wang L, Ji C, Gu Y, Lu Z, Liu X. Bupi Yishen formula attenuates kidney injury in 5/6 nephrectomized rats via the tryptophan-kynurenic acid-aryl hydrocarbon receptor pathway. BMC Complement Med Ther 2021; 21:207. [PMID: 34376166 PMCID: PMC8353787 DOI: 10.1186/s12906-021-03376-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bupi Yishen Formula (BYF), a patent traditional Chinese medicine (TCM) formulation, has been used in the clinical treatment of chronic kidney disease (CKD). However, the mechanism of action of BYF has not been fully elucidated. METHOD To investigate the variation in the metabolic profile in response to BYF treatment in a rat model of 5/6 nephrectomy (Nx), rats in the treatment groups received low- or high-dose BYF. At the end of the study, serum and kidney samples were collected for biochemical, pathological, and western blotting analysis. Metabolic changes in serum were analyzed by liquid chromatography-tandem mass spectrometry. RESULTS The results showed that BYF treatment could reduce kidney injury, inhibit inflammation and improve renal function in a dose-dependent manner. In total, 405 and 195 metabolites were identified in negative and positive ion modes, respectively. Metabolic pathway enrichment analysis of differential metabolites based on the Kyoto Encyclopedia of Genes and Genomes database identified 35 metabolic pathways, 3 of which were related to tryptophan metabolism. High-dose BYF reduced the level of kynurenic acid (KA) by more than 50%, while increasing melatonin 25-fold and indole-3-acetic acid twofold. Expression levels of aryl hydrocarbon receptor (AhR), Cyp1A1, and CyP1B1 were significantly reduced in the kidney tissue of rats with high-dose BYF, compared to 5/6 Nx rats. CONCLUSION BYF has a reno-protective effect against 5/6 Nx-induced CKD, which may be mediated via inhibition of the tryptophan-KA-AhR pathway.
Collapse
Affiliation(s)
- Yenan Mo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China
| | - Xina Jie
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China
| | - Lixin Wang
- Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China
| | - Chunlan Ji
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China
| | - Yueyu Gu
- Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China
| | - Zhaoyu Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 520120, China. .,Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China.
| | - Xusheng Liu
- Nephrology Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 520120, China.
| |
Collapse
|
25
|
Zhang BL, Yang XH, Jin HM, Zhan XL. Identification of differentially expressed genes in diabetic kidney disease by RNA-Seq analysis of venous blood platelets. FEBS Open Bio 2021. [PMID: 34029013 PMCID: PMC8329951 DOI: 10.1002/2211-5463.13199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end‐stage renal disease. However, because of shared complications between DKD and chronic kidney disease (CKD), the description and characterization of DKD remain ambiguous in the clinic, hindering the diagnosis and treatment of early‐stage DKD patients. Although estimated glomerular filtration rate and albuminuria are well‐established biomarkers of DKD, early‐stage DKD is rarely accompanied by a high estimated glomerular filtration rate, and thus there is a need for new sensitive biomarkers. Transcriptome profiling of kidney tissue has been reported previously, although RNA sequencing (RNA‐Seq) analysis of the venous blood platelets in DKD patients has not yet been described. In the present study, we performed RNA‐Seq analysis of venous blood platelets from three patients with CKD, five patients with DKD and 10 healthy controls, and compared the results with a CKD‐related microarray dataset. In total, 2097 genes with differential transcript levels were identified in platelets of DKD patients and healthy controls, and 462 genes with differential transcript levels were identified in platelets of DKD patients and CKD patients. Through Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, we selected 11 pathways, from which nine potential biomarkers (IL‐1B, CD‐38, CSF1R, PPARG, NR1H3, DDO, HDC, DPYS and CAD) were identified. Furthermore, by comparing the RNA‐Seq results with the GSE30566 dataset, we found that the biomarker KCND3 was the only up‐regulated gene in DKD patients. These biomarkers may have potential application for the therapy and diagnosis of DKD, as well aid in determining the mechanisms underlying DKD.
