1
|
He Y, Zhao WJ, Yang ZC, Qin MM, Wang Q, Lin S. Protective effect of Astragalus polysaccharide on diabetic nephropathy: A systematic review and meta‑analysis reveals the efficacy and potential mechanisms. Biomed Rep 2025; 22:85. [PMID: 40166415 PMCID: PMC11956133 DOI: 10.3892/br.2025.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Astragali radix is widely used to treat diabetes and Astragalus polysaccharides (APS) is a primary bioactive compound. Previous evidence has demonstrated that APS, when administered, is an effective monomer in the treatment of diabetic nephropathy (DN). In the present systematic review and meta-analysis, the effects and potential underlying mechanisms of APS in the treatment of DN were evaluated. PubMed, Embase, EBSCO, Web of Science and OVID databases were employed to obtain the published studies included in the present meta-analysis up to April 2024. Each article's quality was assessed using the Jadad score assessment scale. The odds ratios of risk factors were pooled using a random-effects meta-analysis model. Heterogeneity was assessed using the Cochrane Q statistics and I-Square (I2) tests, and publication bias was detected using the funnel plot and/or Egger's test. If necessary, the authors of the identified papers were contacted for more information. The primary outcomes were analyzed, including the parameters of creatinine, kidney-to-urine protein, blood urea nitrogen, urine protein and fasting blood glucose. Additionally, APS was found to reduce known risk factors, including kidney weight and total cholesterol levels. Furthermore, it was revealed that the therapeutic effects of APS in DN may be associated with antifibrotic, anti-inflammatory and anti-oxidative stress processes. The findings of the present study have validated the anti-DN effects of APS, and the safety of its use; however, further rigorously designed and well-performed preclinical trials are required in order to fully evaluate the anti-DN effects and safety of APS, and to verify these findings prior to its possible clinical application.
Collapse
Affiliation(s)
- Yong He
- Department of Pharmacy, Chongqing Rongchang Hospital of Traditional Chinese Medicine, Chongqing 402460, P.R. China
| | - Wen-Ju Zhao
- Department of Pharmacy, Chongqing Rongchang Hospital of Traditional Chinese Medicine, Chongqing 402460, P.R. China
| | - Ze-Chun Yang
- Department of Pharmacy, Chongqing Rongchang Hospital of Traditional Chinese Medicine, Chongqing 402460, P.R. China
| | - Ming-Ming Qin
- Guokang Pharmacy, Shanxi Sinopharm Group, Taiyuan, Shanxi 030000, P.R. China
| | - Qin Wang
- Department of Pharmacy, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400000, P.R. China
| | - Sen Lin
- Department of Pharmacy, Chongqing Rongchang Hospital of Traditional Chinese Medicine, Chongqing 402460, P.R. China
| |
Collapse
|
2
|
Abd Rahman NI, Tham CL, Abd Hamid R. Inhibition of angiogenesis and metastasis in colorectal cancer cell lines through KRAS-associated signaling pathways by 2-methoxy-6-undecyl-1,4-benzoquinone. Chem Biol Interact 2024; 399:111151. [PMID: 39025287 DOI: 10.1016/j.cbi.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Colorectal cancer (CRC), the third most prevalent cancer globally, presents formidable hurdles in treatment owing to factors such as therapeutic resistance and genetic mutations affecting primary drug targets. 2-methoxy-6-undecyl-1,4-benzoquinone (BQ), derived from Ardisia crispa roots, has emerged as a potent anti-inflammatory and anti-angiogenic compound with substantial potential, as evidenced by previous studies. This study aimed to explore the potential of BQ in suppressing angiogenesis and metastasis in the human CRC cell lines LoVo and HCT116. Various in vitro and in silico studies have been conducted to elucidate the potential pathway(s) of BQ. BQ was highly cytotoxic, with an IC50 of 7.01 ± 0.6 μM in HCT116 and 9.58 ± 0.8 μM in LoVo cells. Moreover, BQ induced notable apoptotic activity and suppressed migration, invasion, and adhesion in both cell lines. The inhibition of MMP-2 suggests the potential of BQ to impede extracellular matrix degradation and CRC cell metastasis. BQ inhibits the expression of key proteins involved in angiogenesis and metastasis, including VEGF-A, VEGF-C, BRAF, ERK, KRAS, PI3K, and AKT. Molecular docking simulations illustrated the robust binding of BQ to CRC protein receptors. BQ holds promise in impeding CRC progression by targeting angiogenesis and metastasis, particularly through inhibition of the KRAS/BRAF/ERK and KRAS/PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Noor Izzah Abd Rahman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Center of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Roslida Abd Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Ni C, Yue L, Ran M, Wang L, Huang F, Yang S, Lai J, Jiang N, Huang X, Qin D, Li H, Zhou J, Zeng J, Wu A, Wu J. Identification of octyl gallate, a novel apoptosis-inducing compound for colon cancer therapy, from Sanguisorba officinalis L. by cell membrane chromatography and UHPLC-(Q)TOF-MS/MS. Heliyon 2024; 10:e32230. [PMID: 38933948 PMCID: PMC11200347 DOI: 10.1016/j.heliyon.2024.e32230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Colon cancer is a common gastrointestinal malignancy that ranks third in incidence among gastrointestinal cancers. Therefore, screening bioactive compounds for treatment of colon cancer is urgently needed. Sanguisorba officinalis L. (SO) has been demonstrated that the extractions or monomers possess potential anti-tumor effect. In this study, we firstly used cell membrane chromatography (CMC) and ultra-performance liquid chromatography coupled with (quadrupole) time-of-flight mass spectrometry (UHPLC-(Q) TOF-MS/MS) to identify a novel active ingredient, octyl gallate (OG), from SO methanol extract (SO-MtOH). HCT116 and SW620 cells lines were used for in vitro research, which showed OG presents great anti-colon cancer effect by inhibiting proliferation, inducing apoptosis, and repressing the migration and invasion. Furthermore, SW620 bearing athymic nude mice was used to investigate the potential antitumor activity in vivo, which exhibited OG treatment remarkably lessened the tumor volume. Mechanism studies showed that OG downregulated the PI3K/AKT/mTOR signaling axis and induced apoptosis by upregulating the Bax/Bcl-2 protein and the cleaved caspase-3, caspase-9. In conclusion, our research innovatively applied the method of CMC to intriguingly unearth the potential anti-colon cancer ingredient OG and demonstrated its the great antineoplastic activity, which provide a new insight for researchers efficiently developing the novel apoptosis-inducing compound for colon cancer therapy.
