1
|
Tabaa MME, Harty MEE, Mohsen M, Rashad E, Negm WA, Elmorshedy K, Abu-Risha SE. Integrating network pharmacology and in vivo pharmacological validation to explore the gastroprotective mechanism of Sotetsuflavone against indomethacin-induced gastric ulcer in rats: Involvement of JAK2/STAT3 pathway. J Nutr Biochem 2025:109934. [PMID: 40258498 DOI: 10.1016/j.jnutbio.2025.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Sotetsuflavone (SF) is an antioxidant flavonoid derived from the Cycas thouarsii R.Br. plant. Although SF regulates numerous cellular pathways influencing inflammation, its antiinflammatory benefits against gastric ulcers are less well-studied. Hence, it is imperative to thoroughly understand the potential gastroprotective mechanisms of SF. This study aimed to explore the effectiveness of SF against indomethacin (IND)-induced gastric ulcers. Network analysis and molecular docking were used to identify the specific targets and pathways related to SF and stomach ulcers. To validate the in vivo pharmacological action of SF, 36 rats were divided into 6 groups. Ulcer index (UI), protective percentage (PP), gastric mucosal mediators, oxidant/antioxidant status, and inflammatory markers (MIF, M-CSF, and AIF-1) were assessed. Additionally, the expression of PI3K, Akt, Siah2, SOCS3, JAK2, and STAT3 was determined. Stomach histopathology and immunohistochemistry were done. Network pharmacology detected 46 overlapping targets between SF and stomach ulcers, with HIF1A as the primary target among the top hubs. The network also revealed that JAK/STAT, PI3K/Akt, and HIF-1A signaling are among the top 50 markedly enriched KEGG pathways. Furthermore, docking results confirmed that SF has a strong binding affinity towards SOCS3, JAK2, STAT3, M-CSF (CSF-1), and AIF-1. Therefore, we hypothesized that the JAK2/STAT3 pathway may be primarily responsible for SF antiinflammatory action. Through up-regulating SOCS3, SF altered the PI3K/Akt pathway, mitigating oxidative stress, blocking the outflow of inflammatory mediators, and impeding gastric ulcer development. Overall, SF, by the SOCS3-mediated JAK2/STAT3 suppression, might considerably reduce oxidative stress, inflammation, and ulceration caused by indomethacin in the stomach.
Collapse
Affiliation(s)
- Manar M El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt.
| | - Mohammed E El Harty
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt.
| | - Mohamed Mohsen
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt..
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Walaa A Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt..
| | - Kadreya Elmorshedy
- Anatomy Department, Faculty of Medicine, Tanta University, Tanta, 31111, Egypt..
| | - Sally E Abu-Risha
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt..
| |
Collapse
|
2
|
Liang MS, Huang Y, Huang SF, Zhao Q, Chen ZS, Yang S. Flavonoids in the Treatment of Non-small Cell Lung Cancer via Immunomodulation: Progress to Date. Mol Diagn Ther 2025:10.1007/s40291-025-00772-y. [PMID: 40036006 DOI: 10.1007/s40291-025-00772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/06/2025]
Abstract
Lung cancer is one of the most common malignancies in the world, while non-small cell lung cancer (NSCLC) accounts for about 80% of all lung cancers. Most patients with NSCLC have advanced stage disease at diagnosis, and the 5-year survival rate can be discouragingly low. Flavonoids are widely found in fruits, vegetables, teas, and medicinal plants, with a variety of functional effects, including anti-inflammatory, antioxidant, and anticancer properties. This review aims to focus on the research progress of flavonoids in the treatment of NSCLC, including immunomodulatory effects on NSCLC, promotion of reactive oxygen species (ROS) production, interaction with microRNA (miRNA), and interactions with certain proteins. In addition, combining flavonoids and anticancer agents, radiotherapy, or nanoparticles can reverse NSCLC drug resistance, inducing apoptosis of cancer cells. It therefore appears that flavonoids alone or in combination with other treatment agents may be a promising therapeutic modality for treating NSCLC, with great potential in mass production and clinical applications.
Collapse
Affiliation(s)
- Man-Shan Liang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yang Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Sheng-Feng Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qi Zhao
- Cancer Center, Institute of Translational Medicine,Faculty of Health Sciences, University of Macau, Macau SPR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SPR, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, USA.
| | - Shuo Yang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Abo-Zaid OAR, Moawed FSM, Eldin ES, Farrag MA, Ahmed ESA. Antitumor activity of gamma-irradiated Rosa canina L. against lung carcinoma in rat model: a proposed mechanism. BMC Complement Med Ther 2025; 25:86. [PMID: 40022036 PMCID: PMC11869437 DOI: 10.1186/s12906-025-04813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Lung cancer is one of the most prevalent malignancies globally and is the leading cause of cancer-related mortality. Although cisplatin is a widely utilized chemotherapeutic agent, its clinical efficacy is often hampered by significant toxicity and undesirable side effects. Rosa canina, a medicinal plant, has demonstrated a range of beneficial biological activities, including anti-inflammatory, anticancer, immunomodulatory, antioxidant, and genoprotective effects. METHODS This study aimed to investigate the potential of Rosa canina to enhance the anticancer efficacy of cisplatin in a dimethyl benz(a)anthracene-induced lung cancer model using female rats. The animals were administered Rosa canina, cisplatin, or a combination of both treatments. The expression levels of critical signaling molecules were evaluated, including phosphoinositide-3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), cleaved poly (ADP-ribose) polymerase (PARP-1), myeloid differentiation factor 88 (MyD88), and tumor necrosis factor receptor-associated factor (TRAF), in addition to various autophagic markers. Furthermore, we assessed the levels of toll-like receptor 2 (TLR2), nuclear factor kappa B (NF-κB), and apoptotic markers in lung tissue, complemented by histopathological examinations. RESULTS The combined treatment of Rosa canina extract and cisplatin significantly inhibited lung cancer cell proliferation by downregulating PARP-1 and the TLR2/MyD88/TRAF6/NF-κB signaling pathway, as well as the PI3K/Akt/mTOR pathway. Moreover, this combination therapy promoted autophagy and apoptosis, evidenced by elevated levels of autophagic and apoptotic markers. CONCLUSION Overall, the findings of this study suggest that Rosa canina enhances the anticancer effects of cisplatin by inhibiting cancer cell proliferation while simultaneously inducing autophagy and apoptosis. Thus, Rosa can be used as adjuvant to cisplatin chemotherapy to overcome its limitations which may be considered a new approach during lung cancer treatment strategy.
Collapse
Affiliation(s)
- Omayma A R Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Benha, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman S Eldin
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mostafa A Farrag
- Radiation Biology , National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Esraa S A Ahmed
- Radiation Biology , National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
4
|
Samarth N, Gulhane P, Singh S. Investigation through naphtho[2,3-a]pyrene on mutated EGFR mediated autophagy in NSCLC: Cellular model system unleashing therapeutic potential. IUBMB Life 2024; 76:1325-1341. [PMID: 39275879 DOI: 10.1002/iub.2914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/30/2024] [Indexed: 09/16/2024]
Abstract
Mutant epidermal growth factor receptor (EGFR) signaling has emerged as a key cause of carcinogenesis and therapy resistance in non-small cell lung cancer (NSCLC), which continues to pose a serious threat to world health. In this study, we aimed to elucidate the complex molecular pathways of EGFR-mediated autophagy signaling in NSCLC. We identified naphtho[2,3-a]pyrene, an anthraquinolone derivative, to be a promising investigational drug that targets EGFR-mediated autophagy using a cellular model system. By utilizing systems biology, we developed a computational model that explained the signaling of EGFR-mediated autophagy and identified critical crosstalk sites that could be inhibited therapeutically. As a lead compound, naphtho[2,3-a]pyrene was confirmed by molecular docking experiments. It was found to be cytotoxic to NSCLC cells, impact migration, induce apoptosis, and arrest cell cycle, both on its own and when combined with standard drugs. The anticancer efficacy of naphtho[2,3-a]pyrene was validated in vivo on CDX nude mice. It showed synergistic activity against NSCLC when coupled with gefitinib, chloroquine, and radiation. Altogether, our study highlights naphtho[2,3-a]pyrene's therapeutic promise in NSCLC by focusing on EGFR-mediated autophagy and providing a new strategy to fight drug resistance and tumor survival.
