1
|
Chen T, Wang B, Li D, Yu X, Lv K, Zhu Q, Qiu C, He Y, Zhang H, Wu Z. Long noncoding RNA ZRANB2-AS2 promotes endothelial cell dysfunction by inhibiting phosphorylation of acetyl-CoA carboxylase 1 in diabetes. Exp Cell Res 2025; 448:114572. [PMID: 40273967 DOI: 10.1016/j.yexcr.2025.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/27/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
LncRNA has been implicated in the regulation of diabetes. We identified a novel lncRNA that inhibits phosphorylation of acetyl-CoA carboxylase 1 to modulate the dysfunction of vascular endothelial cells under high glucose conditions. In vitro experiments were performed to investigate the effects of lnc RNA ZRANB2-AS2 on ACC1 phosphorylation, free fatty acid and triglyceride levels, angiogenesis, cell apoptosis, cell proliferation and migration rate. Further, in vivo experiments were designed to examine the effects of lnc RNA ZRANB2-AS2 on the level of ACC1, the limb ischemia and foot movement of mice, as well as on apoptosis, cell proliferation, and migration of vascular endothelial cells under conditions of high glucose.By RNA sequencing, we identified a lncRNA, ZRANB2-AS2, which is highly expressed in human umbilical vein endothelial cells (HUVECs) under high glucose condition. We demonstrated that it could promote apoptosis and inhibit angiogenesis, proliferation and migration of endothelial cells. Using RNA pull-down and RIP assays, the binding specificity of lncRNA ZRANB2-AS2 and acetyl-CoA carboxylase 1(ACC1) was determined. We further established the rescue assay by adding CMS-121, a specific ACC1 inhibitor. These findings suggested that CMS-121 could reverse the inhibition of lncRNA ZRANB2-AS2 on ACC1 phosphorylation, decrease intracellular free fatty acid and triglyceride levels. We conducted in vivo experiments to determine the inhibitory effect of lncRNA ZRANB2-AS2 in diabetic mice model. Lnc ZRANB2-AS2 inhibits cell proliferation, migration and angiogenesis while accelerates apoptosis of endothelial cells by regulating the phosphorylation of acetyl-CoA carboxylase 1 in diabetes.
Collapse
Affiliation(s)
- Tianchi Chen
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University School of Medicine, Hangzhou, China
| | - Donglin Li
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyu Yu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Kejia Lv
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Zhu
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyang Qiu
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongkun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ziheng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Alzahrani AK, Khan A, Singla N, Hai A, Alzahrani AR, Kamal M, Asdaq SMB, Alsalman AJ, Hawaj MAA, Al Odaini LH, Dzinamarira T, Imran M. From diagnosis to therapy: The critical role of lncRNAs in hepatoblastoma. Pathol Res Pract 2024; 260:155412. [PMID: 38889493 DOI: 10.1016/j.prp.2024.155412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
According to findings, long non-coding RNAs (lncRNAs) serves an integral part in growth and development of a variety of human malignancies, including Hepatoblastoma (HB). HB is a rare kind of carcinoma of the liver that mostly affects kids and babies under the age of three. Its manifestations include digestive swelling, abdominal discomfort, and losing weight. This thorough investigation digs into the many roles that lncRNAs serve in HB, giving views into their varied activities as well as possible therapeutic consequences. The function of lncRNAs in HB cell proliferation, apoptosis, migratory and penetrating capacities, epithelial-mesenchymal transition, and therapy tolerance is discussed. Various lncRNA regulatory roles are investigated in depth, yielding information on their effect on essential cell processes such as angiogenesis, apoptosis, immunity, and growth. Circulating lncRNAs are currently acknowledged as potential indications for the initial stages of identification of cancer, with the ability to diagnose as well as forecast. In addition to their diagnostic utility, lncRNAs provide curative opportunities as locations and actors, contributing to the expanding landscape of cancer research. Several HB-linked lncRNAs have been demonstrated to exhibit abnormal expression and are involved in tumor-like characteristics via DNA, RNA, or protein binding or encoding short peptides. As a result, a better knowledge of lncRNA instability might bring fresh perspectives into HB etiology as well as innovative strategies for HB early diagnosis and therapy. We describe the abnormalities of lncRNA expression in HB and their tumor-suppressive or carcinogenic activities during HB carcinogenesis in this study. Furthermore, we explore lncRNAs' diagnostic and therapeutic possibilities in HB.