Collapse
Affiliation(s)
- Bao Long Zhang
- The Institutes of Biomedical Sciences (IBS), Fudan University, Shanghai, China
| | - Xiu Hong Yang
- Division of Nephrology, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Hui Min Jin
- Division of Nephrology, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Xiao Li Zhan
- Division of Nephrology, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Liu X, Liu S, Luo D, Huang S, Wang F, Zhang B, Chen Y, Zheng L, Lu J, Li S. Involvement of Circulating Exosomal MicroRNAs in Jian-Pi-Yi-Shen Formula Protection Against Adenine-Induced Chronic Kidney Disease. Front Pharmacol 2021; 11:622658. [PMID: 33603670 PMCID: PMC7884821 DOI: 10.3389/fphar.2020.622658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Jian-Pi-Yi-Shen formula (JPYSF) is a traditional Chinese medicine (TCM) formula used in clinic to treat chronic kidney disease (CKD) for decades. However, the mechanisms of JPYSF in treating CKD have not been fully elucidated. The aim of the present study was to test the renoprotective effect of JPYSF on CKD rat model and investigate the potential mechanism from the perspective of serum exosomal microRNAs (miRNAs). CKD rat model was induced by feeding Sprague-Dawley rats a diet containing 0.75% w/w adenine for four weeks. The rats in the treatment group were given 10.89 g/kg JPYSF by gavage every day, starting from the 3rd week of the adenine-containing diet for six weeks. Serum biochemistry and histopathology were used to evaluate the renoprotective effects of JPYSF. Serum exosomes were isolated by ExoQuick-TC PLUS exosomes extraction kit and were identified by transmission electron microscopy, nanoparticle tracking analysis, and western blot. Exosomal miRNAs profiling was analyzed by small RNA sequencing. The results showed that JPYSF treatment significantly lowered serum creatinine and blood urea nitrogen levels and alleviated renal pathological injury in CKD rats. Furthermore, serum exosomes were successfully isolated and identified. Small RNA sequencing revealed that 4 exosomal miRNAs (miR-192-5p, miR-194-5p, miR-802-5p, and miR-143-3p) were significantly downregulated in the CKD group and were markedly upregulated after JPYSF treatment. At last, miR-192-5p was identified as the most relevant miRNA for CKD diagnosis and JPYSF treatment. In conclusion, JPYSF protects kidney from adenine-induced CKD, which may be associated with modulation of exosomal miRNAs.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Siqi Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Denggui Luo
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Fochang Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bing Zhang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yulian Chen
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
27
|
He T, Liu J, Wang X, Duan C, Li X, Zhang J. Analysis of cantharidin-induced nephrotoxicity in HK-2 cells using untargeted metabolomics and an integrative network pharmacology analysis. Food Chem Toxicol 2020; 146:111845. [DOI: 10.1016/j.fct.2020.111845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
|
28
|
Untargeted Metabolomics Reveals the Protective Effect of a Traditional Chinese Herbal Decoction on Cisplatin-Induced Acute Kidney Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8524132. [PMID: 33101449 PMCID: PMC7569447 DOI: 10.1155/2020/8524132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Our previous studies have demonstrated that Jian-Pi-Yi-Shen formula (JPYSF), a traditional Chinese herbal decoction, has a renoprotective effect in 5/6 nephrectomy-induced chronic kidney injury. However, the role and potential mechanisms of JPYSF in the treatment of acute kidney injury (AKI) remain unknown. This study was designed to test the beneficial effect of JPYSF in an AKI mouse model and to investigate the underlying mechanism by using metabolomics analysis. The AKI mouse model was induced by a single intraperitoneal injection of cisplatin at a dose of 20 mg/kg. The mice in the treatment group were pretreated orally with JPYSF (18.35 g/kg/d) for 5 days before cisplatin injection. Seventy-two hours after cisplatin injection, serum and kidney samples were collected for biochemical and histological examination. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) was applied to analyze metabolic profiling variations in the kidney. The results showed that pretreatment with JPYSF obviously reduced the levels of serum creatinine and blood urea nitrogen and alleviated renal pathological injury in AKI mice. Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot revealed a clear separation between the AKI and AKI + JPYSF group. A total of 68 and 87 significantly differentially expressed metabolites were identified in the kidney of AKI mice responding to JPYSF treatment in negative and positive ion mode, respectively. The pivotal pathways affected by JPYSF included vitamin B6 metabolism, alanine, aspartate and glutamate metabolism, lysine biosynthesis, and butanoate metabolism. In conclusion, JPYSF can protect the kidney from cisplatin-induced AKI, which may be associated with regulating renal metabolic disorders.