Collapse
Affiliation(s)
- Nikhil Samarth
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Pune, India
| | - Pooja Gulhane
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Pune, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Pune, India
| |
Collapse
|
5
|
Wang T, Wang Y, Lu J, Chen J, Wang L, Ouyang Z, Ouyang W, Hu C, Weng J, Zhang JQ. Design, synthesis and bioevaluation of dual EGFR-PI3Kα inhibitors for potential treatment of NSCLC. Bioorg Chem 2024; 151:107714. [PMID: 39167867 DOI: 10.1016/j.bioorg.2024.107714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Aberrant activation or mutation of the EGFR-PI3K-Akt-mTOR signaling pathway has been implicated in a wide range of human cancers, especially non-small-cell lung cancer (NSCLC). Thus, dual inhibition of EGFR and PI3K has been investigated as a promising strategy to address acquired drug resistance resulting from the use of tyrosine kinase inhibitors. A series of dual EGFR/PI3Kα inhibitors was synthesized using pharmacophore hybridization of the third-generation EGFR inhibitor olmutinib and the PI3Kα selective inhibitor TAK-117. The optimal compound 30k showed potent kinase inhibitory activities with IC50 values of 3.6 and 30.0 nM against EGFRL858R/T790M and PI3Kα, respectively. Compound 30k exhibited a significant antiproliferative effect in NCI-H1975 cells with a higher selectivity profile than olmutinib. The potential antitumor mechanism, molecular binding modes, and in vitro metabolic stability of compound 30k were also clarified.
Collapse
Affiliation(s)
- Tingliang Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Department of Pharmacy, Liupanshui Municipal People's Hospital, Liupanshui 553000, China
| | - Yujie Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Jiangrong Lu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Junxiao Chen
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China
| | - Lili Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China.
| | - Zheng Ouyang
- The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang 550003, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550008, China
| | - Chujiao Hu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China.
| | - Jiang Weng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji-Quan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
6
|
De L, Xing N, Du Q, Guo S, Wang S. Investigating the anti-lung cancer properties of Zhuang medicine Cycas revoluta Thunb. leaves targeting ion channels and transporters through a comprehensive strategy. Comput Biol Chem 2024; 112:108156. [PMID: 39067352 DOI: 10.1016/j.compbiolchem.2024.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Cycas revoluta Thunb., known for its ornamental, economic, and medicinal value, has leaves often discarded as waste. However, in ethnic regions of China, the leaves (CRL) are used in folk medicine for anti-tumor properties, particularly for regulating pathways related to cancer. Recent studies on ion channels and transporters (ICTs) highlight their therapeutic potential against cancer, making it vital to identify CRL's active constituents targeting ICTs in lung cancer. PURPOSE This study aims to uncover bioactive substances in CRL and their mechanisms in regulating ICTs for lung cancer treatment using network pharmacology, bioinformatics, molecular docking, molecular dynamics (MD) simulations, in vitro cell assays and HPLC. METHODS We analyzed 62 CRL compounds, predicted targets using PubChem and SwissTargetPrediction, identified lung cancer and ICT targets via GeneCards, and visualized overlaps with R software. Interaction networks were constructed using Cytoscape and STRING. Gene expression, GO, and KEGG analyses were performed using R software. TCGA data provided insights into differential, correlation, survival, and immune analyses. Key interactions were validated through molecular docking and MD simulations. Main biflavonoids were quantified using HPLC, and in vitro cell viability assays were conducted for key biflavonoids. RESULTS Venn diagram analysis identified 52 intersecting targets and ten active CRL compounds. The PPI network highlighted seven key targets. GO and KEGG analysis showed CRL-targeted ICTs involved in synaptic transmission, GABAergic synapse, and proteoglycans in cancer. Differential expression and correlation analysis revealed significant differences in five core targets in lung cancer tissues. Survival analysis linked EGFR and GABRG2 with overall survival, and immune infiltration analysis associated the core targets with most immune cell types. Molecular docking indicated strong binding of CRL ingredients to core targets. HPLC revealed amentoflavone as the most abundant biflavonoid, followed by hinokiflavone, sciadopitysin, and podocarpusflavone A. MD simulations showed that podocarpusflavone A and amentoflavone had better binding stability with GABRG2, and the cell viability assay also proved that they had better anti-lung cancer potential. CONCLUSIONS This study identified potential active components, targets, and pathways of CRL-targeted ICTs for lung cancer treatment, suggesting CRL's utility in drug development and its potential beyond industrial waste.
Collapse
Affiliation(s)
- Luo De
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Meishan Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Meishan Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Bhusare N, Yadav T, Nandave M, Gadade A, Dighe V, Peters GJ, Kumar MS, Yergeri MC. Newly synthesized acridone derivatives targeting lung cancer: A toxicity and xenograft model study. Drug Dev Res 2024; 85:e22212. [PMID: 38798193 DOI: 10.1002/ddr.22212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/12/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
AKT is one of the overexpressed targets in nonsmall cell lung cancer (NSCLC) and plays an important role in its progression and offers an attractive target for the therapy. The PI3K/AKT/mTOR pathway is upregulated in NSCLC. Acridone is an important heterocycle compound which treats cancer through various mechanisms including AKT as a target. In the present work, the study was designed to evaluate the safety profile of three acridone derivatives (AC-2, AC-7, and AC-26) by acute and repeated dose oral toxicity. In addition to this, we also checked the pAKT overexpression and its control by these derivatives in tumor xenograft model. The results from acute and repeated dose toxicity showed these compounds to be highly safe and free from any toxicity, mortality, or significant alteration in body weight, food, and water intake in the rats. In the repeated dose toxicity, compounds showed negligible variations in a few hematological parameters at 400 mg/kg. The histopathology, biochemical, and urine parameters remained unchanged. The xenograft model study demonstrated AC-2 to be inhibiting HOP-62 induced tumor via reduction in p-AKT1 (Ser473) expression significantly. In immunofluorescence staining AC-2 treated tissue section showed 2.5 fold reduction in the expression of p-AKT1 (Ser473). Histopathology studies showed the destruction of tumor cells with increased necrosis after treatment. The study concluded that AC-2 causes cell necrosis in tumor cells via blocking the p-AKT1 expression. The findings may provide a strong basis for further clinical applications of acridone derivatives in NSCLC.
Collapse
Affiliation(s)
- Nilam Bhusare
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Tanuja Yadav
- Department of Phamaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research Institute, New Delhi, India
| | - Amruta Gadade
- National Centre for Preclinical Reproductive & Genetic Toxicology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive & Genetic Toxicology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam University Medical Centres, Amsterdam, The Netherlands & Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Maushmi S Kumar
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | | |
Collapse
|
8
|
Wang XY, Wang YJ, Guo BW, Hou ZL, Zhang GX, Han Z, Liu Q, Yao GD, Song SJ. 13-Oxyingenol-dodecanoate inhibits the growth of non-small cell lung cancer cells by targeting ULK1. Bioorg Chem 2024; 147:107367. [PMID: 38626492 DOI: 10.1016/j.bioorg.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers. Euphorbia kansui yielded 13-oxyingenol-dodecanoate (13OD), an ingenane-type diterpenoid, which had a strong cytotoxic effect on NSCLC cells. The underlying mechanism and potential target, however, remained unknown. The study found that 13OD effectively inhibited the cell proliferation and colony formation of NSCLC cells (A549 and H460 cells), with less toxicity in normal human lung epithelial BEAS-2B cells. Moreover, 13OD can cause mitochondrial dysfunction, and apoptosis in NSCLC cells. Mechanistically, the transcriptomics results showed that differential genes were mainly enriched in the mTOR and AMPK signaling pathways, which are closely related to cellular autophagy, the related indicators were subsequently validated. Additionally, bafilomycin A1 (Baf A1), an autophagy inhibitor, reversed the mitochondrial damage caused by 13OD. Furthermore, the Omics and Text-based Target Enrichment and Ranking (OTTER) method predicted ULK1 as a potential target of 13OD against NSCLC cells. This hypothesis was further confirmed using molecular docking, the cellular thermal shift assay (CETSA), and Western blot analysis. Remarkably, ULK1 siRNA inhibited 13OD's toxic activity in NSCLC cells. In line with these findings, 13OD was potent and non-toxic in the tumor xenograft model. Our findings suggested a possible mechanism for 13OD's role as a tumor suppressor and laid the groundwork for identifying targets for ingenane-type diterpenoids.
