1
|
Song M, Dai H, Zhou Q, Meng X. The immunology of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2025; 16:1542208. [PMID: 40260277 PMCID: PMC12009709 DOI: 10.3389/fendo.2025.1542208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Diabetic cardiomyopathy is a notable microvascular complication of diabetes, characterized primarily by myocardial fibrosis and functional abnormalities. Long-term hyperglycemia induces excessive activation and recruitment of immune cells and triggers the cascade of inflammatory responses, resulting in systemic and local cardiac inflammation. Emerging evidence highlights the significant roles of immunology in modulating the pathology of diabetic cardiomyopathy. As the primary effectors of inflammatory reactions, immune cells are consistently present in cardiac tissue and can be recruited under pathological hyperglycemia circumstances. A disproportionate favor to proinflammatory types of immune cells and the increased proinflammatory cytokine levels mediate fibroblast proliferation, phenotypic transformation, and collagen synthesis and ultimately rise to cardiac fibrosis and hypertrophy. Meanwhile, the severity of cardiac fibrosis is also strongly associated with the diverse phenotypes and phenotypic alterations of the immune cells, including macrophages, dendritic cells, mast cells, neutrophils, and natural killer cells in innate immunity and CD4+ T lymphocytes, CD8+ T lymphocytes, and B lymphocytes in adaptive immunity. In this review, we synthesized the current analysis of the critical role played by the immune system and its components in the progression of diabetic cardiomyopathy. Finally, we highlight preclinical and clinical immune targeting strategies and translational implications.
Collapse
Affiliation(s)
| | | | | | - Xiao Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Abdullah AR, Seliem MA, Khidr EG, Sobhy AM, El-Shiekh RA, Hafeez MSAE, El-Husseiny AA. A comprehensive review on diabetic cardiomyopathy (DCM): histological spectrum, diagnosis, pathogenesis, and management with conventional treatments and natural compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03980-9. [PMID: 40100371 DOI: 10.1007/s00210-025-03980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Diabetic complications are among the most pressing health issues currently. Cardiovascular problems, particularly diabetic cardiomyopathy (DCM), are responsible for almost 80% of diabetic deaths. Because of the increasing prevalence of diabetes and the increased threat of death from its consequences, researchers are searching for new pharmaceutical targets to delay or cure it. Currently, there are a few medicines available for the treatment of DCM, some of which have serious side effects. To address this issue, researchers are focusing on natural products. Thus, in this review, we discuss the prevalence, incidence, risk factors, histological spectrum, diagnosis, pathogenic pathways of DCM, genetic and epigenetic mechanisms involved in DCM, the current treatments, and the beneficial effects of natural product-based therapeutics. Natural treatments range from single doses to continuous regimens lasting weeks or months. Flavonoids are the largest class of natural compounds reported for the treatment of DCM. Natural regimens may cover the way for new treatment strategies for DCM for being multi-target agents in the treatment of DCM, with the ability to play a variety of functions via distinct signaling pathways.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Mahmoud A Seliem
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Ayah M Sobhy
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Assiut, Assiut, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Mohamed S Abd El Hafeez
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
3
|
Tang Q, Ji Y, Xia Z, Zhang Y, Dong C, Sun Q, Lei S. Identification and validation of endoplasmic reticulum stress-related diagnostic biomarkers for type 1 diabetic cardiomyopathy based on bioinformatics and machine learning. Front Endocrinol (Lausanne) 2025; 16:1478139. [PMID: 40171194 PMCID: PMC11959167 DOI: 10.3389/fendo.2025.1478139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Background Diabetic cardiomyopathy (DC) is a serious complication in patients with type 1 diabetes mellitus and has become a growing public health problem worldwide. There is evidence that endoplasmic reticulum stress (ERS) is involved in the pathogenesis of DC, and related diagnostic markers have not been well-studied. Therefore, this study aimed to screen ERS-related genes (ERGs) with potential diagnostic value in DC. Methods Gene expression data on DC were downloaded from the GEO database, and ERGs were obtained from The Gene Ontology knowledgebase. Limma package analyzed differentially expressed genes (DEGs) in the DC and control groups, and then integrated with ERGs to identify ERS-related DEGs (ERDEGs). The ERDEGs diagnostic model was developed based on a combination of LASSO and Random Forest approaches, and the diagnostic performance was evaluated by the area under the receiver operating characteristic curve (ROC-AUC) and validated against external datasets. In addition, the association of the signature genes with immune infiltration was analyzed using the CIBERSORT algorithm and the Spearman correlation test. Results Gene expression data on DC were downloaded from the GEO database and ERGs were obtained from the Gene Ontology Knowledgebase. Limma package analysis identified 3100 DEGs between DC and control groups and then integrated with ERGs to identify 65 ERDEGs. Four diagnostic markers, Npm1, Jkamp, Get4, and Lpcat3, were obtained based on the combination of LASSO and random forest approach, and their ROC-AUCs were 0.9112, 0.9349, 0.8994, and 0.8639, respectively, which proved their diagnostic potential in DC. Meanwhile, Npm1, Jkamp, Get4, and Lpcat3 were validated by external datasets and a mouse model of type 1 DC. In addition, Npm1 was significantly negatively correlated with plasma cells, activated natural killer cells, or quiescent mast cells, whereas Get4 was significantly positively correlated with quiescent natural killer cells and significantly negatively correlated with activated natural killer cells (P < 0.05). Conclusions This study provides novel diagnostic biomarkers (Npm1, Jkamp, Get4, and Lpcat3) for DC from the perspective of ERS, which provides new insights into the development of new targets for individualized treatment of type 1 diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Qiao Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chong Dong
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Rezaee A, Rahmanian P, Nemati A, Sohrabifard F, Karimi F, Elahinia A, Ranjbarpazuki A, Lashkarbolouki R, Dezfulian S, Zandieh MA, Salimimoghadam S, Nabavi N, Rashidi M, Taheriazam A, Hashemi M, Hushmandi K. NF-ĸB axis in diabetic neuropathy, cardiomyopathy and nephropathy: A roadmap from molecular intervention to therapeutic strategies. Heliyon 2024; 10:e29871. [PMID: 38707342 PMCID: PMC11066643 DOI: 10.1016/j.heliyon.2024.e29871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.