Collapse
Affiliation(s)
- Chengyang Ni
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Liang Yue
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacy, Deyang People's Hospital, Deyang, 618000, China
| | - Mei Ran
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
4
|
Li R, Wu Y, Li Y, Shuai W, Wang A, Zhu Y, Hu X, Xia Y, Ouyang L, Wang G. Targeted regulated cell death with small molecule compounds in colorectal cancer: Current perspectives of targeted therapy and molecular mechanisms. Eur J Med Chem 2024; 265:116040. [PMID: 38142509 DOI: 10.1016/j.ejmech.2023.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC), a tumor of the digestive system, is characterized by high malignancy and poor prognosis. Currently, targeted therapy of CRC is far away from satisfying. The molecular mechanisms of regulated cell death (RCD) have been clearly elucidated, which can be intervened by drug or genetic modification. Numerous studies have provided substantial evidence linking these mechanisms to the progression and treatment of CRC. The RCD includes apoptosis, autophagy-dependent cell death (ADCD), ferroptosis, necroptosis, and pyroptosis, and immunogenic cell death, etc, which provide potential targets for anti-cancer treatment. For the last several years, small-molecule compounds targeting RCD have been a well concerned therapeutic strategy for CRC. This present review aims to describe the function of small-molecule compounds in the targeted therapy of CRC via targeting apoptosis, ADCD, ferroptosis, necroptosis, immunogenic dell death and pyroptosis, and their mechanisms. In addition, we prospect the application of newly discovered cuproptosis and disulfidptosis in CRC. Our review may provide references for the targeted therapy of CRC using small-molecule compounds targeting RCD, including the potential targets and candidate compounds.
Collapse
Affiliation(s)
- Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yumeng Zhu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Song HK, Park SH, Kim HJ, Jang S, Choo BK, Kim HK, Kim T. Inhibitory effect of Sanguisorba hakusanensis Makino ethanol extract on atopic dermatitis-like responses in NC/Nga mice and human keratinocytes. Sci Rep 2023; 13:14594. [PMID: 37670127 PMCID: PMC10480230 DOI: 10.1038/s41598-023-41676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Atopic dermatitis (AD) is an allergic, inflammatory skin disease caused by immune dysregulation. In this study, we investigated anti-atopic and anti-inflammatory activities of Sanguisorba hakusanensis ethanol extract (SHE) both in vivo using NC/Nga mice and in vitro using human HaCaT keratinocytes. Oral administration of SHE suppressed several atopic symptoms associated with house dust mites (induced with Dermatophagoides farinae extract) in NC/Nga mice and decreased serum levels of inflammatory mediators such as immunoglobulin E, histamine, and inflammatory chemokines. Additionally, SHE treatment reduced the infiltration of immune cells such as mast cells and macrophages in AD skin lesions. In vitro, interferon-γ- and tumor necrosis factor-α-stimulated HaCaT cells exhibited increased expression of T helper 1 and 2 chemokines; their expression was inhibited by SHE treatment. The anti-inflammatory effects of SHE treatment involved blocking of the mitogen-activated protein kinase and signal transducer and activator of transcription 1 signaling pathways. In conclusion, SHE exerts potent anti-atopic and anti-inflammatory effects and should be considered for the clinical treatment of AD.
Collapse
Affiliation(s)
- Hyun-Kyung Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Sun Haeng Park
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seol Jang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Byung-Kil Choo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ho Kyoung Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
6
|
Zhang W, Ou L, Peng C, Sang S, Feng Z, Zou Y, Yuan Y, Li H, Zhang G, Yao M. Sanguisorba officinalis L. enhances the 5-fluorouracil sensitivity and overcomes chemoresistance in 5-fluorouracil-resistant colorectal cancer cells via Ras/MEK/ERK and PI3K/Akt pathways. Heliyon 2023; 9:e16798. [PMID: 37484409 PMCID: PMC10360953 DOI: 10.1016/j.heliyon.2023.e16798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
Sanguisorba officinalis L., a traditional Chinese medicine (TCM) called DiYu (DY) in China, has a strong tradition of utilization as a scorching, blood-cooling, and hemostatic medication, and was used for cancer prevention and treatment due to its potential immune-enhancing and hematological toxicity-reducing effects. Previous studies have reported significant effects of DY on cancers including colorectal cancer (CRC), which is one of the most common malignancies worldwide. The first-line cure 5-fluorouracil (5-FU) plays decisive commerce in the sedative of CRC as a clinically available chemotherapeutic agent. One of the primary causes of cancer treatment failure is the acquisition of chemotherapy drug resistance. In order to successfully combat the emergence of chemoresistance, it is essential to identify herbs or traditional Chinese medicine that have adjuvant therapeutic effects on CRC. Therefore, this study aimed to determine whether DY could improve the sensitivity, conquer the chemoresistance of 5-FU-resistant CRC cells, and investigate its intrinsic mechanism. Materials and methods MTT, Hoechst 33258 staining, and flow cytometry assays were used to determine the anticancer activity of DY alone or in combination with 5-FU against 5-FU-resistant CRC cells (RKO-R and HCT15-R) and wound healing assays were conducted to detect cell migration. Transcriptomic techniques were carried out to explore the effect and mechanism of DY on drug-resistant CRC cells. Western Blot and RT q-PCR assays were performed to validate the mechanism by which DY overcomes drug-resistant CRC cells. Results These results indicated that DY alone or in combination with 5-FU significantly inhibited the proliferation and the migration of resistant CRC cells, and potentiated the susceptibility of 5-FU to drug-resistant CRC cells. GO and KEGG enrichment analysis showed that the mechanisms of drug resistance in CRC cells and DY against drug-resistant CRC cells highly overlapped, involved in the modulation of biological processes such as cell migration, positive regulation of protein binding and cytoskeleton, and MAPK (Ras-ERK-MEK), PI3K/Akt, and other signaling pathways. Moreover, DY can mediate the expression of p-R-Ras, p-ERK1/2, p-MEK1/2, p-PI3K, p-AKT, HIF-1A and VEGFA proteins. In addition, DY significantly suppressed the expression of AKT3, NEDD9, BMI-1, and CXCL1 genes in resistant CRC cells. Conclusion In conclusion, DY could inhibit the proliferation and migration of 5-FU-resistant cells and strengthen the sensitivity of 5-FU to CRC-resistant cells. Furthermore, DY may prevail over chemoresistance through the Ras/MEK/ERK and PI3K/Akt pathways. These findings imply that DY may be a potential drug for clinical treatment or adjuvant treatment of drug-resistant CRC.