Collapse
Affiliation(s)
- Xin-Ye Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bo-Wen Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Gu-Xue Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zheng Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
9
|
Du Q, Xing N, Guo S, Li R, Meng X, Wang S. Cycads: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology and toxicology. PHYTOCHEMISTRY 2024; 220:114001. [PMID: 38286200 DOI: 10.1016/j.phytochem.2024.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Cycads, which primarily consist of the families Cycadaceae and Zamiaceae, possess intrinsic therapeutic attributes that are prominently expressed across their morphological spectrum, including roots, leaves, flowers, and seeds. In Chinese traditional medicine, the leaves of cycads are particularly revered for their profound healing capabilities. This meticulous review engages with existing literature on cycads and presents insightful avenues for future research. Over 210 phytoconstituents have been isolated and identified from various cycad tissues, including flavonoids, azoxy metabolites, sterols, lignans, non-proteogenic amino acids, terpenoids, and other organic constituents. The contemporary pharmacological discourse highlights the antineoplastic, antimicrobial, and antidiabetic activities inherent in these ancient plants, which are of particular importance to the field of oncology. Despite the prevalent focus on crude extracts and total flavonoid content, our understanding of the nuanced pharmacodynamics of cycads lags considerably behind. The notoriety of cycads derived toxicity, notably within the context of Guam's neurological disease cluster, has precipitated an established emphasis on toxicological research within this field. As such, this critical review emphasizes nascent domains deserving of academic and clinical pursuit, whilst nested within the broader matrix of current scientific understanding. The systematic taxonomy, traditional applications, phytochemical composition, therapeutic potential, and safety profile of cycads are holistically interrogated, assimilating an indispensable repository for future scholarly inquiries. In conclusion, cycads stand as a veritable treasure trove of pharmacological virtue, displaying remarkable therapeutic prowess and holding vast promise for ongoing scientific discovery and clinical utilization.
Collapse
Affiliation(s)
- Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nan Xing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Li
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Implication of mTOR Signaling in NSCLC: Mechanisms and Therapeutic Perspectives. Cells 2023; 12:2014. [PMID: 37566093 PMCID: PMC10416991 DOI: 10.3390/cells12152014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Mechanistic target of the rapamycin (mTOR) signaling pathway represents a central cellular kinase that controls cell survival and metabolism. Increased mTOR activation, along with upregulation of respective upstream and downstream signaling components, have been established as oncogenic features in cancer cells in various tumor types. Nevertheless, mTOR pathway therapeutic targeting has been proven to be quite challenging in various clinical settings. Non-small cell lung cancer (NSCLC) is a frequent type of solid tumor in both genders, where aberrant regulation of the mTOR pathway contributes to the development of oncogenesis, apoptosis resistance, angiogenesis, cancer progression, and metastasis. In this context, the outcome of mTOR pathway targeting in clinical trials still demonstrates unsatisfactory results. Herewith, we discuss recent findings regarding the mechanisms and therapeutic targeting of mTOR signaling networks in NSCLC, as well as future perspectives for the efficient application of treatments against mTOR and related protein molecules.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biopathology, ‘Eginition’ Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Ren M, Li S, Gao Q, Qiao L, Cao Q, Yang Z, Chen C, Jiang Y, Wang G, Fu S. Advances in the Anti-Tumor Activity of Biflavonoids in Selaginella. Int J Mol Sci 2023; 24:ijms24097731. [PMID: 37175435 PMCID: PMC10178260 DOI: 10.3390/ijms24097731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.
Collapse
Affiliation(s)
- Mengdie Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Sihui Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qiong Gao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lei Qiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qianping Cao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ze Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Chaoqiang Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongmei Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shaobin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
12
|
Therapeutic Properties of Flavonoids in Treatment of Cancer through Autophagic Modulation: A Systematic Review. Chin J Integr Med 2023; 29:268-279. [PMID: 35809179 PMCID: PMC9282630 DOI: 10.1007/s11655-022-3674-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
Cancers have high morbidity and mortality rates worldwide. Current anticancer therapies have demonstrated specific signaling pathways as a target in the involvement of carcinogenesis. Autophagy is a quality control system for proteins and plays a fundamental role in cancer carcinogenesis, exerting an anticarcinogenic role in normal cells and can inhibit the transformation of malignant cells. Therefore, drugs aimed at autophagy can function as antitumor agents. Flavonoids are a class of polyphenolic secondary metabolites commonly found in plants and, consequently, consumed in diets. In this review, the systematic search strategy was used, which included the search for descriptors "flavonoids" AND "mTOR pathway" AND "cancer" AND "autophagy", in the electronic databases of PubMed, Cochrane Library, Web of Science and Scopus, from January 2011 to January 2021. The current literature demonstrates that flavonoids have anticarcinogenic properties, including inhibition of cell proliferation, induction of apoptosis, autophagy, necrosis, cell cycle arrest, senescence, impaired cell migration, invasion, tumor angiogenesis and reduced resistance to multiple drugs in tumor cells. We demonstrate the available evidence on the roles of flavonoids and autophagy in cancer progression and inhibition. (Registration No. CRD42021243071 at PROSPERO).
Collapse
|
13
|
Ge S, Yang Y, Zuo L, Song X, Wen H, Geng Z, He Y, Xu Z, Wu H, Shen M, Ge Y, Sun X. Sotetsuflavone ameliorates Crohn's disease-like colitis by inhibiting M1 macrophage-induced intestinal barrier damage via JNK and MAPK signalling. Eur J Pharmacol 2023; 940:175464. [PMID: 36566007 DOI: 10.1016/j.ejphar.2022.175464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Intestinal inflammation and intestinal barrier dysfunction are two important pathological changes in Crohn's disease (CD). Sotetsuflavone (SF) is a natural monomeric herbal compound with anti-inflammatory and cytoprotective effects that is mostly nontoxic. The effect of SF on CD-like spontaneous colitis was investigated in this study. METHODS Il-10-/- mice were used as a CD model and were administered different doses of SF. Lipopolysaccharide (LPS) plus IFN-γ-induced macrophages (RAW264.7) and a coculture system (RAW264.7 and organoids) were used in vitro. The protective effects of SF against CD-like colitis and macrophage differentiation and the mechanisms were evaluated. RESULTS SF treatment markedly improved spontaneous colitis in the CD model, as shown by the following evidence: reductions in the DAI, macroscopic scores (3.63 ± 1.30), colonic tissue inflammatory scores (2 ± 0.76) and proinflammatory factor levels and the attenuation of colon shortening (8 ± 0.93 cm) and weight loss (1.75 ± 1.83 g). Decreased intestinal permeability and intestinal bacterial translocation rates provided evidence of the protective effect of SF on intestinal barrier function. We also found that SF suppressed M1 macrophage-induced inflammatory responses. In the coculture system of mouse colonic organoids and RAW264.7 cells, SF significantly ameliorated M1 macrophage-induced intestinal epithelial damage. In addition, SF inhibited JNK and MAPK (p38) signalling in both Il-10-/- mice and LPS plus IFN-γ-induced macrophages (RAW264.7). CONCLUSIONS The protective effects of SF against CD-like colitis may be achieved partially by inhibiting M1 macrophage-induced intestinal barrier damage via JNK and p38 signalling. SF may have therapeutic potential for treating CD, especially considering its safety.