Collapse
Affiliation(s)
- Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirreza Nemati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabifard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Ranjbarpazuki
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rozhin Lashkarbolouki
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sadaf Dezfulian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Yao P, Yang X, Qiao Y. A Review on the Natural Products in Treatment of Diabetic Cardiomyopathy (DCM). Rev Cardiovasc Med 2024; 25:165. [PMID: 39076497 PMCID: PMC11267204 DOI: 10.31083/j.rcm2505165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 07/31/2024] Open
Abstract
Diabetic cardiomyopathy is an insidious and fatal disease, imposing major financial and social burdens on affected individuals. Among the various methods proposed for the treatment of diabetic cardiomyopathy (DCM), treatments with natural products have achieved promising results due to their high efficiency and minimal side-effects. Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, Excerpt Medica, Science Direct, and Springer. In this study, we reviewed the DCM-related studies on 72 representative natural products. These natural products have been confirmed to be applicable in the therapeutic intervention of DCM, acting through various mechanisms such as the amelioration of metabolic abnormalities, protecting the mitochondrial structure and function, anti-oxidant stress, anti-inflammatory, anti-fibrosis, regulation of Ca 2 + homeostasis and regulation of programmed cell death. The nuclear factor kappa B (NF- κ B), nuclear factor erythroid 2-related factor 2 (Nrf-2), and transforming growth factor- β (TGF- β ) have been extensively studied as high frequency signaling pathways for natural product intervention in DCM. The effectiveness of natural products in treating DCM has been revealed and studied, which provides a reference for DCM-specific drug discovery.
Collapse
Affiliation(s)
- Pengyu Yao
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000 Jinan, Shandong, China
| | - Xiaoni Yang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), 250014 Jinan, Shandong, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| |
Collapse
|
6
|
Guan IA, Liu JST, Sawyer RC, Li X, Jiao W, Jiramongkol Y, White MD, Hagimola L, Passam FH, Tran DP, Liu X, Schoenwaelder SM, Jackson SP, Payne RJ, Liu X. Integrating Phenotypic and Chemoproteomic Approaches to Identify Covalent Targets of Dietary Electrophiles in Platelets. ACS CENTRAL SCIENCE 2024; 10:344-357. [PMID: 38435523 PMCID: PMC10906253 DOI: 10.1021/acscentsci.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
A large variety of dietary phytochemicals has been shown to improve thrombosis and stroke outcomes in preclinical studies. Many of these compounds feature electrophilic functionalities that potentially undergo covalent addition to the sulfhydryl side chain of cysteine residues within proteins. However, the impact of such covalent modifications on the platelet activity and function remains unclear. This study explores the irreversible engagement of 23 electrophilic phytochemicals with platelets, unveiling the unique antiplatelet selectivity of sulforaphane (SFN). SFN impairs platelet responses to adenosine diphosphate (ADP) and a thromboxane A2 receptor agonist while not affecting thrombin and collagen-related peptide activation. It also substantially reduces platelet thrombus formation under arterial flow conditions. Using an alkyne-integrated probe, protein disulfide isomerase A6 (PDIA6) was identified as a rapid kinetic responder to SFN. Mechanistic profiling studies revealed SFN's nuanced modulation of PDIA6 activity and substrate specificity. In an electrolytic injury model of thrombosis, SFN enhanced the thrombolytic activity of recombinant tissue plasminogen activator (rtPA) without increasing blood loss. Our results serve as a catalyst for further investigations into the preventive and therapeutic mechanisms of dietary antiplatelets, aiming to enhance the clot-busting power of rtPA, currently the only approved therapeutic for stroke recanalization that has significant limitations.
Collapse
Affiliation(s)
- Ivy A. Guan
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Joanna S. T. Liu
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Renata C. Sawyer
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Xiang Li
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63110, United States
- McDonnell
Genome Institute, Washington University
in St. Louis, St. Louis, Missouri 63108, United States
| | - Wanting Jiao
- Ferrier Research
Institute, Victoria University of Wellington, Wellington 6140, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yannasittha Jiramongkol
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mark D. White
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
| | - Lejla Hagimola
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Freda H. Passam
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Denise P. Tran
- Sydney
Mass Spectrometry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Xiaoming Liu
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone M. Schoenwaelder
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shaun P. Jackson
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xuyu Liu
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| |
Collapse
|
7
|
Wang T, Gao L, Tan J, Zhuoma D, Yuan R, Li B, Huang S. The Neuroprotective Effect of Sophocarpine against Glutamate-Induced HT22 Cell Cytotoxicity. J Oleo Sci 2024; 73:359-370. [PMID: 38433000 DOI: 10.5650/jos.ess23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Neuronal cell death and dysfunction of the central nervous system can be caused by oxidative stress, which is associated with the development of neurodegenerative diseases. Sophocarpine, an alkaloid compound derived from Sophora moorcroftiana (Benth.) Baker seeds, has a wide range of medicinal value. This study sought to determine how sophocarpine exerts neuroprotective effects by inhibited oxidative stress and apoptosis in mouse hippocampus neuronal (HT22) cells. 20mM glutamate-induced HT22 cells were used to develop an in vitro model of oxidative stress damage. The Cell Counting Kit-8 (CCK-8) assay was used to assess cell viability. According to the instructions on the kits to detect reactive oxygen species (ROS) levels and oxidative stress indicators. HT22 cells were examined using immunofluorescence and Western Blotting to detect Nuclear Factor Erythroid 2-related Factor 2 (Nrf2) expression. The expression of proteins and messenger RNA (mRNA) for heme oxygenase-1 (HO-1) was examined by Western Blotting and Quantitative real time polymerase chain reaction (qRT-PCR). Mitochondrial membrane potential (MMP) and Cell apoptosis were used by 5, 5', 6, 6'-Tetrachloro-1, 1', 3, 3'-tetraethyl-imidacarbocyanine iodide (JC- 1) kit and Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick-End Labeling (TUNEL) apoptosis assay kit, respectively. Finally, the expression of pro-apoptotic proteins was detected by Western Blotting. The result demonstrated that sophocarpine (1.25 μM-10 μM) can significantly inhibit glutamate-induced cytotoxicity and ROS generation, improve the activity of antioxidant enzymes. Sophocarpine increased the expression of HO-1 protein and mRNA and the nuclear translocation of Nrf2 to play a cytoprotective role; however, cells were transfected with small interfering RNA targeting HO-1 (si-HO-1) reversed the above effects of sophocarpine. In addition, sophocarpine significantly inhibited glutamate induced mitochondrial depolarization and further inhibited cell apoptosis by reducing the expression level of caspase-related proteins.
