1
|
Chen M, Chen X, Chen Q, Chu C, Yang S, Wu C, You Y, Hung A, Yang AWH, Sun X, Zhou L, Zhao X, Li H, Liu Y. Potential candidates from a functional food Zanthoxyli Pericarpium (Sichuan pepper) for the management of hyperuricemia: high-through virtual screening, network pharmacology and dynamics simulations. Front Endocrinol (Lausanne) 2024; 15:1436360. [PMID: 39722812 PMCID: PMC11668583 DOI: 10.3389/fendo.2024.1436360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Hyperuricemia (HUA) is a metabolic syndrome caused by purine metabolism disorders. Zanthoxyli Pericarpium (ZP) is a medicinal and food homologous plant, and its ripe peel is used to treat diseases and as a spice for cooking. Some studies have shown that ZP can inhibit the formation of xanthine oxidase and reduce the production of uric acid. Methods Through network pharmacology, ZP's potential targets and mechanisms for HUA treatment were identified. Databases like TCMSP, UniProt, and Swiss Target Prediction were utilized for ZP's active ingredients and targets. HUA-related targets were filtered using GeneCards, Drugbank, and Open Targets. Core targets for ZP's HUA treatment were mapped in a PPI network and analyzed with Cytoscape. GO and KEGG pathway enrichments were conducted on intersected targets via DAVID. Molecular docking and virtual screening were performed to find optimal binding pockets, and ADMET screening assessed compound safety. Molecular dynamics simulations confirmed compound stability in binding sites. Results We identified 81 ZP active ingredient targets, 140 HUA-related targets, and 6 drug targets, with xanthine dehydrogenase (XDH) as the top core target. Molecular docking revealed ZP's active ingredients had strong binding to XDH. Virtual screening via Protein plus identified 48 compounds near the optimal binding pocket, with 2'-methylacetophenone, ledol, beta-sitosterol, and ethyl geranate as the most promising. Molecular dynamics simulations confirmed binding stability, suggesting ZP's potential in HUA prevention and the need for further experimental validation. Conclusion Our study provides foundations for exploring the mechanism of the lowering of uric acid by ZP and developing new products of ZP. The role of ZP in the diet may provide a new dietary strategy for the prevention of HUA, and more experimental studies are needed to confirm our results in the future.
Collapse
Affiliation(s)
- Meilin Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qinghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chenyang Chu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shuxuan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chuanghai Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Traditional Chinese Medicine Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Traditional Chinese Medicine Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Yao TK, Lee RP, Wu WT, Chen IH, Yu TC, Yeh KT. Advances in Gouty Arthritis Management: Integration of Established Therapies, Emerging Treatments, and Lifestyle Interventions. Int J Mol Sci 2024; 25:10853. [PMID: 39409183 PMCID: PMC11477016 DOI: 10.3390/ijms251910853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Gouty arthritis, a prevalent inflammatory condition characterized by the deposition of monosodium urate crystals within joints, often results in debilitating pain and inflammation. Conventional therapeutic approaches, including nonsteroidal anti-inflammatory drugs, corticosteroids, and urate-lowering agents such as allopurinol and febuxostat, often have limitations such as adverse effects, drug interactions, and suboptimal patient compliance. This review presents a comprehensive overview of both established and emerging therapeutic strategies, developed between 2019 and 2024, for gouty arthritis; the review focuses on their mechanisms of action, efficacy, and safety profiles. Novel therapeutic approaches include pharmaceutical plant additives (e.g., Citrullus colocynthis, Atractylodes lancea), anti-inflammatory agents such as canakinumab and ozone therapy, and complementary therapies such as warm ginger compresses, Qingpeng ointment, and various lifestyle modifications. These strategies offer promising alternatives to conventional treatments by targeting uric acid metabolism, inflammatory pathways, and crystal formation, potentially reducing reliance on standard medications and minimizing adverse effects. Although therapies such as canakinumab have demonstrated significant efficacy in reducing gout flares, others such as polyphenol-rich foods offer favorable safety profiles. Further research, including large-scale clinical trials, is warranted to validate these findings and integrate these strategies into clinical practice to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Ting-Kuo Yao
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan; (T.-K.Y.); (W.-T.W.); (I.-H.C.); (T.-C.Y.)
| | - Ru-Ping Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| | - Wen-Tien Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan; (T.-K.Y.); (W.-T.W.); (I.-H.C.); (T.-C.Y.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan; (T.-K.Y.); (W.-T.W.); (I.-H.C.); (T.-C.Y.)
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Tzai-Chiu Yu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan; (T.-K.Y.); (W.-T.W.); (I.-H.C.); (T.-C.Y.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan; (T.-K.Y.); (W.-T.W.); (I.-H.C.); (T.-C.Y.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Graduate Institute of Clinical Pharmacy, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
3
|
Chu T, Liu Y, Gao Y, Zhou C, Huang W, Zheng Y. Colorimetric array sensor based on bimetallic nitrogen-doped carbon-based nanozyme material to detect multiple antioxidants. Mikrochim Acta 2024; 191:365. [PMID: 38831060 DOI: 10.1007/s00604-024-06444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.
Collapse
Affiliation(s)
- Tingting Chu
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi City, Hubei, China
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi City, Hubei, China
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Yaopeng Liu
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi City, Hubei, China
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi City, Hubei, China
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Yi Gao
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi City, Hubei, China
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi City, Hubei, China
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Chengyu Zhou
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi City, Hubei, China
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi City, Hubei, China
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Wensheng Huang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Yin Zheng
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi City, Hubei, China.