Collapse
Affiliation(s)
- Sitang Ge
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yating Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xue Song
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hexin Wen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yifan He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Zilong Xu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Huatao Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Mengdi Shen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China.
| |
Collapse
|
14
|
Uncovering the Key Targets and Therapeutic Mechanisms of Qizhen Capsule in Gastric Cancer through Network Pharmacology and Bioinformatic Analyses. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1718143. [DOI: 10.1155/2022/1718143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
Objective. This study is aimed at screening out effective active compounds of Qizhen capsule (QZC) and exploring the underlying mechanisms against gastric cancer (GACA) by combining both bioinformatic analysis and experimental approaches. Weighted gene coexpression network analysis (WGCNA), network pharmacology, molecular docking simulation, survival analysis, and data-based differential gene and protein expression analysis were employed to predict QZC’s potential targets and explore the underlying mechanisms. Subsequently, multiple experiments, including cell viability, apoptosis, and protein expression analyses, were conducted to validate the bioinformatics-predicted therapeutic targets. The results indicated that luteolin, rutin, quercetin, and kaempferol were vital active compounds, and TP53, MAPK1, and AKT1 were key targets. Molecular docking simulation showed that the four abovementioned active compounds had high binding affinities to the three main targets. Enrichment analysis showed that vital active compounds exerted therapeutic effects on GACA through regulating the TP53 pathway, MAPK pathway, and PI3K/AKT pathway. Furthermore, data-based gene expression analysis revealed that TP53 and JUN genes were not only differentially expressed between normal and GACA tissues but also correlated with clinical stages. In parallel, in vitro experimental results suggested that QZC exerted therapeutic effects on GACA by decreasing IC50 values, downregulating AKT expression, upregulating TP53 and MAPK expression, and increasing apoptosis of SGC-7901 cells. This study highlights the potential candidate biomarkers, therapeutic targets, and basic mechanisms of QZC in treating GACA, providing a foundation for new drug development, target mining, and related animal studies in GACA.
Collapse
|
15
|
Wang S, Du Q, Sun J, Geng S, Zhang Y. Investigation of the mechanism of Isobavachalcone in treating rheumatoid arthritis through a combination strategy of network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115342. [PMID: 35525528 DOI: 10.1016/j.jep.2022.115342] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Isobavachalcone (IBC) is a natural chalcone compound widely distributed in traditional Chinese medicine Psoralea corylifolia L., and Tibetan medicine Abelmoschus manihot (L.) Medik. Etc.. Among them, Psoralea corylifolia has the effect of tonifying the kidney and strengthening Yang, and it is recorded in the Medicinal theory that it can be used in managing rheumatism and arthralgia. In addition, It has been included in many prescriptions in traditional Chinese medicine as the main herb for managing rheumatoid arthritis (RA). Similarly, Abelmoschus manihot is a common Tibetan medicinal herb and is a common medicinal material in Tibetan medicine and reported in ancient medicinal books such as Jing Zhu Ben Cao and Si Bu Yi Dian to possess the effect of Ganhuangshui and thus can be used in treating Huangshui diseases (such as RA). Previous research has demonstrated IBC to possess numerous biological activities, including anti-cancer, anti-inflammatory, antibacterial and immunomodulatory. Nevertheless, its efficacy and potential mechanism in treating rheumatoid arthritis are yet to be investigated. AIM OF THE STUDY This study aimed at investigating the therapeutic efficacy and mechanism of IBC in treating RA through a combined strategy of network pharmacology, in vitro, and in vivo evaluation. MATERIALS AND METHODS The Swiss Target Prediction and GeneCards databases were consulted to predict the potential targets of IBC and RA. Additionally, the potential targets for IBC in treating RA were predicted by consulting databases such as String, Cytoscape, MCODE, and Cytohubba. R software was utilized for enrichment analysis of GO and KEGG pathways, followed by in vitro experimentation using cell lines and in vivo experimentation using animals to explore the potential mechanism of IBC in RA treatment. RESULTS By integrating the results of network pharmacological analysis, 17 genes were found to be strongly associated with RA, such as TNF, MAPK13, EGFR, PTGS2, MMP3, etc. The enrichment analysis indicated that IBC possessed tremendous therapeutic efficacy in managing RA through PI3K-AKT, rheumatoid arthritis, and TNF signaling pathways. The in vitro experimentation indicated that IBC inhibited the proliferation, migration, and invasion, and promoted apoptosis and inhibition of inflammation of MH7A cell lines stimulated with TNF-α. The IBC might also have an increasing effect on the intracellular ROS and reducing effect on the mitochondrial membrane potential. The western blotting results indicated that IBC markedly inhibited the expression of p-PI3K, p-AKT, p-JAK1, p-STAT3 and SOCS3 proteins in TNF-α stimulated MH7A cells. Furthermore, we found that IBC also significantly reduced paw swelling and arthritis severity in CIA model rats through in vivo animal studies. CONCLUSIONS In short, this study explored the effect of IBC by combining network pharmacology prediction with in vitro and in vivo experimentation. The results indicated that IBC exerts its anti-rheumatoid arthritis effect by regulating cell proliferation and survival via PI3K/AKT and JAK/STAT signaling pathways. This may open a new horizon and provide a theoretical foundation for further development and utilization of IBC in RA management.
Collapse
Affiliation(s)
- Shaohui Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sang Geng
- University of Tibetan Medicine, Lasa, 850000, China.
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
16
|
Anti-Biofilm and Antibacterial Activities of Cycas media R. Br Secondary Metabolites: In Silico, In Vitro, and In Vivo Approaches. Antibiotics (Basel) 2022; 11:antibiotics11080993. [PMID: 35892383 PMCID: PMC9394325 DOI: 10.3390/antibiotics11080993] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Enterococcus species possess many virulence factors that have an essential role in exacerbating the infections caused by them. The current study aimed to evaluate the effect of the secondary metabolites ginkgetin (GINK) and sotetsuflavone (SOTE), isolated from Cycas media R. Br dichloromethane fraction, on Enterococcus faecalis (E. faecalis) isolates for the first time. The antibacterial and antivirulence activities of the isolated compounds were investigated using docking studies and in vitro by determination of the minimum inhibitory concentrations (MICs). Additionally, flow cytometry and scanning electron microscope (SEM) were utilized to assess the effect of SOTE on the tested bacteria. Moreover, crystal violet assay and qRT-PCR were used to test the effect of SOTE on the biofilm-forming ability of E. faecalis isolates. In addition, a systemic infection model was utilized in vivo to investigate the antibacterial activity of SOTE. We found that both GINK and SOTE showed a good affinity for the five proteins enrolled in the virulence of E. faecalis, with SOTE being the highest, suggesting the possible mechanisms for the antivirulence activity of both ligands. In addition, SOTE exhibited a higher antibacterial activity than GINK, as the values of the MICs of SOTE were lower than those of GINK. Thus, we performed the in vitro and in vivo assays on SOTE. However, they did not exhibit any significant variations (p > 0.05) in the membrane depolarization of E. faecalis isolates. Moreover, as evaluated by SEM, SOTE caused distortion and deformation in the treated cells. Regarding its impact on the biofilm formation, it inhibited the biofilm-forming ability of the tested isolates, as determined by crystal violet assay and qRT-PCR. The in vivo experiment revealed that SOTE resulted in a reduction of the inflammation of the liver and spleen with an increase in the survival rate. SOTE also improved the liver-function tests and decreased tumor necrosis factor-alpha using immunostaining and the inflammation markers, interleukins (IL-1β and IL-6), using ELISA. Thus, we can conclude that SOTE could be a promising compound that should be investigated in future preclinical and clinical studies.