Collapse
Affiliation(s)
- A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Abdul Hai
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | | | - Maitham Abdullah Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Lulu Homeed Al Odaini
- Department of Ambulatory Care Pharmacy, King Fahad Medical City, Riyadh 12242, Saudi Arabia
| | - Tafadzwa Dzinamarira
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
3
|
Alizamir A, Amini MA, Karbasi A, Beyrami M. MiR-4492, a New Potential MicroRNA for Cancer Diagnosis and Treatment: A Mini Review. Chonnam Med J 2024; 60:21-26. [PMID: 38304137 PMCID: PMC10828084 DOI: 10.4068/cmj.2024.60.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
There is no doubt that the incidence of cancer sufferers is rising in the world, and it is estimated that in the next several decades, the number of people suffering from malignancies or the cancer rate will double. Diagnostic and therapeutic targeting of noncoding RNAs (ncRNAs), especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represent an excellent approach for cancer diagnosis and treatment, as well as many other diseases. One of the latest miRNAs is miR-4492, upregulating some genes in tumor tissues including ROMO1, HLA-G, NKIRAS2, FOXK1, and UBE2C. It represents an attractant example of a miRNA acting at multiple levels to affect the same malignancy hallmark. Based on the studies, miR-4492 plays a key role in several cancers such as, breast cancer, bladder cancer, osteosarcoma, glioblastoma multiforme, hepatocellular carcinoma, colorectal cancer, and ovarian cancer. Putting it all together, identifying the precise mechanisms of miR-4492 in the pathogenesis of cancer, could pave the way to find better diagnostic and therapeutic strategies for cancer sufferers. For this reason, it might be a novel potential diagnostic biomarker and therapeutic target for neoplasms.
Collapse
Affiliation(s)
- Aida Alizamir
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Karbasi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Beyrami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Li JD, Chen Y, Jing SW, Wang LT, Zhou YH, Liu ZS, Song C, Li DZ, Wang HQ, Huang ZG, Dang YW, Chen G, Luo JY. Triosephosphate isomerase 1 may be a risk predictor in laryngeal squamous cell carcinoma: a multi-centered study integrating bulk RNA, single-cell RNA, and protein immunohistochemistry. Eur J Med Res 2023; 28:591. [PMID: 38102653 PMCID: PMC10724924 DOI: 10.1186/s40001-023-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Although great progress has been made in anti-cancer therapy, the prognosis of laryngeal squamous cell carcinoma (LSCC) patients remains unsatisfied. Quantities of studies demonstrate that glycolytic reprograming is essential for the progression of cancers, where triosephosphate isomerase 1 (TPI1) serves as a catalytic enzyme. However, the clinicopathological significance and potential biological functions of TPI1 underlying LSCC remains obscure. METHODS We collected in-house 82 LSCC tissue specimens and 56 non-tumor tissue specimens. Tissue microarrays (TMA) and immunohistochemical (IHC) experiments were performed. External LSCC microarrays and bulk RNA sequencing data were integrated to evaluate the expression of TPI1. We used a log-rank test and the CIBERSORT algorithm to assess the prognostic value of TPI1 and its association with the LSCC microenvironment. Malignant laryngeal epithelial cells and immune-stromal cells were identified using inferCNV and CellTypist. We conducted a comprehensive analysis to elucidate the molecular functions of TPI1 in LSCC tissue and single cells using Pearson correlation analysis, high dimensional weighted gene co-expression analysis, gene set enrichment analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) screen. We explored intercellular communication patterns between LSCC single cells and immune-stromal cells and predicted several therapeutic agents targeting TPI1. RESULTS Based on the in-house TMA and IHC analysis, TPI1 protein was found to have a strong positive expression in the nucleus of LSCC cells but only weakly positive activity in the cytoplasm of normal laryngeal cells (p < 0.0001). Further confirmation of elevated TPI1 mRNA expression was obtained from external datasets, comparing 251 LSCC tissue samples to 136 non-LSCC tissue samples (standardized mean difference = 1.06). The upregulated TPI1 mRNA demonstrated a high discriminative ability between LSCC and non-LSCC tissue (area under the curve = 0.91; sensitivity = 0.87; specificity = 0.79), suggesting its potential as a predictive marker for poor prognosis (p = 0.037). Lower infiltration abundance was found for plasma cells, naïve B cells, monocytes, and neutrophils in TPI-high expression LSCC tissue. Glycolysis and cell cycle were significantly enriched pathways for both LSCC tissue and single cells, where heat shock protein family B member 1, TPI1, and enolase 1 occupied a central position. Four outgoing communication patterns and two incoming communication patterns were identified from the intercellular communication networks. TPI1 was predicted as an oncogene in LSCC, with CRISPR scores less than -1 across 71.43% of the LSCC cell lines. TPI1 was positively correlated with the half maximal inhibitory concentration of gemcitabine and cladribine. CONCLUSIONS TPI1 is dramatically overexpressed in LSCC than in normal tissue, and the high expression of TPI1 may promote LSCC deterioration through its metabolic and non-metabolic functions. This study contributes to advancing our knowledge of LSCC pathogenesis and may have implications for the development of targeted therapies in the future.