Collapse
Affiliation(s)
- Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuyi Sang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- International Pharmaceutical Engineering Lab, Shandong, 273400, China
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuemei Yuan
- School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai, 519080, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
7
|
Jiang X, Sun Y, Yang S, Wu Y, Wang L, Zou W, Jiang N, Chen J, Han Y, Huang C, Wu A, Zhang C, Wu J. Novel chemical-structure TPOR agonist, TMEA, promotes megakaryocytes differentiation and thrombopoiesis via mTOR and ERK signalings. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154637. [PMID: 36610353 DOI: 10.1016/j.phymed.2022.154637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Non-peptide thrombopoietin receptor (TPOR) agonists are promising therapies for the mitigation and treatment of thrombocytopenia. However, only few agents are available as safe and effective for stimulating platelet production for thrombocytopenic patients in the clinic. PURPOSE This study aimed to develop a novel small molecule TPOR agonist and investigate its underlying regulation of function in megakaryocytes (MKs) differentiation and thrombopoiesis. METHODS A potential active compound that promotes MKs differentiation and thrombopoiesis was obtained by machine learning (ML). Meanwhile, the effect was verified in zebrafish model, HEL and Meg-01 cells. Next, the key regulatory target was identified by Drug Affinity Responsive Target Stabilization Assay (DARTS), Cellular Thermal Shift Assay (CETSA), and molecular simulation experiments. After that, RNA-sequencing (RNA-seq) was used to further confirm the associated pathways and evaluate the gene expression induced during MK differentiation. In vivo, irradiation (IR) mice, C57BL/6N-TPORem1cyagen (Tpor-/-) mice were constructed by CRISPR/Cas9 technology to examine the therapeutic effect of TMEA on thrombocytopenia. RESULTS A natural chemical-structure small molecule TMEA was predicted to be a potential active compound based on ML. Obvious phenotypes of MKs differentiation were observed by TMEA induction in zebrafish model and TMEA could increase co-expression of CD41/CD42b, DNA content, and promote polyploidization and maturation of MKs in HEL and Meg-01 cells. Mechanically, TMEA could bind with TPOR protein and further regulate the PI3K/AKT/mTOR/P70S6K and MEK/ERK signal pathways. In vivo, TMEA evidently promoted platelet regeneration in mice with radiation-induced thrombocytopenia but had no effect on Tpor-/- and C57BL/6 (WT) mice. CONCLUSION TMEA could serve as a novel TPOR agonist to promote MKs differentiation and thrombopoiesis via mTOR and ERK signaling and could potentially be created as a promising new drug to treat thrombocytopenia.
Collapse
Affiliation(s)
- Xueqin Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yueshan Sun
- The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China
| | - Shuo Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuesong Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Long Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Nan Jiang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yunwei Han
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunlan Huang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Anguo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Jianming Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Ferrara E, Pecoraro MT, Cice D, Piccolella S, Formato M, Esposito A, Petriccione M, Pacifico S. A Joint Approach of Morphological and UHPLC-HRMS Analyses to Throw Light on the Autochthonous 'Verdole' Chestnut for Nutraceutical Innovation of Its Waste. Molecules 2022; 27:molecules27248924. [PMID: 36558057 PMCID: PMC9785621 DOI: 10.3390/molecules27248924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nowadays, chestnut by-products are gaining a lot of interest as a low-cost raw material, exploitable for developing added-value products. This is in line with suitable chestnut by-products' management, aimed at reducing the environmental impact, thus improving the chestnut industry's competitiveness and economic sustainability. In this context, with the aim of valorizing local cultivars of European chestnuts (Castanea sativa Mill.), our attention focused on the Verdole cultivar, which has been characterized by using the UPOV guidelines for its distinctness, homogeneity, and stability. After harvesting, Verdole chestnuts were properly dissected to collect the outer and inner shells, and episperm. Each chestnut part, previously crushed, shredded, and passed through diverse sieves, underwent ultrasound-assisted extraction. The extracts obtained were evaluated for their total phenolic, flavonoid, and tannin content. The antiradical capacity by DPPH and ABTS assays, and the Fe(III) reducing power, were also evaluated. Although all the samples showed dose-dependent antioxidant efficacy, plant matrix size strongly impacted on extraction efficiency. LC-HRMS-based metabolic profiling highlighted the occurrence of different polyphenol subclasses, whose quantitative ratio varied among the chestnut parts investigated. The outer shell was more chemically rich than inner shell and episperm, according to its pronounced antioxidant activity. The polyphenol diversity of Verdole by-products is a resource not intended for disposal, appliable in the nutraceutical sector, thus realizing a new scenario in processing chestnut waste.