Collapse
|
17
|
Ki YS, Chung KS, Lee HW, Choi JH, Tapondjou LA, Jang E, Lee KT. Pennogenin-3-O-α-L-Rhamnopyranosyl-(1→2)-[α-L-Rhamnopyranosyl-(1→3)]-β-D-Glucopyranoside (Spiroconazol A) Isolated from Dioscorea bulbifera L. var. sativa Induces Autophagic Cell Death by p38 MAPK Activation in NSCLC Cells. Pharmaceuticals (Basel) 2022; 15:ph15070893. [PMID: 35890190 PMCID: PMC9319756 DOI: 10.3390/ph15070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
In our previous study, we reported the isolation of pennogenin-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-β-D-glucopyranoside (spiroconazol A), a steroidal saponin, from the flowers of Dioscorea bulbifera L. var. sativa. In the present study, we aimed to investigate the effects of spiroconazol A on autophagy and its underlying mechanisms in A549 and NCI-H358 human non-small cell lung cancer (NSCLC) cells. Spiroconazol A inhibited the proliferation of NSCLC cells in a concentration- and time-dependent manner. To determine the type of programmed cell death induced by spiroconazol A, we performed a characterization of apoptosis in spiroconazol A-treated A549 cells. Our results showed that spiroconazol A significantly suppressed A549 cell viability but did not influence cell apoptosis because phosphatidylserine and caspase activation were not detected. Furthermore, spiroconazol A treatment upregulated the expression of LC3-II and autophagy-related Beclin-1 protein, suggesting that spiroconazol A induces autophagy in A549 cells. Moreover, spiroconazol A activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) but did not affect the phosphorylation of Janus kinase or ERK1/2. Notably, SB203580, a p38 MAPK inhibitor, had a significant inhibitory effect on spiroconazol A-induced autophagic cell death in A549 cells. Our results indicated that spiroconazol A-induced autophagy is dependent on p38 MAPK signaling and has potential as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yo Sook Ki
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Heon-Woo Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Jung-Hye Choi
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Léon Azefack Tapondjou
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 183, Cameroon;
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|
18
|
The Overexpression of TOB1 Induces Autophagy in Gastric Cancer Cells by Secreting Exosomes. DISEASE MARKERS 2022; 2022:7925097. [PMID: 35465266 PMCID: PMC9019440 DOI: 10.1155/2022/7925097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
We previously confirmed that transducer of ERBB2, 1 (TOB1) gene, can induce autophagy in gastric cancer cells. Studies have shown the biogenesis of exosomes overlaps with different autophagy processes, which helps to maintain the self-renewal and homeostasis of body cells. This study is aimed at verifying whether overexpressing TOB1 induces autophagy by secreting exosomes in gastric cancer cells and its underlying mechanisms. Differential ultracentrifugation was used to extracted the exosomes from the culture medium of gastric cancer cell line AGS-TOB1 ectopically overexpressing TOB1 (exo-AGS-TOB1, experimental group) and AGS-empty-vector cell line with low expression of endogenous TOB1 (exo-AGS-Vector, control group). Exosomal markers CD9 and TSG101 were determined in both the cell supernatants of exo-AGS-TOB1 and exo-AGS-Vector by Western blot. Under the transmission electron microscope (TEM), the exosomes were round and saucer-like vesicles with double-layer membrane structure, and the vesicles showed different translucency due to different contents. The peak size of exosomes detected by nanoparticle tracking analysis (NTA) was about 100 nm. When the exosomes of exo-AGS-TOB1 and exo-AGS-Vector were cocultured with TOB1 knockdown gastric cancer cell line HGC-27-TOB1-6E12 for 48 hours, the conversion of autophagy-related protein LC3-I to LC3-II in HGC-27-TOB1-6E12 gastric cancer cells cocultured with exo-AGS-TOB1 was significantly higher than that in the control group, and the ratio of LC3-II/LC3-I was statistically different (P < 0.05). More autophagosomes in HGC-27-TOB1-6E12 cells cocultured with exo-AGS-TOB1 for 48 hours were observed under TEM, while fewer autophagosomes were found in the control group. Lastly, miRNAs were differentially expressed by cell supernatant-exosomal whole transcriptome sequencing. Thus, our results provide new insights into TOB1-induced autophagy in gastric cancer.
Collapse
|
19
|
Yan S, Zhang B, Feng J, Wu H, Duan N, Zhu Y, Zhao Y, Shen S, Zhang K, Wu W, Liu N. FGFC1 Selectively Inhibits Erlotinib-Resistant Non-Small Cell Lung Cancer via Elevation of ROS Mediated by the EGFR/PI3K/Akt/mTOR Pathway. Front Pharmacol 2022; 12:764699. [PMID: 35126111 PMCID: PMC8807551 DOI: 10.3389/fphar.2021.764699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been used as a first-line treatment for patients harboring with EGFR mutations in advanced NSCLC. Nevertheless, the drug resistance after continuous and long-term chemotherapies considerably limits its clinical efficacy. Therefore, it is of great importance to develop new chemotherapeutic agents and treatment strategies to conquer the drug resistance. FGFC1 (Fungi fibrinolytic compound 1), a type of bisindole alkaloid from a metabolite of the rare marine fungi Starchbotrys longispora. FG216, has exhibited excellent fibrinolytic and anti-inflammatory activity. However, the potent efficacy of FGFC1 in human cancer therapy requires further study. Herein, we demonstrated that FGFC1 selectively suppressed the growth of NSCLC cells with EGFR mutation. Mechanistically, FGFC1 treatment significantly induced the apoptosis of erlotinib-resistant NSCLC cells H1975 in a dose-dependent manner, which was proved to be mediated by mitochondrial dysfunction and elevated accumulation of intracellular reactive oxygen species (ROS). Scavenging ROS not only alleviated FGFC1-induced apoptosis but also relieved the decrease of phospho-Akt. We further confirmed that FGFC1 significantly decreased the phosphorylation of protein EGFR, phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) in H1975 cells. Notably, PI3K inhibitor (LY294002) could promote the accumulation of ROS and the expression levels of apoptosis-related proteins induced by FGFC1. Molecular dynamics simulations indicated that FGFC1 can inhibit EGFR and its downstream PI3K/Akt/mTOR pathway through directly binding to EGFR, which displayed a much higher binding affinity to EGFRT790M/L858R than EGFRWT. Additionally, FGFC1 treatment also inhibited the migration and invasion of H1975 cells. Finally, FGFC1 effectively inhibited tumor growth in the nude mice xenograft model of NSCLC. Taken together, our results indicate that FGFC1 may be a potential candidate for erlotinib-resistant NSCLC therapy.
Collapse
Affiliation(s)
- Shike Yan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Bing Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingwen Feng
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haigang Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Namin Duan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yamin Zhu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yueliang Zhao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuang Shen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kai Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Ning Liu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
20
|
Li Y, Du HB, Jiang LN, Wang C, Yin M, Zhang LM, Zhang H, Zhao ZA, Liu ZK, Niu CY, Zhao ZG. Stellate Ganglion Block Improves the Proliferation and Function of Splenic CD4 + T Cells Through Inhibition of Posthemorrhagic Shock Mesenteric Lymph-Mediated Autophagy. Inflammation 2021; 44:2543-2553. [PMID: 34533673 DOI: 10.1007/s10753-021-01523-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Severe hemorrhagic shock leads to excessive inflammation and immune dysfunction, which results in high mortality related to mesenteric lymph return. A recent study showed that stellate ganglion block (SGB) increased the survival rate in rats suffering hemorrhagic shock. However, whether SGB ameliorates immune dysfunction induced by hemorrhagic shock remains unknown. The aim of the present study was to verify the favorable effects of SGB on the proliferation and function of splenic CD4 + T cells isolated from rats that underwent hemorrhagic shock and to investigate the mechanism related to the SGB interaction with autophagy and posthemorrhagic shock mesenteric lymph (PHSML). Male rats underwent SGB or sham SGB and conscious acute hemorrhage followed by resuscitation and multiple treatments. After 3 h of resuscitation, splenic CD4 + T cells were isolated to measure proliferation and cytokine production following stimulation with ConA in vitro. CD4 + T cells isolated from normal rats were treated with PHSML drained from SBG-treated rats, and proliferation, cytokine production, and autophagy biomarkers were detected. Hemorrhagic shock reduced CD4 + T cell proliferation and production of interleukin (IL)-2, IL-4, and tumor necrosis factor-α-induced protein 8-like 2 (TIPE2). SGB or administration of the autophagy inhibitor 3-methyladenine (3-MA) normalized these indicators. In contrast, administration of rapamycin (RAPA) autophagy agonist or intravenous injection of PHSML inhibited the beneficial effects of SGB on CD4 + T cells from hemorrhagic shocked rats. Furthermore, PHSML incubation decreased proliferation and cytokine production, increased LC3 II/I and Beclin-1 expression, and reduced p-PI3K and p-Akt expression in normal CD4 + T cells. These adverse effects of PHSML were also abolished by 3-MA administration, as well as incubation with PHSML obtained from SGB-treated rats. SGB improves splenic CD4 + T cell function following hemorrhagic shock, which is related to the inhibition of PHSML-mediated autophagy.