Collapse
Affiliation(s)
- Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Shu-Wen Jing
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Li-Ting Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yu-Hong Zhou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Zhi-Su Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Chang Song
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Da-Zhi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Hai-Quan Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China.
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China.
| |
Collapse
|
5
|
Kim Y, Lee M. Deep Learning Approaches for lncRNA-Mediated Mechanisms: A Comprehensive Review of Recent Developments. Int J Mol Sci 2023; 24:10299. [PMID: 37373445 DOI: 10.3390/ijms241210299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
This review paper provides an extensive analysis of the rapidly evolving convergence of deep learning and long non-coding RNAs (lncRNAs). Considering the recent advancements in deep learning and the increasing recognition of lncRNAs as crucial components in various biological processes, this review aims to offer a comprehensive examination of these intertwined research areas. The remarkable progress in deep learning necessitates thoroughly exploring its latest applications in the study of lncRNAs. Therefore, this review provides insights into the growing significance of incorporating deep learning methodologies to unravel the intricate roles of lncRNAs. By scrutinizing the most recent research spanning from 2021 to 2023, this paper provides a comprehensive understanding of how deep learning techniques are employed in investigating lncRNAs, thereby contributing valuable insights to this rapidly evolving field. The review is aimed at researchers and practitioners looking to integrate deep learning advancements into their lncRNA studies.
Collapse
Affiliation(s)
- Yoojoong Kim
- School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Lv Y, Wang Y, Zhang Z. Potentials of lncRNA-miRNA-mRNA networks as biomarkers for laryngeal squamous cell carcinoma. Hum Cell 2023; 36:76-97. [PMID: 36181662 DOI: 10.1007/s13577-022-00799-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Chemoresistance, radioresistance, and facile spreading of laryngeal squamous cell carcinoma (LSCC) make the practically clinical treatment invalid. Such dismal outcome mainly originates from the lack of effective biomarkers which are highly desirable to understand the pathogenesis of LSCC, and strives to find promising novel biomarkers to improve early screening, effective treatment, and prognosis evaluation in LSCC. Recently, long non-coding RNAs (lncRNAs), a kind of non-coding RNAs longer than 200 nucleotides, can participate in the process of tumorigenesis and progression through many regulatory modalities, such as epigenetic transcriptional regulation and post-transcriptional regulation. Meanwhile, microRNAs (miRNAs, miRs), essentially involved in the post-transcriptional regulation of gene expression, are aberrantly expressed in cancer-related genomic regions or susceptible sites. An increasing number of studies have shown that lncRNAs are important regulators of miRNAs expression in LSCC, and that miRNAs can also target to regulate the expression of lncRNAs, and they can target to regulate downstream messenger RNAs (mRNAs) transcriptionally or post-transcriptionally, thereby affecting various physiopathological processes of LSCC. Complex cross-regulatory networks existing among lncRNAs, miRNAs, and mRNAs can regulate the tumorigenesis and development of LSCC. Such networks may become promising biomarkers and potential therapeutic targets in the research field of LSCC. In this review, we mainly summarize the latest research progress on the regulatory relationships among lncRNAs, miRNAs, and downstream mRNAs, and highlight the potential applications of lncRNA-miRNA-mRNA regulatory networks as biomarkers for the early diagnosis, epithelial-mesenchymal transition (EMT) process, chemoresistance, radioresistance, and prognosis of LSCC, aiming to provide important clues for understanding the pathogenesis of LSCC and developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Lv
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Yanhua Wang
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China. .,Department of Morphology, Medical College of China Three Gorges University, Life Science Building, No.8 Daxue Road, Yichang, 443002, China.
| | - Zhikai Zhang
- The Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
7
|
Sonawala K, Ramalingam S, Sellamuthu I. Influence of Long Non-Coding RNA in the Regulation of Cancer Stem Cell Signaling Pathways. Cells 2022; 11:3492. [PMID: 36359888 PMCID: PMC9656902 DOI: 10.3390/cells11213492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Over the past two decades, cancer stem cells (CSCs) have emerged as an immensely studied and experimental topic, however a wide range of questions concerning the topic still remain unanswered; in particular, the mechanisms underlying the regulation of tumor stem cells and their characteristics. Understanding the cancer stem-cell signaling pathways may pave the way towards a better comprehension of these mechanisms. Signaling pathways such as WNT, STAT, Hedgehog, NOTCH, PI3K/AKT/mTOR, TGF-β, and NF-κB are responsible not only for modulating various features of CSCs but also their microenvironments. Recently, the prominent roles of various non-coding RNAs such as small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs) in developing and enhancing the tumor phenotypes have been unfolded. This review attempts to shed light on understanding the influence of long non- coding RNAs in the modulation of various CSC-signaling pathways and its impact on the CSCs and tumor properties; highlighting the protagonistic and antagonistic roles of lncRNAs.