Collapse
|
29
|
Wu T, Sun M, Liu R, Sui W, Zhang J, Yin J, Fang S, Zhu J, Zhang M. Bifidobacterium longum subsp. longum Remodeled Roseburia and Phosphatidylserine Levels and Ameliorated Intestinal Disorders and liver Metabolic Abnormalities Induced by High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4632-4640. [PMID: 32237746 DOI: 10.1021/acs.jafc.0c00717] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bifidobacterium longum is considered as a potential supplement in antiobesity treatment; however, the underlying molecular mechanism has rarely been studied. To understand the contributions of B. longum subsp. longum (BL21) in the prevention of obesity, we investigated alterations in the liver metabonomic phenotype and gut microbiota by ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and 16S ribosomal RNA gene sequencing in C57BL/6J male mice orally administered with BL21 for 8 weeks [high-fat diet (HFD)]. BL21 at 1 × 109 CFU·day-1 per mouse reduced the weight of mice by 16.9% relative to that of the mice fed with HFD and significantly lowered the serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol. BL21 also ameliorated fat vacuolization in liver cells and epididymal fat accumulation. BL21 also lowered the Firmicutes/Bacteroidetes ratio, regulated liver remodeling in glycerophospholipids, and alleviated the levels of d-tryptophan. A positive correlation between the butyrate-producing strain Roseburia and the cell membrane component phosphatidylserine was found for the first time. Thus, BL21 can potentially prevent mice from being obese by rebalancing the gut microbiota and glycerophospholipid metabolism. BL21 can be a promising dietary supplement for weight control.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mengzhen Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaojiao Zhang
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuguang Fang
- Jiangsu Wecare Biotechnology Co., LTD, Suzhou, Jiangsu 215200, China
| | - Jianguo Zhu
- Jiangsu Wecare Biotechnology Co., LTD, Suzhou, Jiangsu 215200, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Agricultural University, Tianjin 300384, PR China
| |
Collapse
|
30
|
Liu X, Lu J, Liu S, Huang D, Chen M, Xiong G, Li S. Huangqi-Danshen decoction alleviates diabetic nephropathy in db/db mice by inhibiting PINK1/Parkin-mediated mitophagy. Am J Transl Res 2020; 12:989-998. [PMID: 32269729 PMCID: PMC7137035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Huangqi-Danshen decoction (HDD) is composed of Astragali Radix (Huang-qi) and Salviae Miltiorrhizae Radix et Rhizoma (Dan-shen), both of which are the most commonly used herbs for the clinical treatment of diabetic nephropathy (DN) in traditional Chinese medicine and show good efficacy. However, the underlying mechanism of this effect is unclear. The aim of this study was to evaluate the effect and potential mechanism of HDD in the treatment of DN in a type 2 diabetic animal model, db/db mice. HDD extract was administered orally to db/db mice at a dose of 6.8 g/kg/day for 12 weeks. At the end of the study, serum, urine, and kidney samples were collected for biochemical and pathological examination. The expression of proteins associated with mitochondrial fission and mitophagy was determined by quantitative real-time PCR, Western blotting, and immunohistochemical analysis. The results showed that treatment with HDD substantially reduced urinary albumin excretion and improved renal injury in db/db mice. Moreover, mitochondrial fission was increased in the kidneys of the db/db mice, as evidenced by enhanced expression of dynamin-related protein 1 and mitochondrial morphological changes. Furthermore, PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy was activated in the db/db mice, which manifested as increased protein expression and obvious autophagic vacuole encapsulating mitochondria. HDD treatment significantly reversed the enhanced mitochondrial fission and PINK1/Parkin-mediated mitophagy in the db/db mice. In conclusion, this work suggested that HDD could protect against type 2 diabetes-induced kidney injury possibly by inhibiting PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Siqi Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Dakun Huang
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Mianxiong Chen
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese MedicineShenzhen 518033, Guangdong, China
| |
Collapse
|