Collapse
Affiliation(s)
- Ying Li
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Affiliated First Hospital, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China
| | - Li-Na Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China
| | - Chen Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Meng Yin
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Affiliated First Hospital, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China
| | - Zhan-Kuang Liu
- Affiliated First Hospital, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Chun-Yu Niu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China.
- Basic Medical College, Hebei Medical University, ZhongShan East Road 361, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China.
| |
Collapse
|
21
|
Gil HS, Lee JH, Farag AK, Hassan AHE, Chung KS, Choi JH, Roh EJ, Lee KT. AKF-D52, a Synthetic Phenoxypyrimidine-Urea Derivative, Triggers Extrinsic/Intrinsic Apoptosis and Cytoprotective Autophagy in Human Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13225849. [PMID: 34831003 PMCID: PMC8616202 DOI: 10.3390/cancers13225849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary We previously reported the antiproliferative effects of a phenoxypyridine urea derivative. In this study, we aimed to investigate the antiproliferative effects of 1-(3,5-dimethoxyphenyl)-3-(4-(3-methoxyphenoxy)-2-((4-morpholinophenyl)amino)pyrimidin-5-yl)urea (AKF-D52) in non-small cell lung cancer cells. We found that (i) AKF-D52 induces apoptosis in caspase-dependent and caspase-independent pathways; (ii) AKF-D52-induced apoptosis is caused by the clustering of a death-inducing signaling complex and mitochondrial-dependent signaling; (iii) AKF-D52 induces cytoprotective autophagy, and pre-treatment with an autophagy inhibitor enhances the apoptotic effect of AKF-D52; and (iv) AKF-D52-induced apoptosis and autophagy are attenuated by the reactive oxygen species (ROS) scavenger α-tocopherol. Furthermore, AKF-D52 suppressed tumor growth in a xenograft mouse model. Collectively, our findings regarding the efficacy and molecular mechanisms of AKF-D52 identify this compound as a potential therapeutic agent for the treatment of lung cancer. Abstract Previously, we discovered that 1-(3,5-dimethoxyphenyl)-3-(4-(3-methoxyphenoxy)-2-((4-morpholinophenyl)amino)pyrimidin-5-yl)urea (AKF-D52), a synthetic phenoxypyrimidine urea derivative, acts as a growth inhibitor of various cancer cell types. In this study, we elucidated the antiproliferative properties of AFK-D52 and underlying mechanisms in non-small cell lung cancer (NSCLC) cells and an A549 xenograft animal model. AKF-D52 was found to induce both caspase-dependent and -independent apoptotic cell death. Furthermore, the mitochondrial component of the AKF-D52-induced apoptosis mechanism involves a reduction in mitochondrial membrane potential and regulation in B cell lymphoma-2 family protein expression. Moreover, AKF-D52 activates the extrinsic pathway through up-regulated expression of death receptor 3 and Fas and then the formation of a death-inducing signaling complex. AKF-D52 also induced autophagy by increasing acidic vesicular organelle formation and microtubule-associated protein 1A/1B-light chain 3-II levels and reducing p62 levels. Notably, pretreatment with autophagy inhibitors enhanced AKF-D52-induced cell death, indicating that the induced autophagy is cytoprotective. AKF-D52 treatment also triggered reactive oxygen species (ROS) production in NSCLC cells, whereas the antioxidant α-tocopherol abolished AKF-D52-induced cell death. In a xenograft lung cancer mouse model, AKF-D52 administration attenuated tumor growth by inducing apoptosis and autophagy in tumor tissues. Collectively, our data indicate that AKF-D52-induced ROS production plays a role in mediating apoptosis and cytoprotective autophagy in NSCLC.
Collapse
Affiliation(s)
- Hyo-Sun Gil
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Ahmed K. Farag
- Manufacturing Department, Curachem, Inc., Cheongju-si 28161, Chungcheongbuk-do, Korea;
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
| | - Eun-Joo Roh
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Seoul 02792, Korea;
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (H.-S.G.); (J.-H.L.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-9610860; Fax: +82-2-9619580
| |
Collapse
|
22
|
Yin S, Meng Y, Liu C, Wang Y. MIUH Inhibits the Hippocampal Neuron Growth in Fetal Rat by Affecting the PTEN Pathway. Neurochem Res 2021; 46:2046-2055. [PMID: 34003417 DOI: 10.1007/s11064-021-03342-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Mild intrauterine hypoperfusion (MIUH) can induce placental dysfunction and lead to long-term changes during the process of brain development. A better understanding of the mechanism of MIUH will help in the development of new neuroprotective strategies for the placental chamber. To better understand the mechanism of the effect of MIUH on the neural development of offspring, we constructed a model of MIUH in pregnant rats. The proliferation, apoptosis, and autophagy of hippocampal neurons in fetal rats were studied via flow cytometry, immunofluorescence staining, JC-1 staining, western blotting, and real-time polymerase chain reaction at different time points (6, 24, 48, and 72 h). The results showed that MIUH significantly inhibited the proliferation of hippocampal neurons and promoted their apoptosis and autophagy. Simultaneously, MIUH could promote PTEN expression and affect the PTEN signaling pathway. bpV, an inhibitor of PTEN, could restore the inhibition of hippocampal nerve cell growth caused by MIUH. MIUH may inhibit neuronal proliferation and promote neuronal apoptosis and autophagy by regulating the PTEN signaling pathway.
Collapse
Affiliation(s)
- Shaowei Yin
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, 110004, China
| | - Yilin Meng
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, 110004, China
| | - Caixia Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, China Medical University, Shenyang, 110004, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, 110004, China
| | - Yuan Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
23
|
Iksen, Pothongsrisit S, Pongrakhananon V. Targeting the PI3K/AKT/mTOR Signaling Pathway in Lung Cancer: An Update Regarding Potential Drugs and Natural Products. Molecules 2021; 26:4100. [PMID: 34279440 PMCID: PMC8271933 DOI: 10.3390/molecules26134100] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common cancers and has a high mortality rate. Due to its high incidence, the clinical management of the disease remains a major challenge. Several reports have documented a relationship between the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway and lung cancer. The recognition of this pathway as a notable therapeutic target in lung cancer is mainly due to its central involvement in the initiation and progression of the disease. Interest in using natural and synthetic medications to target these signaling pathways has increased in recent years, with promising results in vitro, in vivo, and in clinical trials. In this review, we focus on the current understanding of PI3K/AKT/mTOR signaling in tumor development. In addition to the signaling pathway, we highlighted the therapeutic potential of recently developed PI3K/AKT/mTOR inhibitors based on preclinical and clinical trials.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan 20131, Indonesia
| | - Sutthaorn Pothongsrisit
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.); (S.P.)