Collapse
Affiliation(s)
| | | | - Iyappan Sellamuthu
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603202, India
| |
Collapse
|
8
|
An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother 2022; 154:113594. [DOI: 10.1016/j.biopha.2022.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
|
9
|
Jiang Y, Hei B, Hao W, Lin S, Wang Y, Liu X, Meng X, Guan Z. Clinical value of lncRNA SOX2-OT in pulmonary arterial hypertension and its role in pulmonary artery smooth muscle cell proliferation, migration, apoptosis, and inflammatory. Heart Lung 2022; 55:16-23. [PMID: 35436654 DOI: 10.1016/j.hrtlng.2022.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Non-coding RNA is confirmed to be involved in pulmonary arterial hypertension (PAH). OBJECTIVES This study investigated the clinical value and potential mechanisms of the long noncoding RNA (lncRNA) SRY-box transcription factor 2 overlapping transcript (SOX2-OT) in PAH. METHODS SOX2-OT levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) in serum of 82 patients with PAH and 76 healthy controls. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic value of SOX2-OT. Human pulmonary arterial smooth muscle cells (hPASMCs) were treated by hypoxia to construct PAH cell models. Proliferation, migration, apoptosis, and inflammatory cytokines levels of hPASMCs were examined by CCK-8, Transwell, flow cytometry, and ELISA assay. Dual-luciferase reporter gene assays were performed to verify the target relationships between miR-455-3p and SOX2-OT, as well as small ubiquitin-related modifier 1 (SUMO1). RESULTS Serum SOX2-OT was highly expressed in patients with PAH (P < 0.05). And elevated SOX2-OT levels significantly differentiated PAH patients from healthy controls, confirming high diagnostic feasibility. What's more, SOX2-OT was increased in hypoxia-induced hPASMCs in a time-dependent manner. Silencing SOX2-OT could reverse hypoxia-induced proliferation, migration, anti-apoptosis, and inflammation of hPASMCs (P < 0.05). However, rescue experiments showed that this reversal effect of silencing SOX2-OT was attenuated by suppressed miR-455-3p, which was presumably achieved by SUMO1 (P < 0.05). CONCLUSIONS Elevated SOX2-OT is a feasible diagnostic marker for PAH, and its silencing may attenuated hypoxia-induced hPASMCs proliferation, migration, anti-apoptosis, and inflammation by modulating the miR-455-3p/SUMO1 axis, preventing vascular remodeling and PAH progression. Our research provided new insights for PAH treatment.
Collapse
Affiliation(s)
- Yunfei Jiang
- Department of Second Division of Aspiration Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, China
| | - Bingchang Hei
- Intensive Care Unit and Emergency Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, China
| | - Wenbo Hao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, China
| | - Shudong Lin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, China
| | - Yuanyuan Wang
- Department of Clinical Pharmacy, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, China
| | - Xuzhi Liu
- Department of Third Division of Aspiration Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, China
| | - Xianguo Meng
- Intensive Care Unit and Emergency Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, China
| | - Zhanjiang Guan
- Intensive Care Unit and Emergency Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, China.