Collapse
Affiliation(s)
- Tong Wang
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Liying Gao
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Jiahua Tan
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| | - Dongzhi Zhuoma
- Department of Pharmacy, Medical College, Tibet University
| | - Ruiying Yuan
- Department of Pharmacy, Medical College, Tibet University
| | - Bin Li
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
- Department of Pharmacy, Medical College, Tibet University
| | - Shan Huang
- Department of Pharmaceutical Engineering and Pharmaceutical Chemistry, College of Chemical Engineering, Qingdao University of Science & Technology
| |
Collapse
|
8
|
Xu N, Liu S, Zhang Y, Chen Y, Zuo Y, Tan X, Liao B, Li P, Feng J. Oxidative stress signaling in the pathogenesis of diabetic cardiomyopathy and the potential therapeutic role of antioxidant naringenin. Redox Rep 2023; 28:2246720. [PMID: 37747066 PMCID: PMC10538464 DOI: 10.1080/13510002.2023.2246720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders that poses a global threat to human health. It can lead to complications in multiple organs and tissues, owing to its wide-ranging impact on the human body. Diabetic cardiomyopathy (DCM) is a specific cardiac manifestation of DM, which is characterized by heart failure in the absence of coronary heart disease, hypertension and valvular heart disease. Given that oxidative stress is a key factor in the pathogenesis of DCM, intervening to mitigate oxidative stress may serve as a therapeutic strategy for managing DCM. Naringenin is a natural product with anti-oxidative stress properties that can suppress oxidative damage by regulating various oxidative stress signaling pathways. In this review, we address the relationship between oxidative stress and its primary signaling pathways implicated in DCM, and explores the therapeutic potential of naringenin in DCM.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, People’s Republic of China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yongqiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yujing Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiaoqiu Tan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
| | - Pengyun Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
9
|
ALTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. Esculeoside A Decreases Diabetic Cardiomyopathy in Streptozotocin-Treated Rats by Attenuating Oxidative Stress, Inflammation, Fibrosis, and Apoptosis: Impressive Role of Nrf2. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1830. [PMID: 37893548 PMCID: PMC10608477 DOI: 10.3390/medicina59101830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: This experiment evaluated the preventative influence of the tomato-derived Esculeoside A (ESA) on diabetic cardiomyopathy in type 1 diabetes mellitus (T1DM) in rats induced by streptozotocin (STZ). It also examined whether the activation of Nrf2 signaling affords this protection. Materials and Methods: Adult male Wistar control nondiabetic rats and rats with T1DM (STZ-T1DM) were given either carboxymethylcellulose as a vehicle or ESA (100 mg/kg) (eight rats/group) orally daily for 12 weeks. A group of STZ-T1DM rats was also treated with 100 mg/kg ESA and co-treated i.p. with 2 mg/kg (twice/week), brusatol, and Nrf2 inhibitors for 12 weeks. Results and Conclusions: Treatment with ESA prevented the gain in heart weight and cardiomyocyte hypertrophy and improved the left ventricular (LV) systolic and diastolic function (LV) in the STZ-T1DM rat group. Likewise, it reduced their serum levels of triglycerides, cholesterol, and low-density lipoproteins (LDL-c), as well as their LV mRNA, cytoplasmic total, and nuclear total levels of NF-κB. ESA also reduced the total levels of malondialdehyde, tumor necrosis factor-α, interleukine-6 (IL-6), Bax, cytochrome-c, and caspase-3 in the LV of the STZ-T1DM rats. In parallel, ESA enhanced the nuclear and cytoplasmic levels of Nrf2 and the levels of superoxide dismutase, glutathione, and heme oxygenase-1, but decreased the mRNA and cytoplasmic levels of keap-1 in the LVs of the STZ-T1DM rats. Interestingly, ESA did not affect the fasting insulin and glucose levels of the diabetic rats. All of these beneficially protective effects of ESA were not seen in the ESA-treated rats that received brusatol. In conclusion, ESA represses diabetic cardiomyopathy in STZ-diabetic hearts by activating the Nrf2/antioxidant/NF-κB axis.
Collapse
Affiliation(s)
- Jozaa Z. ALTamimi
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Nora A. AlFaris
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (G.M.A.); (M.A.Y.)
| | - Reham I. Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Dalal H. Aljabryn
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (G.M.A.); (M.A.Y.)
| |
Collapse
|
10
|
Jin B, Wang J, Chen Y, Zuo W, Hong B, Li J, Huang F, Zhang M, Wang Y. Focal adhesion kinase induces cardiac remodeling through NF-κB-mediated inflammatory responses in diabetic cardiomyopathy. Int Immunopharmacol 2023; 120:110280. [PMID: 37216798 DOI: 10.1016/j.intimp.2023.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/11/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Hyperglycemia-induced chronic inflammation is a crucial risk factor that causes undesirable cardiac alternations in diabetic cardiomyopathy (DCM). Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that primarily regulates cell adhesion and migration. Based on recent studies, FAK is involved in inflammatory signaling pathway activation in cardiovascular diseases. Here, we evaluated the possibility of FAK as a therapeutic target for DCM. METHODS A small molecular selective FAKinhibitor, PND-1186 (PND), was used to evaluate the effect of FAK on DCM in both high glucose-stimulated cardiomyocytes and streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) mice. RESULTS Increased FAK phosphorylation was found in the hearts of STZ-induced T1DM mice. PND treatment significantly decreased the expression of inflammatory cytokines and fibrogenic markers in cardiac specimens of diabetic mice. Notably, these reductions were correlated with improved cardiac systolic function. Furthermore, PND suppressed transforming growth factor-β-activated kinase 1 (TAK1) phosphorylation and NF-κB activation in the hearts of diabetic mice. Cardiomyocytes were identified as the main contributor to FAK-mediated cardiac inflammation and the involvement of FAK in cultured primary mouse cardiomyocytes and H9c2 cells was identified. Both FAK inhibition or FAK deficiency prevented hyperglycemia-induced inflammatory and fibrotic responses in cardiomyocytes owing to the inhibition of NF-κB. Herein, FAK activation was revealed to FAK directly binding to TAK1, leading to activation of TAK1 and downstream NF-κB signaling pathway. CONCLUSIONS FAK is a key regulator of diabetes-associated myocardial inflammatory injury by directly targeting to TAK1.