Collapse
Affiliation(s)
- Elvira Ferrara
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli” Via Vivaldi 43, 81100 Caserta, Italy
- CREA-Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via Torrino 3, 81100 Caserta, Italy
| | - Maria Tommasina Pecoraro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli” Via Vivaldi 43, 81100 Caserta, Italy
- CREA-Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via Torrino 3, 81100 Caserta, Italy
| | - Danilo Cice
- CREA-Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via Torrino 3, 81100 Caserta, Italy
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli” Via Vivaldi 43, 81100 Caserta, Italy
| | - Marialuisa Formato
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli” Via Vivaldi 43, 81100 Caserta, Italy
| | - Assunta Esposito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli” Via Vivaldi 43, 81100 Caserta, Italy
| | - Milena Petriccione
- CREA-Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via Torrino 3, 81100 Caserta, Italy
- Correspondence:
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli” Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
9
|
Li H, Lin J, Yang F, Deng J, Lai J, Zeng J, Zou W, Jiang N, Huang Q, Li H, Liu J, Li M, Zhong Z, Wu J. Sanguisorba officinalis L. suppresses non-small cell lung cancer via downregulating the PI3K/AKT/mTOR signaling pathway based on network pharmacology and experimental investigation. Front Pharmacol 2022; 13:1054803. [PMID: 36506573 PMCID: PMC9729289 DOI: 10.3389/fphar.2022.1054803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Sanguisorba officinalis L. (SOL), a traditional Chinese herbal medicine called Diyu, has been shown to have potent antitumor effects. However, the role of SOL in suppressing NSCLC remains unknown. Methods: Network pharmacology was employed for acquiring the potential targets and mechanisms of SOL in NSCLC. Based on the predictions of network pharmacology, we used CCK8 and EdU assays to investigate cell proliferation, flow cytometry to investigate apoptosis, wound healing assay to investigate cell migration, and transwell assay to investigate cell invasion in vitro. Western blot was employed for detecting the potential proteins, including signaling pathways and apoptosis. The A549-bearing athymic nude mice were employed to verify the effect on cell proliferation and apoptosis in vivo. Results: SOL significantly inhibited the proliferation, migration and invasion of NSCLC cells in a dose-dependent manner. Flow cytometry showed that the apoptotic ratio and ROS level of NSCLC cells increased significantly with increasing concentrations. AKT and the PI3K-AKT signaling pathway were analyzed as the most relevant target and pathway via network pharmacology predictions. Western blotting revealed that the expression levels of p-PI3K, p-AKT, and p-mTOR in NSCLC cells treated with SOL were significantly downregulated, while cleaved PARP-1 and caspase-3 were upregulated in a dose-dependent manner. The results in the mouse xenograft model were consistent with those in NSCLC cell lines. Conclusion: SOL downregulated the PI3K/AKT/mTOR signaling pathway to suppress NSCLC.
Collapse
Affiliation(s)
- Hong Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Junzhu Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Hua Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mao Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhirong Zhong
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
- School of Basic Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Protective effect of berberine in diabetic nephropathy: A systematic review and meta-analysis revealing the mechanism of action. Pharmacol Res 2022; 185:106481. [DOI: 10.1016/j.phrs.2022.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022]
|
11
|
Kang Y, Lin J, Wang L, Shen X, Li J, Wu A, Yue L, Wei L, Ye Y, Yang J, Wu J. Hirsutine, a novel megakaryopoiesis inducer, promotes thrombopoiesis via MEK/ERK/FOG1/TAL1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154150. [PMID: 35569185 DOI: 10.1016/j.phymed.2022.154150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Thrombocytopenia (TP) remains a challenge in clinical hematology. TP may have serious consequences, such as recurrent skin and mucosal bleeding and increased risk of intracranial and internal organ hemorrhage. However, effective and safe therapeutic drugs for the long-term management of TP are still lacking. PURPOSE This study aimed to identify more effective active compounds for TP therapy. METHODS Liquid chromatography-mass spectrometry-nuclear magnetic resonance analysis was used to confirm the medicinal species and chemical structure of Hirsutine (HS). The proliferation of HS was examined by Cell Counting Kit (CCK-8) assay on cells lines. The effect of HS on megakaryocyte differentiation was analyzed by evaluating the expression of CD41, CD42b, and DNA ploidy via flow cytometry (FCM). The morphology of megakaryocytes and intermediate cells was observed using an optical microscope. K562 cells were then stained with Giemsa and benzidine. qRT-PCR was used to examine the mRNA expression of GATA-1, GATA-2, FOG-1, TAL-1, RUNX-1, NF-E2, and KLF-1 in K562 cells. Protein levels of the transcription factors were analyzed by western blotting. An MEK inhibitor was used to verify the relationship between the MEK/ERK signaling pathway and CD41/CD42b (FCM), FOG-1, and TAL-1. The Kunming thrombocytopenia mouse model was established by X-ray irradiation (4 Gy) and used to test HS activity and related hematopoietic organ index in vivo. Finally, computer simulations of molecular docking were used to predict the binding energies between HS-MEK and HS-ERK. RESULTS We preliminarily identified HS by screening a plant-sourced compound library for natural compounds with megakaryocytic differentiation and maturation (MKD/MKM)-promoting activity. We found that HS not only enhanced MKD/MKM of K562 and Meg01 cells, but also suppressed the decline of peripheral platelet levels in X-ray-induced myelosuppressive mice. In addition, HS promoted MKD via activation of MEK-ERK-FOG1/TAL1 signaling, which may be the key molecular mechanism of HS action in TP treatment. Molecular docking simulations further verified that HS targets the signaling protein MEK with high-affinity. CONCLUSION In this study, we report for the first time that hirsutine boosts MKD/MKM through the MEK/ERK/FOG1/TAL1 signaling pathway and thus represents a promising treatment option for TP.