| |
Collapse
|
10
|
Li H, Liu H, Hao Q, Liu X, Yao Y, Cao M. Oncogenic signaling pathway-related long non-coding RNAs for predicting prognosis and immunotherapy response in breast cancer. Front Immunol 2022; 13:891175. [PMID: 35990668 PMCID: PMC9386474 DOI: 10.3389/fimmu.2022.891175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe clinical outcomes of breast cancer (BC) are unpredictable due to the high level of heterogeneity and complex immune status of the tumor microenvironment (TME). When set up, multiple long non-coding RNA (lncRNA) signatures tended to be employed to appraise the prognosis of BC. Nevertheless, predicting immunotherapy responses in BC is still essential. LncRNAs play pivotal roles in cancer development through diverse oncogenic signal pathways. Hence, we attempted to construct an oncogenic signal pathway–based lncRNA signature for forecasting prognosis and immunotherapy response by providing reliable signatures.MethodsWe preliminarily retrieved RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) database and extracted lncRNA profiles by matching them with GENCODE. Following this, Gene Set Variation Analysis (GSVA) was used to identify the lncRNAs closely associated with 10 oncogenic signaling pathways from the TCGA-BRCA (breast-invasive carcinoma) cohort and was further screened by the least absolute shrinkage and selection operator Cox regression model. Next, an lncRNA signature (OncoSig) was established through the expression level of the final 29 selected lncRNAs. To examine survival differences in the stratification described by the OncoSig, the Kaplan–Meier (KM) survival curve with the log-rank test was operated on four independent cohorts (n = 936). Subsequently, multiple Cox regression was used to investigate the independence of the OncoSig as a prognostic factor. With the concordance index (C-index), the time-dependent receiver operating characteristic was employed to assess the performance of the OncoSig compared to other publicly available lncRNA signatures for BC. In addition, biological differences between the high- and low-risk groups, as portrayed by the OncoSig, were analyzed on the basis of statistical tests. Immune cell infiltration was investigated using gene set enrichment analysis (GSEA) and deconvolution tools (including CIBERSORT and ESTIMATE). The combined effect of the Oncosig and immune checkpoint genes on prognosis and immunotherapy was elucidated through the KM survival curve. Ultimately, a pan-cancer analysis was conducted to attest to the prevalence of the OncoSig.ResultsThe OncoSig score stratified BC patients into high- and low-risk groups, where the latter manifested a significantly higher survival rate and immune cell infiltration when compared to the former. A multivariate analysis suggested that OncoSig is an independent prognosis predictor for BC patients. In addition, compared to the other four publicly available lncRNA signatures, OncoSig exhibited superior predictive performance (AUC = 0.787, mean C-index = 0.714). The analyses of the OncoSig and immune checkpoint genes clarified that a lower OncoSig score meant significantly longer survival and improved response to immunotherapy. In addition to BC, a high OncoSig score in several other cancers was negatively correlated with survival and immune cell infiltration.ConclusionsOur study established a trustworthy and discriminable prognostic signature for BC patients with similar clinical profiles, thus providing a new perspective in the evaluation of immunotherapy responses. More importantly, this finding can be generalized to be applicable to the vast majority of human cancers.
Collapse
Affiliation(s)
- Huamei Li
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongjia Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Qiongyu Hao
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Xianglin Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Yongzhong Yao, ; Meng Cao,
| | - Meng Cao
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Yongzhong Yao, ; Meng Cao,
| |
Collapse
|
11
|
Shuang Y, Yao X, Liu J, Niu J, Guo W, Li C. Serum-derived extracellular vesicles mediate Smad4 expression through shuttling microRNA-27a in the progression of laryngeal squamous cell carcinoma. Hum Cell 2022; 35:1084-1099. [PMID: 35545731 DOI: 10.1007/s13577-022-00712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
Abstract
Serum-derived extracellular vesicles (EVs) containing non-coding RNAs have been indicated to serve as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma (LSCC), while their functional role remains to be explored. Here, we summarize the possible mechanism explaining the laryngeal carcinogenesis and the associated changes with the involvement of extracellular microRNA (miR)-27a from serum of LSCC patients. Serum-derived EVs from LSCC patients were found to increase the proliferative activity and decreased the apoptotic activity of LSCC cells. miRNA microarrays revealed that miR-27a expression was elevated after EV treatment. miR-27a expression was elevated in LSCC tissues and predicted a poor prognosis for patients. Downregulation of miR-27a inhibited the effect of EVs to reduce the activity of LSCC cells in vitro and to suppress tumor development in vivo. miR-27a targeted SMAD family member 4 (Smad4) to mediate the Wnt/β-catenin pathway, which was induced under the influence of EVs. Smad4 was downregulated in LSCC tissues, and simultaneous overexpression of miR-27a and Smad4 resulted in reduced cell activity and tumorigenicity. In conclusion, serum-derived EVs support the laryngeal carcinogenesis at least partially via transferring miR-27a. miR-27a targets Smad4 and is a biomarker to predict LSCC prognosis.
Collapse
Affiliation(s)
- Yu Shuang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, People's Republic of China.
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngology Head and Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjing, 300202, People's Republic of China
| | - Jing Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, People's Republic of China
| | - Juntao Niu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, People's Republic of China
| | - Wenyu Guo
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, People's Republic of China
| | - Chao Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, People's Republic of China
| |
Collapse
|
12
|
Wu L, Zuo N, Pan S, Wang Y, Wang Q, Ma J. miR-1246 promotes laryngeal squamous cell carcinoma progression by interacting with THBS1. J Environ Pathol Toxicol Oncol 2022; 41:65-75. [DOI: 10.1615/jenvironpatholtoxicoloncol.2022040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Liguori G, Cerrone M, De Chiara A, Tafuto S, de Bellis MT, Botti G, Di Bonito M, Cantile M. The Role of lncRNAs in Rare Tumors with a Focus on HOX Transcript Antisense RNA ( HOTAIR). Int J Mol Sci 2021; 22:ijms221810160. [PMID: 34576322 PMCID: PMC8466298 DOI: 10.3390/ijms221810160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Rare cancers are identified as those with an annual incidence of fewer than 6 per 100,000 persons and includes both epithelial and stromal tumors from different anatomical areas. The advancement of analytical methods has produced an accurate molecular characterization of most human cancers, suggesting a “molecular classification” that has allowed the establishment of increasingly personalized therapeutic strategies. However, the limited availability of rare cancer samples has resulted in very few therapeutic options for these tumors, often leading to poor prognosis. Long non coding RNAs (lncRNAs) are a class of non-coding RNAs mostly involved in tumor progression and drug response. In particular, the lncRNA HOX transcript antisense RNA (HOTAIR) represents an emergent diagnostic, prognostic and predictive biomarker in many human cancers. The aim of this review is to highlight the role of HOTAIR in rare cancers, proposing it as a new biomarker usable in the management of these tumors.