Collapse
Affiliation(s)
- Bo Jin
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Bo Hong
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jie Li
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Fang Huang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Mengpei Zhang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China.
| | - Yi Wang
- Department of Gastroenterology, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Seksaria S, Mehan S, Dutta BJ, Gupta GD, Ganti SS, Singh A. Oxymatrine and insulin resistance: Focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF-β signaling pathway. J Biochem Mol Toxicol 2023; 37:e23330. [PMID: 36890713 DOI: 10.1002/jbt.23330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-β/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-β pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Bhaskar J Dutta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Ghanshyam D Gupta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| |
Collapse
|
12
|
Peng C, Zhang Y, Lang X, Zhang Y. Role of mitochondrial metabolic disorder and immune infiltration in diabetic cardiomyopathy: new insights from bioinformatics analysis. J Transl Med 2023; 21:66. [PMID: 36726122 PMCID: PMC9893675 DOI: 10.1186/s12967-023-03928-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is one of the common cardiovascular complications of diabetes and a leading cause of death in diabetic patients. Mitochondrial metabolism and immune-inflammation are key for DCM pathogenesis, but their crosstalk in DCM remains an open issue. This study explored the separate roles of mitochondrial metabolism and immune microenvironment and their crosstalk in DCM with bioinformatics. METHODS DCM chip data (GSE4745, GSE5606, and GSE6880) were obtained from NCBI GEO, while mitochondrial gene data were downloaded from MitoCarta3.0 database. Differentially expressed genes (DEGs) were screened by GEO2R and processed for GSEA, GO and KEGG pathway analyses. Mitochondria-related DEGs (MitoDEGs) were obtained. A PPI network was constructed, and the hub MitoDEGs closely linked to DCM or heart failure were identified with CytoHubba, MCODE and CTD scores. Transcription factors and target miRNAs of the hub MitoDEGs were predicted with Cytoscape and miRWalk database, respectively, and a regulatory network was established. The immune infiltration pattern in DCM was analyzed with ImmuCellAI, while the relationship between MitoDEGs and immune infiltration abundance was investigated using Spearman method. A rat model of DCM was established to validate the expression of hub MitoDEGs and their relationship with cardiac function. RESULTS MitoDEGs in DCM were significantly enriched in pathways involved in mitochondrial metabolism, immunoregulation, and collagen synthesis. Nine hub MitoDEGs closely linked to DCM or heart failure were obtained. Immune analysis revealed significantly increased infiltration of B cells while decreased infiltration of DCs in immune microenvironment of DCM. Spearman analysis demonstrated that the hub MitoDEGs were positively associated with the infiltration of pro-inflammatory immune cells, but negatively associated with the infiltration of anti-inflammatory or regulatory immune cells. In the animal experiment, 4 hub MitoDEGs (Pdk4, Hmgcs2, Decr1, and Ivd) showed an expression trend consistent with bioinformatics analysis result. Additionally, the up-regulation of Pdk4, Hmgcs2, Decr1 and the down-regulation of Ivd were distinctly linked to reduced cardiac function. CONCLUSIONS This study unraveled the interaction between mitochondrial metabolism and immune microenvironment in DCM, providing new insights into the research on potential pathogenesis of DCM and the exploration of novel targets for medical interventions.
Collapse
Affiliation(s)
- Cheng Peng
- grid.412463.60000 0004 1762 6325Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 China ,grid.410736.70000 0001 2204 9268Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001 China
| | - Yanxiu Zhang
- grid.412463.60000 0004 1762 6325Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 China ,grid.410736.70000 0001 2204 9268Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001 China
| | - Xueyan Lang
- grid.412463.60000 0004 1762 6325Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 China ,grid.410736.70000 0001 2204 9268Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001 China
| | - Yao Zhang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China. .,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
13
|
Wang M, Jin L, Zhang Q, Zhu W, He H, Lou S, Luo W, Han X, Liang G. Curcumin analog JM-2 alleviates diabetic cardiomyopathy inflammation and remodeling by inhibiting the NF-κB pathway. Biomed Pharmacother 2022; 154:113590. [DOI: 10.1016/j.biopha.2022.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
|
14
|
He Y, Wang S, Sun H, Li Y, Feng J. Naringenin ameliorates myocardial injury in STZ-induced diabetic mice by reducing oxidative stress, inflammation and apoptosis via regulating the Nrf2 and NF-κB signaling pathways. Front Cardiovasc Med 2022; 9:946766. [PMID: 36035932 PMCID: PMC9399499 DOI: 10.3389/fcvm.2022.946766] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes-induced myocardial damage leads to diabetic cardiomyopathy and is closely associated with the generation of oxidative stress and inflammation. Naringenin (NG) exhibits antioxidant and anti-inflammatory effects. However, whether NG has cardioprotective effects against diabetic cardiomyopathy by regulating oxidative stress and inflammation remains unknown. This study investigated the effect of NG on diabetic cardiomyopathy based on an analysis of streptozotocin (STZ)-induced type 1 diabetic mice. The results indicated that NG reduced cardiac fibrosis and cardiomyocyte apoptosis in this diabetic model, accompanied by reduced blood glucose. NG inhibited pro-inflammatory cytokines, the level of reactive oxygen species and the expression of nuclear factor kappa-B (NF-κB), whereas the expression of antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) were greatly enhanced by NG. Furthermore, in high glucose-treated H9C2 myocardial cells, NG effectively reduced cell apoptosis by inhibiting the formation of reactive oxygen species and pro-inflammatory cytokines. NG's antioxidant and anti-inflammatory activities were mechanistically associated with NF-κB inhibition and Nrf2 activation in animal and cell experiments. Data analysis showed that NG could regulate Nrf2 and NF-κB pathways to protect against diabetes-induced myocardial damage by reducing oxidative stress and inhibiting inflammation.