Collapse
Affiliation(s)
- Yaqi Kang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jing Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xin Shen
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jingyan Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liang Yue
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liuping Wei
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Ye
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China; Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China; Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
12
|
Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23063375. [PMID: 35328794 PMCID: PMC8952321 DOI: 10.3390/ijms23063375] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer death in the world. Both modifiable and nonmodifiable risk factors play a significant role in the pathogenesis of this tumor. The diagnosis is usually made late due to limitations of screening tests; therefore, the scientists are looking for new diagnostic tools such as gene or miRNA expression or different proteins’ concentrations, e.g., vascular endothelial growth factor (VEGF) family members. The VEGF family (VEGF-A, VEGF-B, VEGF-C, VEGF-D and PlGF) plays a key role in the processes of blood vessel formation in embryonic development as well as in pathological angiogenesis and lymphangiogenesis, which allow the tumor to grow exponentially. Blockage of VEGF-related pathways seems to be a valid therapeutic target. It was suggested in recent studies, that besides already used drugs, e.g., bevacizumab, there are other agents with potential usefulness in anticancer activity such as miRNAs, TMEA, granzyme K, baicalein and arginine. Moreover, VEGF proteins were assessed to induce the expression of anti-apoptotic proteins such as BCL-2 and BAX. Therefore, investigations concerning the usefulness of VEGF family members, not only in the development but also in the therapy of CRC, in order to fully elucidate their role in carcinogenesis, are extremely important.
Collapse
|
13
|
Zhang W, Feng Y, Ni L, Liang W, Li X, Lin R. Screening and identification of Euphorbiae pekinensis Rupr. anti-angiogenic multi-components with UPLC-QTOF-MS in zebrafish. J Pharm Biomed Anal 2022; 207:114396. [PMID: 34670180 DOI: 10.1016/j.jpba.2021.114396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/21/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Euphorbia pekinensis Rupr. (EP) (Euphorbiaceae), as Traditional Chinese Medicine (TCM), exhibits therapeutic effects on tumors in clinical practice. Anti-angiogenesis may be an underlying molecular mechanism of EP's actions. However, the anti-angiogenic active ingredients of EP remain unclear. The screening and analysis of anti-angiogenic agents were essential for the sufficient utilization and development of EP. Thus, we established a UPLC-QTOF-MS method based on a transgenic zebrafish model to screen anti-angiogenesis activity components in EP. UPLC-QTOF-MS was used to characterize compounds from EP and in vivo compounds in Tg (flk1: mCherry) zebrafish larvae treated with EP. Based on the identification results, five components were selected, and their anti-angiogenesis activity were investigated via assessment of intersegmental blood vessels during the development of the transgenic zebrafish. Three of these components (3,3'-O-dimethoxy ellagic acid, quercetin, and ingenol) are active components of EP with anti-angiogenic effects. Among them, 3, 3'-O-dimethoxy ellagic acid and ingenol were first demonstrated with anti-angiogenesis effects. UPLC-PDA analysis was performed on EP water extracts to determine anti-angiogenesis active ingredients quantitatively. In the concentration range of 100-200 μg/mL, EP and the active ingredient compositions, mixed according to the content of EP, had equivalent anti-angiogenesis activities. These experimental results indicate that the UPLC-QTOF-MS method, combined with a transgenic zebrafish model, is rapid, sensitive and reliable. The combination in TCM offers the potential to achieve certain effect levels with lower concentrations of the individual compound.
Collapse
Affiliation(s)
- Wenting Zhang
- Beijing Key Lab for Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yaru Feng
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lu Ni
- Beijing Key Lab for Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenju Liang
- Beijing Key Lab for Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiangri Li
- Beijing Key Lab for Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Ruichao Lin
- Beijing Key Lab for Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
14
|
Liu B, Su Q, Xiao B, Zheng G, Zhang L, Yin J, Wang L, Che F, Heng X. RAB42 Promotes Glioma Pathogenesis via the VEGF Signaling Pathway. Front Oncol 2021; 11:657029. [PMID: 34912698 PMCID: PMC8666624 DOI: 10.3389/fonc.2021.657029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis plays an important role in tumor initiation and progression of glioma. Seeking for biomarkers associated with angiogenesis is important in enhancing our understanding of glioma biologically and identifying its new drug targets. RNA-sequencing (RNA-seq) data and matched clinical data were downloaded from the CGGA database. A series of filtering analyses were performed to screen for reliable genes: survival, multivariate Cox, ROC curve filtration, and clinical correlation analyses. After immunohistochemical verification, RAB42 was identified as a reliable gene for further single gene analysis. Afterwards, we performed gene set enrichment analysis (GSEA) and co-expression analysis to establish the related molecular mechanisms and signal pathways in glioma. Finally, the gene functions and the mechanisms were investigated in vitro experiments. A total of 23270 mRNA expression and 1018 glioma samples were included in this study. After the three filtering analyses, we selected ten genes for immunohistochemical verification: KLHDC8A, IKIP, HIST1H2BK, HIST1H2BJ, GNG5, FAM114A1, TMEM71, RAB42, CCDC18, and GAS2L3. Immunostaining demonstrated that RAB42 was significantly expressed on the membrane of glioma tissues but not in normal tissues. These results were verified and validated in GEPIA datasets, and the association between RAB42 with clinical features was also evaluated. Analysis of gene functions indicated that RAB42 activated VEGF signaling pathways and the mechanism was associated with natural killer cell mediated cytotoxicity, JAK-STAT signaling pathway and apoptosis pathways by PI3K/AKT in gliomas. Experiments in vitro suggested that the proliferation and invasion of glioma cells might be inhibited after downregulating of RAB42. And the tumorigenesis promotion of RAB42 may relate to the activation of VEGF signaling pathway. Taken together, this study shows that the overexpression of RAB42 is an independent prognostic factor of adverse prognosis. Its pro-oncogenic mechanism may be associated with the activation of VEGF signaling pathways.