Collapse
Affiliation(s)
- Giuseppina Liguori
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Margherita Cerrone
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Annarosaria De Chiara
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Maura Tracey de Bellis
- Rehabilitation Medicine Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
- Correspondence: ; Tel.: +39-08159031755; Fax: +39-0815903718
| |
Collapse
|
14
|
Milán-Rois P, Quan A, Slack FJ, Somoza Á. The Role of LncRNAs in Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13164041. [PMID: 34439196 PMCID: PMC8392202 DOI: 10.3390/cancers13164041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Uveal melanoma (UM) is an intraocular cancer tumor with high metastatic risk. It is considered a rare disease, but 90% of affected patients die within 15 years. Non-coding elements (ncRNAs) such as long non-coding RNAs (lncRNAs) have a crucial role in cellular homeostasis maintenance, taking part in many critical cellular pathways. Their deregulation, therefore, contributes to the induction of cancer and neurodegenerative and metabolic diseases. In cancer, lncRNAs are implicated in apoptosis evasion, proliferation, invasion, drug resistance, and other roles because they affect tumor suppressor genes and oncogenes. For these reasons, lncRNAs are promising targets in personalized medicine and can be used as biomarkers for diseases including UM.
Collapse
Affiliation(s)
- Paula Milán-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain;
| | - Anan Quan
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC)/Harvard Medical School, Boston, MA 02215, USA; (A.Q.); (F.J.S.)
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC)/Harvard Medical School, Boston, MA 02215, USA; (A.Q.); (F.J.S.)
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-299-8856
| |
Collapse
|
15
|
Ye D, Deng Y, Shen Z. The Role and Mechanism of MALAT1 Long Non-Coding RNA in the Diagnosis and Treatment of Head and Neck Squamous Cell Carcinoma. Onco Targets Ther 2021; 14:4127-4136. [PMID: 34267526 PMCID: PMC8275198 DOI: 10.2147/ott.s317234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck. HNSCC mainly affects the oral cavity and the laryngeal, laryngopharyngeal, and oropharyngeal tracts. The high incidence, hidden onset, low survival rate, and unsatisfactory effects of treatment effect underscore the importance of identify the mechanisms of HNSCC occurrence and development. Although there is a very urgent need for early diagnosis and treatment, there are currently no reliable early HNSCC diagnosis biomarkers or effective treatment targets. Long non-coding RNA (lncRNA) is widely involved in biological processes, especially as a key regulator of tumorigenesis and development. Lung adenocarcinoma metastasis-associated transcript 1 (MALAT1) is an important member of the lncRNA family that can regulate the occurrence and development of a variety of malignant tumors and is anticipated to be an ideal marker for early tumor diagnosis and an effective therapeutic target. Here, we review the research progress into the role of MALAT1 in the diagnosis and treatment of HNSCC and its regulatory mechanism.
Collapse
Affiliation(s)
- Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People's Republic of China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo University School of Medicine, Ningbo, 315211, People's Republic of China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Yang X, Chen C, Li L, Xiao T, Zou YD, Zheng D. Current research advances in microRNA-mediated regulation of Krüppel-like factor 4 in cancer: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:948. [PMID: 34350263 PMCID: PMC8263881 DOI: 10.21037/atm-21-2347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022]
Abstract
Objective The purpose of this study was to investigate the miRNAs and related mechanisms that regulates KLF4 in different cancers. Furthermore, we summarized the potential targets of miRNAs regulating the KLF4 pathway in cancer research. Background MiRNAs are single-stranded, endogenous non-coding small RNAs, some of which are related to human cancers. miRNAs carry out post-transcriptional gene regulation through translation inhibition and degradation of target messenger RNAs (mRNAs) via complementarily pairing with their 3' untranslated regions. KLF4 is an important transcription factor with complex involvement in cancer. Increasing evidence shows that miRNAs are dysregulated in cancer and can regulate cancer-related signaling pathways, thereby affecting tumor progression. Methods Systematic scientific literature searches were undertaken on PubMed using the following terms: "miRNAs and KLF4", "KLF4 and cancer", "miRNAs and cancer", and "miRNAs, KLF4 and cancer". Relevant papers were retrieved and further results were found by reviewing related papers and the references of the retrieved papers. We then conducted a narrative overview of the literature to summarize the results of the papers. Conclusions The role of KLF4 in cancer varies in a context-dependent manner. KLF4-regulating miRNAs in different tumors include miR-124, miR-9-5p, miR-10b, miR-18a, miR-25-3p, miR-10b, miR-92a, miR-103, miR-155, miR-135b-5p, miR-32-5p, miR-148-3p, miR-152-3p, miR-10b, miR-25, miR-3120-5p, miR-7, miR-1233-3p, miR-10b, miR-145, miR-139-5p, miR-16, miR-152, miR-375, and miR-145.