Collapse
Affiliation(s)
- Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing, China
| | - Shuaiqi Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing, China
| | - Hao Sun
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing, China
| | - Yan Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jian Feng
| |
Collapse
|
15
|
Tang Z, Wang P, Dong C, Zhang J, Wang X, Pei H. Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5913374. [PMID: 35103095 PMCID: PMC8800599 DOI: 10.1155/2022/5913374] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
As a serious cardiovascular complication, diabetic cardiomyopathy (DCM) refers to diabetes-related changes in myocardial structure and function, which is obviously different from those cardiomyopathy secondary to hypertension, coronary heart disease, and valvular disease. The clinical features of DCM are left ventricular hypertrophy, myocardial fibrosis, and impaired diastolic function. DCM will lead to cardiac dysfunction, eventually progress to cardiac arrhythmia, heart failure, and sudden cardiac death. At present, the pathogenesis of DCM is complex and not fully elucidated, and oxidative stress (OS), inflammatory response, glucolipid metabolism disorder, etc., are considered as the potential pathophysiological mechanisms. As a consequence, there is no specific and effective treatment for DCM. OS refers to the imbalance between reactive oxygen species (ROS) accumulation and scavenging, oxidation, and antioxidants in vivo, which is widely studied in DCM. Numerous studies have pointed out that regulating the OS signaling pathways and reducing the generation and accumulation of ROS are potential directions for the treatment of DCM. This review summarizes the major OS signaling pathways that are related to the pathogenesis of DCM, providing ideas about further research and therapy.
Collapse
Affiliation(s)
- Zhaobing Tang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Peng Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Chao Dong
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Juan Zhang
- Emei Rehabilitation and Sanatorium Center of PLA, Leshan 614201, China
| | - Xiong Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
16
|
Wang DD, Wu XY, Dong JY, Cheng XP, Gu SF, Olatunji OJ, Li Y, Zuo J. Qing-Luo-Yin Alleviated Experimental Arthritis in Rats by Disrupting Immune Feedback Between Inflammatory T Cells and Monocytes: Key Evidences from Its Effects on Immune Cell Phenotypes. J Inflamm Res 2021; 14:7467-7486. [PMID: 35002280 PMCID: PMC8723919 DOI: 10.2147/jir.s346365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Qing-Luo-Yin (QLY) is an anti-rheumatic herbal formula. Despite the well-investigated therapeutic efficacy of QLY, its immune regulatory properties are largely unknown. CD4+ T cells and monocytes are two key parameters in rheumatoid arthritis (RA). This study investigated the changes in these cells in QLY-treated RA animal models. MATERIALS AND METHODS RA models were induced in male SD rats and were orally treated with QLY. Dynamic metabolic changes in collagen-induced arthritis (CIA) rats were monitored by 1H NMR approach. The immunity profiles of CIA and adjuvant-induced arthritis (AIA) rats were evaluated using immunohistochemical, PCR, ELISA, cytokine chip, flow cytometry, and immunofluorescence experiments. The bioactive components in QLY were identified by bioinformatic-guided LC-MS analyses. The compounds with high abundance in QLY decoction and easily absorbed were taken as key anti-rheumatic components and used to treat blood-derived immune cells using in vitro experiments. RESULTS The results indicated that QLY decreased Th17 cells frequency and T cells-released IL-6, IL-17 and GM-CSF in CIA rats, which was attributed to the impaired lymphocyte maturation and altered differentiation. QLY inhibited lactic acid production and inflammatory polarization in the monocytes during the peak period of AIA and CIA. AIA monocytes elicited significant increase in Th17 cells counts, IL-6 and IL-1β secretion in co-cultured splenocytes, which was abrogated by QLY. QLY-containing serum suppressed the phosphorylation of JNK and p65 in AIA lymphocyte-stimulated normal monocytes and consequently inhibited iNOS and IL-1β expression as well as IL-6 and IL-1β production. Matrine, sinomenine and sophocarpine were identified as major bioactive compounds in QLY. These identified compounds effectively inhibited the development of inflammatory T cells using concentrations detected in QLY-treated rats. At higher concentrations (20-fold increase), the chemical stimuli significantly suppressed the production of IL-1β in AIA monocytes by inhibiting JNK and p65 pathways. CONCLUSION By targeting inflammatory T cells and monocytes as well as disrupting their interplay, QLY improved immune environment in RA models especially during the active stages of disease.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Xin-Yue Wu
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Ji-Yang Dong
- Department of Electronic Science, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Xiu-Ping Cheng
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Shao-Fei Gu
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Opeyemi Joshua Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Yan Li
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Jian Zuo
- Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, 241000, People’s Republic of China
| |
Collapse
|
17
|
Yang G, Zeng R, Song X, Liu C, Ni L. Sophocarpine Alleviates Injury-Induced Intima Hyperplasia of Carotid Arteries by Suppressing Inflammation in a Rat Model. J Clin Med 2021; 10:5449. [PMID: 34830730 PMCID: PMC8625628 DOI: 10.3390/jcm10225449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Balloon angioplasty is a commonly applied procedure for treating atherosclerotic vascular diseases. However, the maintenance of long-term lumen patency is relatively difficult due to the occurrence of restenosis. Previous research has shown that the occurrence of vascular wall inflammation is associated with higher rates of restenosis. Sophocarpine (SPC) can exert various therapeutic effects such as anti-oxidation, anti-inflammation, anti-tumor, antivirus and immune regulation. This study aimed to investigate whether SPC can alleviate intimal hyperplasia following balloon injury in a rat carotid artery model. METHODS Twenty Sprague-Dawley rats were randomly assigned to four groups: (i) control, (ii) balloon injury, (iii) balloon injury followed by saline injection, and (iv) balloon injury followed by SPC administration. Each group contained five rats. A high-pressure balloon of 3 mm × 20 mm was placed in the carotid artery. The balloon was inflated to a pressure of 8 atmospheres to carry out rat carotid artery balloon injury model. The areas of neointimal and media were determined by Verhoeff_Van Gieson staining, and the intima-to-media (I:M) ratios were subsequently evaluated. After that, the protein levels of IL-6, IL-1β, MCP-1, NF-κB, TNF-α, VCAM-1, ICAM-1 and eNOS were measured. RESULTS The ratio of I:M was remarkably higher in the balloon injury group than in the control group (p < 0.01). SPC could significantly decrease the ratio of I:M compared with the balloon injury group (p < 0.01). Besides, the protein levels of IL-6, IL-1β, MCP-1, NF-κB, TNF-α, ICAM-1 and VCAM-1 were increased in rat carotid arteries exposed to balloon injury (p < 0.01), and treatment with SPC could attenuate these effects (p < 0.05). Furthermore, balloon injury inhibited the protein expression of eNOS (p < 0.01), and SPC could elevate its level (p < 0.05). CONCLUSIONS SPC could alleviate an intimal hyperplasia in balloon-injured carotid artery, and the mechanisms underlying this protective effect might be due to its inhibitory potency against inflammation signals. Our study also implies the potential applicability of SPC in treating restenosis after balloon angioplasty.