Collapse
Affiliation(s)
- Baoling Liu
- Central Laboratory, Key Laboratory of Tumor Biology, Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, China
| | - Quanping Su
- Central Laboratory, Key Laboratory of Tumor Biology, Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, China
| | - Bolian Xiao
- Central Laboratory, Key Laboratory of Tumor Biology, Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, China
| | - Guodong Zheng
- Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| | - Lizhong Zhang
- Neuropathological laboratory, Linyi People's Hospital, Linyi, China
| | - Jiawei Yin
- Central Laboratory, Key Laboratory of Tumor Biology, Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, China
| | - Lijuan Wang
- Central Laboratory, Key Laboratory of Tumor Biology, Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, China.,Department of Hematology, Linyi People's Hospital, Linyi, China
| | - Fengyuan Che
- Central Laboratory, Key Laboratory of Tumor Biology, Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, China.,Department of Neurology, Linyi People's Hospital, Linyi, China
| | - Xueyuan Heng
- Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| |
Collapse
|
15
|
DMAG, a novel countermeasure for the treatment of thrombocytopenia. Mol Med 2021; 27:149. [PMID: 34837956 PMCID: PMC8626956 DOI: 10.1186/s10020-021-00404-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Background Thrombocytopenia is one of the most common hematological disease that can be life-threatening caused by bleeding complications. However, the treatment options for thrombocytopenia remain limited. Methods In this study, giemsa staining, phalloidin staining, immunofluorescence and flow cytometry were used to identify the effects of 3,3ʹ-di-O-methylellagic acid 4ʹ-glucoside (DMAG), a natural ellagic acid derived from Sanguisorba officinalis L. (SOL) on megakaryocyte differentiation in HEL cells. Then, thrombocytopenia mice model was constructed by X-ray irradiation to evaluate the therapeutic action of DMAG on thrombocytopenia. Furthermore, the effects of DMAG on platelet function were evaluated by tail bleeding time, platelet aggregation and platelet adhesion assays. Next, network pharmacology approaches were carried out to identify the targets of DMAG. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate the underling mechanism of DMAG against thrombocytopenia. Finally, molecular docking simulation, molecular dynamics simulation and western blot analysis were used to explore the relationship between DAMG with its targets. Results DMAG significantly promoted megakaryocyte differentiation of HEL cells. DMAG administration accelerated platelet recovery and megakaryopoiesis, shortened tail bleeding time, strengthened platelet aggregation and adhesion in thrombocytopenia mice. Network pharmacology revealed that ITGA2B, ITGB3, VWF, PLEK, TLR2, BCL2, BCL2L1 and TNF were the core targets of DMAG. GO and KEGG pathway enrichment analyses suggested that the core targets of DMAG were enriched in PI3K–Akt signaling pathway, hematopoietic cell lineage, ECM-receptor interaction and platelet activation. Molecular docking simulation and molecular dynamics simulation further indicated that ITGA2B, ITGB3, PLEK and TLR2 displayed strong binding ability with DMAG. Finally, western blot analysis evidenced that DMAG up-regulated the expression of ITGA2B, ITGB3, VWF, p-Akt and PLEK. Conclusion DMAG plays a critical role in promoting megakaryocytes differentiation and platelets production and might be a promising medicine for the treatment of thrombocytopenia. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00404-1.
Collapse
|
16
|
Lee EJ, Kim JH, Kim TI, Kim YJ, Pak ME, Jeon CH, Park YJ, Li W, Kim YS, Choi JG, Chung HS. Sanguisorbae Radix Suppresses Colorectal Tumor Growth Through PD-1/PD-L1 Blockade and Synergistic Effect With Pembrolizumab in a Humanized PD-L1-Expressing Colorectal Cancer Mouse Model. Front Immunol 2021; 12:737076. [PMID: 34659228 PMCID: PMC8511399 DOI: 10.3389/fimmu.2021.737076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023] Open
Abstract
Immune checkpoints such as programmed death-1 (PD-1) have been proven as antitumor targets by enhancing cytotoxic T cell activity. All immune checkpoint blockades are antibody therapeutics that have large size and high affinity, as well as known immune-related side effects and low responses. To overcome the limitation of antibody therapeutics, we have explored PD-1/PD-L1 (programmed death-ligand 1) blockades in traditional oriental medicine, which has a long history but has not yet studied PD-1/PD-L1 blockades. Sanguisorbae Radix extract (SRE) blocked PD-1 and PD-L1 binding in competitive ELISA. SRE effectively inhibited the PD-1/PD-L1 interaction, thereby improving T cell receptor (TCR) signaling and the NFAT-mediated luciferase activity of T cells. SRE treatment reduced tumor growth in the humanized PD-L1 MC38 cell allograft humanized PD-1 mouse model. Additionally, the combination of SRE and pembrolizumab (anti-PD-1 antibody) suppressed tumor growth and increased infiltrated cytotoxic T cells to a greater extent did either agent alone. This study showed that SRE alone has anticancer effects via PD-1/PD-L1 blockade and that the combination therapy of SRE and pembrolizumab has enhanced immuno-oncologic effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jang-Gi Choi
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Hwan-Suck Chung
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| |
Collapse
|
17
|