Collapse
Affiliation(s)
- Xi Yang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Cheng Chen
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Li Li
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Tian Xiao
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yong-Dong Zou
- Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Duo Zheng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Meng X, Wang ZF, Lou QY, Rankine AN, Zheng WX, Zhang ZH, Zhang L, Gu H. Long non-coding RNAs in head and neck squamous cell carcinoma: Diagnostic biomarkers, targeted therapies, and prognostic roles. Eur J Pharmacol 2021; 902:174114. [PMID: 33901464 DOI: 10.1016/j.ejphar.2021.174114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
At present, emerging evidence shows that non-coding RNAs (ncRNAs) play crucial roles for development of multiple tumors. Amongst these ncRNAs, long non-coding RNAs (lncRNAs) play prominent roles in physiological and pathological processes. LncRNAs are RNA transcripts larger than 200 nucleotides and have been shown to serve important regulatory roles in different types of cancer via interactions with DNA, RNA and proteins. Head and neck squamous cell carcinoma (HNSCC) is one of the most malignant tumors with low survival rates in advanced stages. Recently, lncRNAs have been demonstrated to be involved in a wide range of biological processes, including proliferation, metastasis, and prognosis of HNSCC. Therefore, this review describes molecular mechanisms of up- or down-regulation of lncRNAs and expounds their functions in pathology and clinical practices in HNSCC. It also highlights their potential clinical applications as biomarkers for the diagnosis, prognosis, and treatment of HNSCC. However, studies on lncRNAs are still not comprehensive, and more investigations are needed in the future.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Zi-Fei Wang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Qiu-Yue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Abigail N Rankine
- Clinical Medicine in Chinese (MBBS), Anhui Medical University, Hefei, 230032, China.
| | - Wan-Xin Zheng
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Zi-Hao Zhang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; Periodontal Department, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
18
|
Wu H, Wang W, Zhu J. Knockdown of long non-coding RNA RP11-297P16.3 inhibits the migration and invasion of laryngeal squamous carcinoma cells. Clin Transl Oncol 2021; 23:2057-2065. [PMID: 33893613 DOI: 10.1007/s12094-021-02609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Laryngeal cancer has a poor prognosis when progressing to an advanced stage with limited treatment options. Therefore, understanding the underlying mechanisms is important to identify novel treatment targets. Long non-coding RNAs (lncRNAs) have been shown to play oncogenic roles in cancer, including in laryngeal cancer. We previously discovered that the lncRNA RP11-297P16.3 is overexpressed in laryngeal squamous cell carcinoma (LSCC) based on RNA-sequencing data. Therefore, the aim of the present study was to investigate the effects of knockdown of RP11-297P16.3 on the migration and invasion of LSCC cells, and the significance of these effects. METHODS Six methods were employed to assess the function of RP11-297P16.3 including gene silencing, RT-PCR, the 5-Ethynyl-20-deoxyuridine (EdU) staining assay, Scratch wound-healing assay, transwell assay, and Western blot. RESULTS The results show that the expression of RP11-297P16.3 in the si-lncRNA group was significantly decreased compared with those in the BC (blank control) and NC (negative control) groups. Moreover, knockdown of RP11-297P16.3 significantly inhibited the migration and invasion of LSCC cells but had no effect on cell proliferation. The protein expression of N-cadherin and vimentin was notably decreased after RP11-297P16.3 knockdown; whereas, the protein expression of cadherin was significantly increased CONCLUSION: These results suggested that RP11-297P16.3 may inhibit the migration and invasion of LSCC cells by regulating the epithelial-mesenchymal transition process, suggesting that RP11-297P16.3 is a potential new target for treating LSCC.