Collapse
Affiliation(s)
- Genhuan Yang
- Department of Vascular Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;
| | - Rong Zeng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (R.Z.); (X.S.); (C.L.)
| | - Xitao Song
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (R.Z.); (X.S.); (C.L.)
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (R.Z.); (X.S.); (C.L.)
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; (R.Z.); (X.S.); (C.L.)
| |
Collapse
|
18
|
Wu D, Ai L, Sun Y, Yang B, Chen S, Wang Q, Kuang H. Role of NLRP3 Inflammasome in Lupus Nephritis and Therapeutic Targeting by Phytochemicals. Front Pharmacol 2021; 12:621300. [PMID: 34489689 PMCID: PMC8417800 DOI: 10.3389/fphar.2021.621300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune inflammatory condition that affects multiple organs and provokes extensive and severe clinical manifestations. Lupus nephritis (LN) is one of the main clinical manifestations of SLE. It refers to the deposition of immune complexes in the glomeruli, which cause kidney inflammation. Although LN seriously affects prognosis and represents a key factor of disability and death in SLE patients, its mechanism remains unclear. The NACHT, leucine-rich repeat (LRR), and pyrin (PYD) domains-containing protein 3 (NLRP3) inflammasome regulates IL-1β and IL-18 secretion and gasdermin D-mediated pyroptosis and plays a key role in innate immunity. There is increasing evidence that aberrant activation of the NLRP3 inflammasome and downstream inflammatory pathways play an important part in the pathogenesis of multiple autoimmune diseases, including LN. This review summarizes research progress on the elucidation of NLRP3 activation, regulation, and recent clinical trials and experimental studies implicating the NLRP3 inflammasome in the pathophysiology of LN. Current treatments fail to provide durable remission and provoke several sides effects, mainly due to their broad immunosuppressive effects. Therefore, the identification of a safe and effective therapeutic approach for LN is of great significance. Phytochemicals are found in many herbs, fruits, and vegetables and are secondary metabolites of plants. Evidence suggests that phytochemicals have broad biological activities and have good prospects in a variety of diseases, including LN. Therefore, this review reports on current research evaluating phytochemicals for targeting NLRP3 inflammasome pathways in LN therapy.
Collapse
Affiliation(s)
- Dantong Wu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Laboratory Diagnostics, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lianjie Ai
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sisi Chen
- Department of Rheumatology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiuhong Wang
- Department of Natural Medicinal Chemistry, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Kaur N, Guan Y, Raja R, Ruiz-Velasco A, Liu W. Mechanisms and Therapeutic Prospects of Diabetic Cardiomyopathy Through the Inflammatory Response. Front Physiol 2021; 12:694864. [PMID: 34234695 PMCID: PMC8257042 DOI: 10.3389/fphys.2021.694864] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
The incidence of heart failure (HF) continues to increase rapidly in patients with diabetes. It is marked by myocardial remodeling, including fibrosis, hypertrophy, and cell death, leading to diastolic dysfunction with or without systolic dysfunction. Diabetic cardiomyopathy (DCM) is a distinct myocardial disease in the absence of coronary artery disease. DCM is partially induced by chronic systemic inflammation, underpinned by a hostile environment due to hyperglycemia, hyperlipidemia, hyperinsulinemia, and insulin resistance. The detrimental role of leukocytes, cytokines, and chemokines is evident in the diabetic heart, yet the precise role of inflammation as a cause or consequence of DCM remains incompletely understood. Here, we provide a concise review of the inflammatory signaling mechanisms contributing to the clinical complications of diabetes-associated HF. Overall, the impact of inflammation on the onset and development of DCM suggests the potential benefits of targeting inflammatory cascades to prevent DCM. This review is tailored to outline the known effects of the current anti-diabetic drugs, anti-inflammatory therapies, and natural compounds on inflammation, which mitigate HF progression in diabetic populations.
Collapse
Affiliation(s)
| | | | | | | | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Li GH, Fang KL, Yang K, Cheng XP, Wang XN, Shen T, Lou HX. Thesium chinense Turcz.: An ethnomedical, phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113950. [PMID: 33610713 DOI: 10.1016/j.jep.2021.113950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thesium chinense Turcz. has been used to treat mastitis, pulmonitis, tonsillitis, iaryngopharyngitis and upper respiratory tract infections in the indigenous medicine of China for a long history. Presently, several pharmaceutics prepared by this medical herb have been clinically used for the therapy of infectious diseases. AIM OF THE REVIEW This review aims to comprehensively summarize the current researches on the ethnomedical, phytochemical and pharmacological aspects of T. chinense, and discuss their possible opportunities for the future research. MATERIALS AND METHODS Extensive database searches, including Web of Science, SciFinder, Google Scholar and China Knowledge Resource Integrated, were performed using keywords such as 'Thesium chinense', 'Bai Rui Cao', and their chemical constituents. In addition, local classic herbal literature on ethnopharmacology and relevant textbooks were consulted to provide a comprehensive survey of this ethnomedicine. RESULTS Thirty four chemical constituents, including flavonoids, alkaloids, and terpenoids, have been identified from T. chinense. Of which, flavonoids are the predominant and characteristic constituents. The crude extracts, the purified constituents, and commercial available pharmaceutics have displayed diverse in vitro and in vivo pharmacological functions (e.g. anti-inflammation, antimicrobial activity, analgesic effect, hepaprotection), and are particularly useful as a potential therapeutic agent against inflammation-related diseases. CONCLUSIONS T. chinense is an important ethnomedical medicine and possesses a satisfying effect for treating inflammation, microbial infection, and upper respiratory diseases. It has received plenty of researches on its phytochemical and pharmacological aspects since 1970s. These findings definitely establish the link between chemical composition and pharmacological application, and support the ethnomedical use of T. chinense in the indigenous medicine of China. However, chemical composition of this plant and the molecular mechanisms of purified constituents have not been comprehensively investigated, and thus the trace constituents and the therapeutic targets of bioactive constituents deserve a further exploration. Collectively, the researchers should pay more attention to a better understanding and application of this ethnomedical plant.