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Cluster, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Albuquerque C, Manguinhas R, Costa JG, Gil N, Codony-Servat J, Castro M, Miranda JP, Fernandes AS, Rosell R, Oliveira NG. A narrative review of the migration and invasion features of non-small cell lung cancer cells upon xenobiotic exposure: insights from in vitro studies. Transl Lung Cancer Res 2021; 10:2698-2714. [PMID: 34295671 PMCID: PMC8264350 DOI: 10.21037/tlcr-21-121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer deaths worldwide, being non-small lung cancer (NSCLC) sub-types the most prevalent. Since most LC cases are only detected during the last stage of the disease the high mortality rate is strongly associated with metastases. For this reason, the migratory and invasive capacity of these cancer cells as well as the mechanisms involved have long been studied to uncover novel strategies to prevent metastases and improve the patients’ prognosis. This narrative review provides an overview of the main in vitro migration and invasion assays employed in NSCLC research. While several methods have been developed, experiments using conventional cell culture models prevailed, specifically the wound-healing and the transwell migration and invasion assays. Moreover, it is provided herewith a summary of the available information concerning chemical contaminants that may promote the migratory/invasive properties of NSCLC cells in vitro, shedding some light on possible LC risk factors. Most of the reported agents with pro-migration/invasion effects derive from cigarette smoking [e.g., Benzo(a)pyrene and cadmium] and air pollution. This review further presents several studies in which different dietary/plant-derived compounds demonstrated to impair migration/invasion processes in NSCLC cells in vitro. These chemicals that have been proposed as anti-migratory consisted mainly of natural bioactive substances, including polyphenols non-flavonoids, flavonoids, bibenzyls, terpenes, alkaloids, and steroids. Some of these compounds may eventually represent novel therapeutic strategies to be considered in the future to prevent metastasis formation in LC, which highlights the need for additional in vitro methodologies that more closely resemble the in vivo tumor microenvironment and cancer cell interactions. These studies along with adequate in vivo models should be further explored as proof of concept for the most promising compounds.
Collapse
Affiliation(s)
- Catarina Albuquerque
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - João G Costa
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Nuno Gil
- Lung Cancer Unit, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Jordi Codony-Servat
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Rafael Rosell
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain.,Laboratory of Cellular and Molecular Biology, Institute for Health Science Research Germans Trias i Pujol (IGTP), Campus Can Ruti, Barcelona, Spain.,Internal Medicine Department, Universitat Autónoma de Barcelona, Campus de la UAB, Barcelona, Spain
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
25
|
Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145168. [PMID: 33493916 DOI: 10.1016/j.scitotenv.2021.145168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Microbes broadly constitute several organisms like viruses, protozoa, bacteria, and fungi present in our biosphere. Fast-paced environmental changes have influenced contact of human populations with newly identified microbes resulting in diseases that can spread quickly. These microbes can cause infections like HIV, SARS-CoV2, malaria, nosocomial Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), or Candida infection for which there are no available vaccines/drugs or are less efficient to prevent or treat these infections. In the pursuit to find potential safe agents for therapy of microbial infections, natural biflavonoids like amentoflavone, tetrahydroamentoflavone, ginkgetin, bilobetin, morelloflavone, agathisflavone, hinokiflavone, Garcinia biflavones 1 (GB1), Garcinia biflavones 2 (GB2), robustaflavone, strychnobiflavone, ochnaflavone, dulcisbiflavonoid C, tetramethoxy-6,6″-bigenkwanin and other derivatives isolated from several species of plants can provide effective starting points and become a source of future drugs. These biflavonoids show activity against influenza, severe acute respiratory syndrome (SARS), dengue, HIV-AIDS, coxsackieviral, hepatitis, HSV, Epstein-Barr virus (EBV), protozoal (Leishmaniasis, Malaria) infections, bacterial and fungal infections. Some of the biflavonoids can provide antiviral and protozoal activity by inhibition of neuraminidase, chymotrypsin-like protease, DV-NS5 RNA dependant RNA polymerase, reverse transcriptase (RT), fatty acid synthase, DNA polymerase, UL54 gene expression, Epstein-Barr virus early antigen activation, recombinant cysteine protease type 2.8 (r-CPB2.8), Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase or cause depolarization of parasitic mitochondrial membranes. They may also provide anti-inflammatory therapeutic activity against the infection-induced cytokine storm. Considering the varied bioactivity of these biflavonoids against these organisms, their structure-activity relationships are derived and wherever possible compared with monoflavones. Overall, this review aims to highlight these natural biflavonoids and briefly discuss their sources, reported mechanism of action, pharmacological uses, and comment on resistance mechanism, flavopiridol repurposing and the bioavailability aspects to provide a starting point for anti-microbial research in this area.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Vinícius R Campos
- Department of Organic Chemistry, Institute of Chemistry, Fluminense Federal University, Campus do Valonguinho, 24020-141 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Sun Y, Qin H, Zhang H, Feng X, Yang L, Hou DX, Chen J. Fisetin inhibits inflammation and induces autophagy by mediating PI3K/AKT/mTOR signaling in LPS-induced RAW264.7 cells. Food Nutr Res 2021; 65:6355. [PMID: 33841067 PMCID: PMC8009086 DOI: 10.29219/fnr.v65.6355] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background Fisetin, a natural potent flavonoid, has various beneficial, pharmacological activities. In this study, we investigated expression changes of the fisetin regulating genes in lipopolysaccharide (LPS)-treated RAW264.7 cells and explored the role of fisetin in inflammation and autophagy. Methods and results Microarray analysis identified 1,071 genes that were regulated by fisetin in LPS-treated RAW264.7 cells, and these genes were mainly related to the process of immune system response. Quantitative real-time polymerase chain reaction and Bio-Plex analysis indicated that fisetin decreased the expression and secretion of several inflammatory cytokines in cells administered with LPS. Western blot analysis and immunofluorescence assay showed that fisetin decreased microtubule-associated protein 1 light-chain 3B (LC3B) and lysosome-associated membrane protein 1 (LAMP1) expression in LPS-treated cells, while the autophagy inhibitor chloroquine (CQ) could partially reverse this effect. In addition, fisetin reduced the elevated expression of p-PI3K, p-AKT and p-mTOR induced by LPS in a concentration-dependent manner. Conclusions Fisetin diminished the expression and secretion of inflammatory cytokines and facilitated autophagosome-lysosome fusion and degradation in LPS-treated RAW264.7 cells via inhibition of the PI3K/AKT/mTOR signaling pathway. Overall, the results of this study provide new clues for the anti-inflammatory mechanism of fisetin and explain the crosstalk between autophagy and inflammation to some extent.
Collapse
Affiliation(s)
- Yue Sun
- Xiangya School of Public Health, Central South University, Changsha, China.,Inspecting Agency, Shanghai Municipal Health Commission, Shanghai, China
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Huihui Zhang
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha, China
| | - De-Xing Hou
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
27
|
Gu JH, Liu CC, Xie JL, Ma B, Cui SM, Yang GZ, He SC. The Local Anesthetic Bupivacaine Inhibits the Progression of Non-Small Cell Lung Cancer by Inducing Autophagy Through Akt/mTOR Signaling. Front Oncol 2021; 11:616445. [PMID: 33777755 PMCID: PMC7991299 DOI: 10.3389/fonc.2021.616445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent malignancy with high mortality and poor prognosis. Bupivacaine serves as a widely used local anesthetic and presents potential anti-tumor activity. Nevertheless, the function of bupivacaine in the NSCLC development remains elusive. Here, we tried to investigate the impact of bupivacaine on the NSCLC progression. Significantly, we revealed that bupivacaine was able to reduce the proliferation and induce the apoptosis of NSCLC cells. Bupivacaine could attenuate the invasion and migration in the cells. Mechanically, the treatment of bupivacaine increased the expression ratio of light chain 3B-II (LC3B-II)/LC3B-I and the expression of Beclin-1 in the NSCLC cells. Meanwhile, the expression of the autophagic adaptor protein p62 was decreased by bupivacaine treatment in the cells. The treatment of bupivacaine attenuated the phosphorylation of AKT and mTOR in the NSCLC cells. The AKT activator SC79 and autophagy inhibitor 3-methyladenine (3-MA) reversed the bupivacaine-inhibited phosphorylation of AKT and mTOR and bupivacaine-induced autophagy, as well as the bupivacaine-attenuated NSCLC progression in the cells. Bupivacaine could inhibit the tumor growth in vivo. In conclusion, we discovered that the local anesthetic bupivacaine inhibited the progression of NSCLC by inducing autophagy through Akt/mTOR signaling. Our finding provides new insights into the mechanism by which bupivacaine attenuates the development of NSCLC. Bupivacaine may serve as a potential anti-tumor candidate for the therapeutic strategy of NSCLC.