Zhou P, Li J, Chen Q, Wang L, Yang J, Wu A, Jiang N, Liu Y, Chen J, Zou W, Zeng J, Wu J. A Comprehensive Review of Genus Sanguisorba: Traditional Uses, Chemical Constituents and Medical Applications. Front Pharmacol 2021; 12:750165. [PMID: 34616302 PMCID: PMC8488092 DOI: 10.3389/fphar.2021.750165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Genus Sanguisorba (family: Rosaceae) comprises nearly 148 species, distributed widely across the temperate and subtropical regions of the Northern Hemisphere. Sanguisorba officinalis L. (S. officinalis) has been used as a hemostatic and scald treating medicine in China for a long time. Numerous studies have demonstrated that plant extracts or monomers from S. officinalis exhibit several pharmacological effects, such as anti-cancer, anti-virus, anti-inflammation, anti-bacteria, neuroprotective and hepatoprotective effects. The other species of genus Sanguisorba are also being studied by researchers worldwide. Sanguisorba minor Scop. (S. minor), as an edible wild plant, is a common ingredient of the Mediterranean diet, and its young shoots and leaves are often mixed with traditional vegetables and consumed as salad. Reports on genus Sanguisorba available in the current literature were collected from Google Scholar, Web of Science, Springer, and PubMed. The Plant List (http://www.theplantlist.org./tpl1.1/search?q=Sanguisorba), International Plant Name Index (https://www.ipni.org/?q=Sanguisorba) and Kew Botanical Garden (http://powo.science.kew.org/) were used for obtaining the scientific names and information on the subspecies and cultivars. In recent years, several in vivo and in vitro experiments have been conducted to reveal the active components and effective monomers of S. officinalis and S. minor. To date, more than 270 compounds have been isolated and identified so far from the species belonging to genus Sanguisorba. Numerous reports on the chemical constituents, pharmacologic effects, and toxicity of genus Sanguisorba are available in the literature. This review provides a comprehensive understanding of the current traditional applications of plants, which are supported by a large number of scientific experiments. Owing to these promising properties, this species is used in the treatment of various diseases, including influenza virus infection, inflammation, Alzheimer's disease, type 2 diabetes and leukopenia caused by bone marrow suppression. Moreover, the rich contents and biological effects of S. officinalis and S. minor facilitate these applications in dietary supplements and cosmetics. Therefore, the purpose of this review is to summarize the recent advances in the traditional uses, chemical constituents, pharmacological effects and clinical applications of genus Sanguisorba. The present comprehensive review may provide new insights for the future research on genus Sanguisorba.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyan Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Yuanzhi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Wenjun Zou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Li H, Jiang X, Shen X, Sun Y, Jiang N, Zeng J, Lin J, Yue L, Lai J, Li Y, Wu A, Wang L, Qin D, Huang F, Mei Q, Yang J, Wu J. TMEA, a Polyphenol in Sanguisorba officinalis, Promotes Thrombocytopoiesis by Upregulating PI3K/Akt Signaling. Front Cell Dev Biol 2021; 9:708331. [PMID: 34485295 PMCID: PMC8416095 DOI: 10.3389/fcell.2021.708331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/28/2021] [Indexed: 01/14/2023] Open
Abstract
Thrombocytopenia is closely linked with hemorrhagic diseases, for which induction of thrombopoiesis shows promise as an effective treatment. Polyphenols widely exist in plants and manifest antioxidation and antitumour activities. In this study, we investigated the thrombopoietic effect and mechanism of 3,3′,4′-trimethylellagic acid (TMEA, a polyphenol in Sanguisorba officinalis L.) using in silico prediction and experimental validation. A KEGG analysis indicated that PI3K/Akt signalling functioned as a crucial pathway. Furthermore, the virtual molecular docking results showed high-affinity binding (a docking score of 6.65) between TMEA and mTOR, suggesting that TMEA might target the mTOR protein to modulate signalling activity. After isolation of TMEA, in vitro and in vivo validation revealed that this compound could promote megakaryocyte differentiation/maturation and platelet formation. In addition, it enhanced the phosphorylation of PI3K, Akt, mTOR, and P70S6K and increased the expression of GATA-1 and NF-E2, which confirmed the mechanism prediction. In conclusion, our findings are the first to demonstrate that TMEA may provide a novel therapeutic strategy that relies on the PI3K/Akt/mTOR pathway to facilitate megakaryocyte differentiation and platelet production.
Collapse
Affiliation(s)
- Hong Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xueqin Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, Chengdu, China
| | - Xin Shen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueshan Sun
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Medical Research Center, The Third People's Hospital of Chengdu, Chengdu, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liang Yue
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yan Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qibing Mei
- The Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,The Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Ministry of Education of China, Institute of Cardiovascular Research, Luzhou, China
| |
Collapse
|
19
|
A Bioactive Compound from Sanguisorba officinalis L. Inhibits Cell Proliferation and Induces Cell Death in 5-Fluorouracil-Sensitive/Resistant Colorectal Cancer Cells. Molecules 2021; 26:molecules26133843. [PMID: 34202548 PMCID: PMC8270258 DOI: 10.3390/molecules26133843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer in the world. The first line chemotherapeutic agent, 5-fluorouracil (5-FU), plays a predominant role in the clinical treatment of CRC. However, with the wide use of 5-FU, more and more CRC patients have been obtaining drug resistance to 5-FU, which leads to a large amount of treatment failures. One of the effective strategies to overcome this obstacle is to find bioactive natural products from traditional medicine. In our previous work, Sanguisorba officinalis L. was found to exert a strong anti-proliferative activity against 5-FU-senstive/resistant CRC cells. Therefore, several compounds were isolated from this herb and screened for their anti-CRC effects to find promising compounds. Among them, a triterpenoid compound named 3β-[(α-l-arabinopyranosyl) oxy]-urs-12,18(19)-dien-28-oic acid β-d-glucopyranosyl ester (AGE), showed strong activity against both 5-FU-senstive and resistant CRC cells. In order to further study the mechanism of AGE on CRC cells, flow cytometer analysis, mitochondrial membrane potential (MMP) measurement, Western blotting, and RT-PCR assays were performed. Results demonstrated that AGE induced cell death by apoptosis pathway and autophagy, and inhibited cell proliferation via cell cycle arrest in G0-G1 phase mediated by Wnt signaling pathway. Therefore, AGE may be a potential bioactive compound for CRC treatment in clinic.