Collapse
Affiliation(s)
- Guo-Hui Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, People's Republic of China
| | - Kai-Li Fang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Kang Yang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xin-Ping Cheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
21
|
Zhi W, Du X, Li Y, Wang C, Sun T, Zong S, Liu Q, Hu K, Liu Y, Zhang H. Proteome profiling reveals the efficacy and targets of sophocarpine against asthma. Int Immunopharmacol 2021; 96:107348. [PMID: 33857804 DOI: 10.1016/j.intimp.2020.107348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022]
Abstract
Sophocarpine (SPC) as a quinolizidine alkaloid displays powerful effects on inflammatory diseases through regulating multiple targets. Asthma is a complex heterogeneous and inflammatory disease with an increasing incidence worldwide. Here we established a mice asthma model and investigated the effect of SPC. Mice induced by ovalbumin (OVA) exhibits exacerbated Th1/Th2 immune imbalance and allergic lung inflammation. SPC treatment regulated Th1/Th2 cytokines production (IL-4, IL-5 and INF-γ) in BALF, reduced IgE level in serum, inhibited inflammatory cell infiltration, and improved the lung tissue pathology. Proteomic results showed that 5064 proteins in lung tissue were detected and among them 223 preliminary therapeutic targets of SPC were selected. Subsequently, excluding non-human genes, 109 targets with established crystal structures were harvested. Meanwhile, the molecular docking results showed that the binding energy of 87 targets with SPC was varied from -9.72 kcal/mol to 227.16 kcal/mol. Further, SPC suppressed arrb2, anxa1, myd88 and sphk1 expression and activated p-stat1. All of the five targets based on the screened results of proteomics and molecular docking are critical in allergic asthma. Thus, our data revealed that SPC alleviated bronchial asthma via targeting multi-targets.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an 710003, PR China
| | - Xia Du
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an 710003, PR China
| | - Ye Li
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an 710003, PR China
| | - Chunliu Wang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an 710003, PR China
| | - Tingting Sun
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an 710003, PR China
| | - Shiyu Zong
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an 710003, PR China
| | - Qiqi Liu
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, PR China
| | - Kai Hu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an 710003, PR China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an 710003, PR China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an 710003, PR China.
| |
Collapse
|
22
|
Zhao S, Li X, Li X, Wei X, Wang H. Hydrogen Sulfide Plays an Important Role in Diabetic Cardiomyopathy. Front Cell Dev Biol 2021; 9:627336. [PMID: 33681206 PMCID: PMC7930320 DOI: 10.3389/fcell.2021.627336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy is an important complication of diabetes mellitus and the main cause of diabetes death. Diabetic cardiomyopathy is related with many factors, such as hyperglycemia, lipid accumulation, oxidative stress, myocarditis, and apoptosis. Hydrogen sulfide (H2S) is a newly discovered signal molecule, which plays an important role in many physiological and pathological processes. Recent studies have shown that H2S is involved in improving diabetic cardiomyopathy, but its mechanism has not been fully elucidated. This review summarizes the research on the roles and mechanisms of H2S in diabetic cardiomyopathy in recent years to provide the basis for in-depth research in the future.
Collapse
Affiliation(s)
- Shizhen Zhao
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinping Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaoyun Wei
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
23
|
Liu J, Xu L, Zhan X. LncRNA MALAT1 regulates diabetic cardiac fibroblasts through the Hippo-YAP signaling pathway. Biochem Cell Biol 2020; 98:537-547. [PMID: 32069074 DOI: 10.1139/bcb-2019-0434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major diabetes-related microvascular disease. LncRNA MALAT1 is widely expressed in cardiomyocytes responding to hypoxia and high levels of glucose (high glucose). In this study, cardiac fibroblasts (CFs) were transfected with si-MALAT1 and exposed to high glucose. CFs in the high glucose groups were treated with 30 mmol/L glucose, and the control CFs were treated with 5.5 mmol/L glucose. The expression of MALAT1 in the nucleus and cytoplasm of CFs was detected. The biological behavior of CFs, as well as collagen production, activity of the Hippo-YAP pathway, and nuclear localization of YAP were measured. Mouse models of DCM were established to observe the pathological changes to myocardium and determine the levels of collagen I, Bax, and Bcl-2. The interaction between MALAT1 and YAP was analyzed, and CREB expression in the high-glucose treated CFs was detected. MALAT1 was upregulated in high-glucose CFs and located in the nucleus. High-glucose increased collagen production, inflammation, cell proliferation, cell invasiveness, and phosphorylation of MST1 and LATS1, and also promoted nuclear translocation of YAP. These trends in high-glucose treated CFs and the DCM mice were reversed by transfection with si-MALAT1. MALAT1 positively regulated the nuclear translocation of YAP by binding to CREB. CREB levels were increased in the high-glucose CFs, but decreased after silencing MALAT1. These results indicate that si-MALAT1 reduces inflammation and collagen accumulation in high-glucose CFs and DCM mice via the Hippo-YAP pathway and CREB.