Collapse
Affiliation(s)
- Jian-Hua Gu
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Cui-Cui Liu
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Jin-Lan Xie
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Bin Ma
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Shao-Min Cui
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Guang-Zhu Yang
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Shun-Cheng He
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| |
Collapse
|
28
|
Wang J, Zhang X, Yang F, Yang Y, Wang T, Liu W, Zhou H, Zhao W. RASSF1A Enhances Chemosensitivity of NSCLC Cells Through Activating Autophagy by Regulating MAP1S to Inactivate Keap1-Nrf2 Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:21-35. [PMID: 33442234 PMCID: PMC7797300 DOI: 10.2147/dddt.s269277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
Objective Cisplatin (DDP) is an effective first-line therapy for non-small cell lung cancer (NSCLC) treatment; however, it can cause resistance and thus pose an obstacle to the efficacy of chemotherapy in NSCLC. This study aims to detect the effect of RASSF1A on DDP resistance of NSCLC and the underlying mechanism. Methods The expression levels of RASSF1A and microtubule-associated protein 1S (MAP1S) were investigated by qRT-PCR and Western blot and their interaction was testified by co-immunoprecipitation (Co-IP) analysis. The IC50 value of DDP on A549 and A549/DDP cells (DDP-resistant cells) was measured. A549/DDP cells were transfected with pCDNA3.1-RASSF1A, pCDNA3.1-MAP1S, or si-RASSF1A, followed by treated with DDP. Cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EDU) were employed to measure cell survival rate. Western blot was applied to test the levels of autophagy-associated proteins p62, LC3II, and LC3I. Immunofluorescence staining was used to detect the green fluorescent protein (GFP)-LC3 puncta to evaluate the level of autophagy. Finally, a xenograft model in nude mice using A549/DDP cells was developed. Results RASSF1A and MAP1S were lowly expressed and positively correlated in NSCLC tissues. We observed that RASSF1A and MAP1S overexpression significantly enhanced DDP-induced effects in A549 and A549/DDP cells, including decreased cell viability, as well as increased autophagy levels. Besides, investigations into the mechanism between RASSF1A and MAP1S disclosed that RASSF1A could regulate MAP1S to inactivate the Keap1-Nrf2 pathway, thus activating autophagy to enhance chemosensitivity. Moreover, consistent results were confirmed in vivo experiments. Conclusion RASSF1A increases chemosensitivity in NSCLC by facilitating autophagy via MAP1S-mediated Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Jincai Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, People's Republic of China
| | - Xufeng Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, People's Republic of China
| | - Fang Yang
- Department of Medical Oncology, Boao Evergrande International Hospital, Qionghai, Hainan 571400, People's Republic of China
| | - Yuguang Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, People's Republic of China
| | - Tianjiao Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, People's Republic of China
| | - Wenming Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, People's Republic of China
| | - Hongfeng Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150086, People's Republic of China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang, 150086, People's Republic of China
| |
Collapse
|
29
|
Yang B, Yang N, Chen Y, Zhu M, Lian Y, Xiong Z, Wang B, Feng L, Jia X. An Integrated Strategy for Effective-Component Discovery of Astragali Radix in the Treatment of Lung Cancer. Front Pharmacol 2021; 11:580978. [PMID: 33628171 PMCID: PMC7898675 DOI: 10.3389/fphar.2020.580978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
Lung cancer is one of the most devastating diseases worldwide, with high incidence and mortality worldwide, and the anticancer potential of traditional Chinese medicine (TCM) has been gradually recognized by the scientific community. Astragali Radix (AR) is commonly used in traditional Chinese medicine in the treatment of lung cancer and has a certain clinical effect, but effective components and targets are still unclear. In the study, we established an integrated strategy for effective-component discovery of AR in the treatment of lung cancer based on a variety of techniques. First, the effective components and potential targets of AR were deciphered by the "component-target-disease" network using network pharmacology, and potential signal pathways on lung cancer were predicted by Gene Ontology (GO) biological function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Then, the therapeutic effects of AR in the treatment of lung cancer were evaluated in vivo using A/J mice, and the potential targets related to autophagy and potential signal pathway were verified by Western blot analysis, immunofluorescence staining, and real-time PCR technology at protein and gene expression level. Finally, metabolism in vitro by rat intestinal flora and cell membrane immobilized chromatography technology were used to screen the effective components of AR in the treatment of lung cancer, and remaining components from the cell immobilized chromatography were collected and analyzed by ultra-performance liquid chromatography-electrospray quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The screening results of the integrated strategy showed that calycosin-7-O-β-D-glucoside, ononin, calycosin, astragaloside IV, astragaloside II, cycloastragenol, and formononetin may be effective components of AR in the treatment of lung cancer, and they may play a role in the treatment of lung cancer through autophagy and p53/AMPK/mTOR signaling pathway. The integrated strategy for effective-component discovery provided a valuable reference mode for finding the pharmacodynamic material basis of complex TCM systems. In addition, the prediction for targets and signal pathways laid a foundation for further study on the mechanism of AR in the treatment of lung cancer.
Collapse
Affiliation(s)
- Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,Nanjing University of Chinese Medicine, Nanjing, China,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Nan Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yaping Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuanpei Lian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhiwei Xiong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Bei Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,*Correspondence: Liang Feng, ; Xiaobin Jia,
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,Nanjing University of Chinese Medicine, Nanjing, China,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China,*Correspondence: Liang Feng, ; Xiaobin Jia,
| |
Collapse
|
30
|
Zhang Q, Liu J, Li R, Zhao R, Zhang M, Wei S, Ran D, Jin W, Wu C. A Network Pharmacology Approach to Investigate the Anticancer Mechanism and Potential Active Ingredients of Rheum palmatum L. Against Lung Cancer via Induction of Apoptosis. Front Pharmacol 2020; 11:528308. [PMID: 33250766 PMCID: PMC7672213 DOI: 10.3389/fphar.2020.528308] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022] Open
Abstract
Rheum palmatum L. (RPL) is a known traditional herbal medicine with the functions of “heat-clearing and damp-drying” in traditional Chinese medicine. Its anti-cancer effect against lung cancer has been confirmed previously, but the related mechanisms and active substances for its action has been little studied. This study adopted the network pharmacology, built the network map of drug ingredients and disease targets (DDN), and discussed the effective components of RPL and its possible mechanisms. All constituents of RPL were collected through database search and literature mining, and the potential active constituents were screened. The inverse pharmacophore matching model was used to predict the targets of active ingredients, and the method was supplemented by database retrieval and literature mining. Compounds-target data were inputted into Cytoscape software to build the DDN of RPL, and functional annotation analysis and pathway enrichment analysis were carried out. Finally, 20 active compounds were screened, which acted on 817 targets. A total of 22,418 lung cancer-related targets were collected, and 761 overlapped with drug targets. By bioinformatics annotation of these overlapping genes, a total of 235 gene ontology (GO) functional annotation analyses and 46 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were obtained. It was found that the enrichment of GO and KEGG was associated with apoptosis, suggesting RPL plays an anti-lung cancer role via inducing cell apoptosis. Subsequent cell experiment results showed RPL and its active constituents inhibited the proliferation of A549 cells and reduced clone formation rate of A549 cells via induction of apoptosis. In this study, the pharmacodynamic basis and mechanism of RPL against lung cancer were studied from the perspective of systematic pharmacology, which would be beneficial for further elucidating the anticancer effect of RPL on lung cancer.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujun Wei
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Ran
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, Hashemipour M, Nejati M, Abbasi-Kolli M, Sahebkar A, Mirzaei H. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res 2020; 161:105133. [DOI: 10.1016/j.phrs.2020.105133] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
|