Collapse
|
20
|
Jiang N, Li H, Sun Y, Zeng J, Yang F, Kantawong F, Wu J. Network Pharmacology and Pharmacological Evaluation Reveals the Mechanism of the Sanguisorba Officinalis in Suppressing Hepatocellular Carcinoma. Front Pharmacol 2021; 12:618522. [PMID: 33746755 PMCID: PMC7969657 DOI: 10.3389/fphar.2021.618522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Sanguisorba Officinalis L. (SO) is a well-known traditional Chinese medicine (TCM), commonly applied to treat complex diseases, such as anticancer, antibacterial, antiviral, anti-inflammatory, anti-oxidant and hemostatic effects. Especially, it has been reported to exert anti-tumor effect in various human cancers. However, its effect and pharmacological mechanism on hepatocellular carcinoma (HCC) remains unclear. Methods: In this study, network pharmacology approach was applied to characterize the underlying mechanism of SO on HCC. Active compounds and potential targets of SO, as well as related genes of HCC were obtained from the public databases, the potential targets and signaling pathways were determined by protein-protein interaction (PPI), gene ontology (GO) and pathway enrichment analyses. And the compound-target and target-pathway networks were constructed. Subsequently, in vitro experiments were also performed to further verify the anticancer effects of SO on HCC. Results: By using the comprehensive network pharmacology analysis, 41 ingredients in SO were collected from the corresponding databases, 12 active ingredients screened according to their oral bioavailability and drug-likeness index, and 258 potential targets related to HCC were predicted. Through enrichment analysis, SO was found to show its excellent therapeutic effects on HCC through several pathways, mainly related to proliferation and survival via the EGFR, PI3K/AKT, NFκB and MAPK signaling pathways. Additionally, in vitro, SO was found to inhibit cell proliferation, induce apoptosis and down-regulate cell migration and invasion in various HCC cells. Moreover, western blot analysis showed that SO treatment down-regulated the expression of p-EGFR, p-PI3K, p-AKT, p-NFκB and p-MAPK proteins in HepG2 cells. These results validated that SO exerted its therapeutic effects on HCC mainly by the regulation of cell proliferation and survival via the EGFR/MAPK and EGFR/PI3K/AKT/NFκB signaling pathways. Conclusion: Taken together, this study, revealed the anti-HCC effects of SO and its potential underlying therapeutic mechanisms in a multi-target and multi-pathway manner.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- School of Pharmacy, Southwest Medical University, Luzhou, China
- International Education School, Southwest Medical University, Luzhou, China
| | - Hong Li
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Yueshan Sun
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Jianming Wu
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| |
Collapse
|
21
|
Wang N, Muhetaer G, Zhang X, Yang B, Wang C, Zhang Y, Wang X, Zhang J, Wang S, Zheng Y, Zhang F, Wang Z. Sanguisorba officinalis L. Suppresses Triple-Negative Breast Cancer Metastasis by Inhibiting Late-Phase Autophagy via Hif-1α/Caveolin-1 Signaling. Front Pharmacol 2020; 11:591400. [PMID: 33381039 PMCID: PMC7768086 DOI: 10.3389/fphar.2020.591400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sanguisorba officinalis L. (SA) is a common herb for cancer treatment in the clinic, particularly during the consolidation phase to prevent occurrence or metastasis. Nevertheless, there are limited studies reporting the molecular mechanisms about its anti-metastatic function. It is well demonstrated that autophagy is one of the critical mechanisms accounting for metastasis and anti-cancer pharmacological actions of Chinese herbs. On the threshold, the regulatory effects and molecular mechanisms of SA in suppressing autophagy-related breast cancer metastasis were investigated in this study. In vitro findings demonstrated that SA potently suppressed the proliferation, colony formations well as metastasis process in triple-negative breast cancer. Network and biological analyses predicted that SA mainly targeted caveolin-1 (Cav-1) to induce anti-metastatic effects, and one of the core mechanisms was via regulation of autophagy. Further experiments—including western blotting, transmission electron microscopy, GFP-mRFP-LC3 immunofluorescence, and lysosomal-activity detection—validated SA as a potent late-stage autophagic inhibitor by increasing microtubule-associated light chain 3-II (LC3-II) conversion, decreasing acidic vesicular-organelle formation, and inducing lysosomal dysfunction even under conditions of either starvation or hypoxia. Furthermore, the anti-autophagic and anti-metastatic activity of SA was Cav-1-dependent. Specifically, Cav-1 knockdown significantly facilitated SA-mediated inhibition of autophagy and metastasis. Furthermore, hypoxia inducible factor-1α (Hif-1α) overexpression attenuated the SA-induced inhibitory activities on Cav-1, autophagy, and metastasis, indicating that SA may have inhibited autophagy-related metastasis via Hif-1α/Cav-1 signaling. In both mouse breast cancer xenograft and zebrafish xenotransplantation models, SA inhibited breast cancer growth and inhibited late-phase autophagy in vivo, which was accompanied by suppression of Hif-1α/Cav-1 signaling and the epithelial-mesenchymal transition. Overall, our findings not only indicate that SA acts as a novel late-phase autophagic inhibitor with anti-metastatic activities in triple-negative breast cancer, but also highlight Cav-1 as a regulator in controlling late-phase autophagic activity.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Gulizeba Muhetaer
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiaotong Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Bowen Yang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China.,Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Caiwei Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yu Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xuan Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Juping Zhang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Shengqi Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Yifeng Zheng
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Fengxue Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| |
Collapse
|
22
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|