Collapse
Affiliation(s)
- Jiangwen Liu
- Endocrine and Metabolic Diseases, Harbin Medical University, Harbin 150001, Heilongjiang, P.R. China
| | - Liang Xu
- Department of Cardiology, The First Hospital of Harbin, Harbin 150001, Heilongjiang, P.R. China
| | - Xiaorong Zhan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, P.R. China
| |
Collapse
|
24
|
Fang H, Bo T, Zi X, Tan D, Liu X, Jiang C, Lei G, Deng Y, Cui L. Sophocarpine exert protective effect against ox-LDL-induced endothelial damage via regulating NF-κB signaling pathway. Biosci Biotechnol Biochem 2020; 84:2104-2112. [PMID: 32594853 DOI: 10.1080/09168451.2020.1787813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL) was known to induce endothelial cell injury to the progression of atherosclerosis (AS). Sophocarpine (SPC), a compound of sophora alkaloids isolated from the plant Sophora alopecuroides, has been shown to exhibit various pharmacological activities. This study was designed to investigate the protective effect of SPC on ox-LDL-induced endothelial cells and explored its underlying mechanism. Our results show that SPC pre-incubation ameliorated ox-LDL-mediated HAECs cytotoxicity, DNA fragmentation, and apoptosis in a dose-dependent manner. Moreover, SPC significantly downregulated the mRNA or protein expression level of pro-inflammatory mediators (TGF-β, IL-6, IL-1β, TNF-α) and pro-inflammatory vascular adhesion molecules (VCAM-1, ICAM-1, and E-selectin). Mechanistically, SPC pre-treatment downregulated IκBα expression and inhibited translocation of NF-κB in ox-LDL-mediated HAECs, overexpression of NF-κB p65 counteracted the cytoprotective and anti-apoptotic effect of SPC, suggesting that its action is dependent on NF-κB signaling pathway. Collectively, SPC suppresses ox-LDL-induced HAECs injury by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hengrong Fang
- Department of Pharmacy, Hengyang Central Hospital , Hengyang, Hunan Province, China
| | - Taizhu Bo
- Department of Pharmacy, Hengyang Central Hospital , Hengyang, Hunan Province, China
| | - Xiaolong Zi
- Department of Pharmacy, Hengyang Central Hospital , Hengyang, Hunan Province, China
| | - Dianxiang Tan
- Department of Pharmacy, Hengyang Central Hospital , Hengyang, Hunan Province, China
| | - Xiaoping Liu
- Department of Pharmacy, Hengyang Central Hospital , Hengyang, Hunan Province, China
| | - Chonghui Jiang
- Department of Pharmacy, Hengyang Central Hospital , Hengyang, Hunan Province, China
| | - Gang Lei
- Department of Pharmacy, Hengyang Central Hospital , Hengyang, Hunan Province, China
| | - Yufen Deng
- Department of Pharmacy, Hengyang Central Hospital , Hengyang, Hunan Province, China
| | - Libao Cui
- Department of Pharmacy, Hengyang Central Hospital , Hengyang, Hunan Province, China
| |
Collapse
|
25
|
Lin YB, Huang DJ, Huang HL, Chen DX, Huang JH. Sophocarpine ameliorates cardiac hypertrophy through activation of autophagic responses. Biosci Biotechnol Biochem 2020; 84:2054-2061. [PMID: 32544026 DOI: 10.1080/09168451.2020.1780111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mounting evidences indicate that autophagy is an essential homeostatic mechanism to maintain the global cardiac structure function. Sophocarpine (SOP), a major bioactive compound derived from the natural plant Sophora flavescens. However, the role of SOP in cardiac hypertrophy remain to be fully elucidated. In the present study, we tested the hypothesis that SOP protects against Ang II-induced cardiac hypertrophy by mediating the regulation of autophagy. The results demonstrated that SOP attenuated the Ang II-induced cardiac hypertrophy, as assessed by measurements of echocardiography parameters, the ratios of heart weight/body weight and left ventricle weight/body weight, histopathological staining, cross-sectional cardiomyocyte area, and the expression levels of cardiac hypertrophic markers. The anti-hypertrophic effect of SOP was mediated by activating autophagy-related pathway, as revealed by reversal of the increased autophagy marker protein expression. These findings reveal a novel mechanism of SOP attenuating cardiac hypertrophy via activating autophagy-related signaling pathways.
Collapse
Affiliation(s)
- Yue-Bao Lin
- Department of General Medicine, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Dong-Jian Huang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Huan-Liang Huang
- Department of Emergency, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - De-Xiong Chen
- Department of General Medicine, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Jiong-Hua Huang
- Department of Vasculocardiology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| |
Collapse
|
26
|
Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct Types of Cell Death and the Implication in Diabetic Cardiomyopathy. Front Pharmacol 2020; 11:42. [PMID: 32116717 PMCID: PMC7018666 DOI: 10.3389/fphar.2020.00042] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches on the models of type 1 and type 2 diabetes mellitus as well as the application of genetic engineering technology help in understanding the molecular mechanism of DCM. DCM has multiple hallmarks, including hyperglycemia, insulin resistance, increased free radical production, lipid peroxidation, mitochondrial dysfunction, endothelial dysfunction, and cell death. Essentially, cell death is considered to be the terminal pathway of cardiomyocytes during DCM. Morphologically, cell death can be classified into four different forms: apoptosis, autophagy, necrosis, and entosis. Apoptosis, as type I cell death, is the fastest form of cell death and mainly occurs depending on the caspase proteolytic cascade. Autophagy, as type II cell death, is a degradation process to remove damaged proteins, dysfunctional organelles and commences by the formation of autophagosome. Necrosis is type III cell death, which contains a great diversity of cell death processes, such as necroptosis and pyroptosis. Entosis is type IV cell death, displaying “cell-in-cell” cytological features and requires the engulfing cells to execute. There are also some other types of cell death such as ferroptosis, parthanatos, netotic cell death, lysosomal dependent cell death, alkaliptosis or oxeiptosis, which are possibly involved in DCM. Drugs or compounds targeting the signals involved in cell death have been used in clinics or experiments to treat DCM. This review briefly summarizes the mechanisms and implications of cell death in DCM, which is beneficial to improve the understanding of cell death in DCM and may propose novel and ideal strategies in future.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Yuyun Hua
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | - Xinshuai Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | | | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| |
Collapse
|