Collapse
Affiliation(s)
- H Wu
- School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi, 030600, P.R. China
| | - W Wang
- School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi, 030600, P.R. China
| | - J Zhu
- School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi, 030600, P.R. China.
| |
Collapse
|
19
|
Wu L, Li K, Lin W, Liu J, Qi Q, Shen G, Chen W, He W. Long noncoding RNA LINC01291 promotes the aggressive properties of melanoma by functioning as a competing endogenous RNA for microRNA-625-5p and subsequently increasing IGF-1R expression. Cancer Gene Ther 2021; 29:341-357. [PMID: 33674778 PMCID: PMC8940622 DOI: 10.1038/s41417-021-00313-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 01/07/2023]
Abstract
Studies have confirmed the relationship between dysregulated long noncoding RNAs and melanoma pathogenesis. However, the regulatory functions of long intergenic non-protein coding RNA 1291 (LINC01291) in melanoma remain unknown. Therefore, we evaluated LINC01291 expression in melanoma and explored its roles in regulating tumor behaviors. Further, the molecular events via which LINC01291 affects melanoma cells were investigated. LINC01291 expression in melanoma cells was analyzed using The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction. Functional assays, including the Cell Counting Kit-8 assay, colony formation assay, flow cytometry, cell migration and invasion assays, and tumor xenograft models, were used to examine LINC01291’s role in melanoma cells. Additionally, bioinformatics analysis, RNA immunoprecipitation, luciferase reporter assay, and western blotting were conducted to determine the tumor-promoting mechanism of LINC01291. LINC01291 was upregulated in melanoma tissues and cell lines. Following LINC01291 knockdown, cell proliferation, colony formation, migration, and invasion were diminished, whereas apoptosis was enhanced and the cell cycle was arrested at G0/G1. In addition, loss of LINC01291 decreased the chemoresistance of melanoma cells to cisplatin. Furthermore, LINC01291 interference inhibited melanoma tumor growth in vivo. Mechanistically, LINC01291 functions as a competing endogenous RNA by sponging microRNA-625-5p (miR-625-5p) in melanoma cells and maintaining insulin-like growth factor 1 receptor (IGF-1R) expression. Rescue experiments revealed that the roles induced by LINC01291 depletion in melanoma cells could be reversed by suppressing miR-625-5p or overexpressing IGF-1R. Our study identified the LINC01291/miR-625-5p/IGF-1R competing endogenous RNA pathway in melanoma cells, which may represent a novel diagnostic biomarker and an effective therapeutic target for melanoma.
Collapse
Affiliation(s)
- Lijun Wu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Jiangsu, China
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wei Lin
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Jianjiang Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Qiang Qi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Guoliang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Weixin Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Wenjun He
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| |
Collapse
|
20
|
Xu C, Zhang Y, Shen Y, Shi Y, Zhang M, Zhou L. Integrated Analysis Reveals ENDOU as a Biomarker in Head and Neck Squamous Cell Carcinoma Progression. Front Oncol 2021; 10:522332. [PMID: 33614471 PMCID: PMC7894080 DOI: 10.3389/fonc.2020.522332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a leading cancer with high morbidity and mortality worldwide. The aim is to identify genes with clinical significance by integrated bioinformatics analysis and investigate their function in HNSCC. Methods We downloaded and analyzed two gene expression datasets of GSE6631 and GSE107591 to screen differentially expressed genes (DEGs) in HNSCC. Common DEGs were functionally analyzed by Gene ontology and KEGG pathway enrichment analysis. Protein-protein interaction (PPI) network was constructed with STRING database and Cytoscape. ENDOU was overexpressed in FaDu and Cal-27 cell lines, and cell proliferation and migration capability were evaluated with MTT, scratch and transwell assay. The prognostic performance of ENDOU and expression correlation with tumor infiltrates in HNSCC were validated with TCGA HNSCC datasets. Results Ninety-eight genes shared common differential expression in both datasets, with core functions like extracellular matrix organization significantly enriched. 15 genes showed prognostic significance, and COBL and ENDOU serve as independent survival markers in HNSCC. In-vitro ENDOU overexpression inhibited FaDu and Cal-27 cells proliferation and migration, indicating its tumor-suppressing role in HNSCC progression. GSEA analysis indicated ENDOU down-stream pathways like DNA replication, mismatch repair, cell cycle and IL-17 signaling pathway. ENDOU showed relative lower expression in HNSCC, especially HPV-positive HNSCC samples. At last, ENDOU showed negative correlation with tumor purity and tumor infiltrating macrophages, especially M2 macrophages. Conclusion This study identified ENDOU as a biomarker with prognostic significance in HNSCC progression.
Collapse
Affiliation(s)
- Chengzhi Xu
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yunbin Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yupeng Shen
- Department of Otolaryngology-Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yong Shi
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Ming Zhang
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Liang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|