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi City, Hubei, China.
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
4
|
Rui G, Qin ZY, Chang YQ, Zheng YG, Zhang D, Yao LM, Guo L. Chemical Comparison and Identification of Xanthine Oxidase Inhibitors of Dioscoreae Hypoglaucae Rhizoma and Dioscoreae Spongiosae Rhizoma by Chemometric Analysis and Spectrum-Effect Relationship. Molecules 2023; 28:8116. [PMID: 38138603 PMCID: PMC10745721 DOI: 10.3390/molecules28248116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Dioscoreae hypoglaucae Rhizoma (DH) and Dioscoreae spongiosae Rhizoma (DS) are two similar Chinese herbal medicines derived from the Dioscorea family. DH and DS have been used as medicines in China and other Asian countries for a long time, but study on their phytochemicals and bioactive composition is limited. This present study aimed to compare the chemical compositions of DH and DS, and explore the anti-xanthine oxidase components based on chemometric analysis and spectrum-effect relationship. Firstly, an HPLC method was used to establish the chemical fingerprints of DH and DS samples, and nine common peaks were selected. Then, hierarchical clustering analysis, principal component analysis and orthogonal partial least squares discriminant analysis were employed to compare and discriminate DH and DS samples based on the fingerprints data, and four steroidal saponins compounds (protodioscin, protogracillin, dioscin, gracillin) could be chemical markers responsible for the differences between DH and DS. Meanwhile, the anti-xanthine oxidase activities of these two herbal medicines were evaluated by xanthine oxidase inhibitory assay in vitro. Pearson correlation analysis and partial least squares regression analysis were subsequently used to investigate the spectrum-effect relationship between chemical fingerprints and xanthine oxidase inhibitory activities. The results showed that four steroidal saponins, including protodioscin, protogracillin, methyl protodioscin and pseudoprogracillin could be potential anti-xanthine oxidase compounds in DH and DS. Furthermore, the xanthine oxidase inhibitory activities of the four selected inhibitors were validated by anti-xanthine oxidase inhibitory assessment and molecular docking experiments. The present work provided evidence for understanding of the chemical differences and the discovery of the anti-xanthine oxidase constituent of DH and DS, which could be useful for quality evaluation and bioactive components screening of these two herbal medicines.
Collapse
Affiliation(s)
- Guo Rui
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhang-Yi Qin
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ya-Qing Chang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu-Guang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Li-Min Yao
- Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (G.R.); (Z.-Y.Q.); (Y.-Q.C.); (Y.-G.Z.); (D.Z.)
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
5
|
Cao X, Cai J, Zhang Y, Liu C, Song M, Xu Q, Liu Y, Yan H. Biodegradation of Uric Acid by Bacillus paramycoides-YC02. Microorganisms 2023; 11:1989. [PMID: 37630550 PMCID: PMC10460076 DOI: 10.3390/microorganisms11081989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
High serum uric acid levels, known as hyperuricemia (HUA), are associated with an increased risk of developing gout, chronic kidney disease, cardiovascular disease, diabetes, and other metabolic syndromes. In this study, a promising bacterial strain capable of biodegrading uric acid (UA) was successfully isolated from Baijiu cellar mud using UA as the sole carbon and energy source. The bacterial strain was identified as Bacillus paramycoides-YC02 through 16S rDNA sequence analysis. Under optimal culture conditions at an initial pH of 7.0 and 38 °C, YC02 completely biodegraded an initial UA concentration of 500 mg/L within 48 h. Furthermore, cell-free extracts of YC02 were found to catalyze and remove UA. These results demonstrate the strong biodegradation ability of YC02 toward UA. To gain further insight into the mechanisms underlying UA biodegradation by YC02, the draft genome of YC02 was sequenced using Illumina HiSeq. Subsequent analysis revealed the presence of gene1779 and gene2008, which encode for riboflavin kinase, flavin mononucleotide adenylyl transferase, and flavin adenine dinucleotide (FAD)-dependent urate hydroxylase. This annotation was based on GO or the KEEG database. These enzymes play a crucial role in the metabolism pathway, converting vitamin B2 to FAD and subsequently converting UA to 5-hydroxyisourate (HIU) with the assistance of FAD. Notably, HIU undergoes a slow non-enzymatic breakdown into 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and (S)-allantoin. The findings of this study provide valuable insights into the metabolism pathway of UA biodegradation by B. paramycoides-YC02 and offer a potential avenue for the development of bacterioactive drugs against HUA and gout.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.C.); (J.C.)
| |
Collapse
|
6
|
Zhang WZ. Uric acid en route to gout. Adv Clin Chem 2023; 116:209-275. [PMID: 37852720 DOI: 10.1016/bs.acc.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Gout and hyperuricemia (HU) have generated immense attention due to increased prevalence. Gout is a multifactorial metabolic and inflammatory disease that occurs when increased uric acid (UA) induce HU resulting in monosodium urate (MSU) crystal deposition in joints. However, gout pathogenesis does not always involve these events and HU does not always cause a gout flare. Treatment with UA-lowering therapeutics may not prevent or reduce the incidence of gout flare or gout-associated comorbidities. UA exhibits both pro- and anti-inflammation functions in gout pathogenesis. HU and gout share mechanistic and metabolic connections at a systematic level, as shown by studies on associated comorbidities. Recent studies on the interplay between UA, HU, MSU and gout as well as the development of HU and gout in association with metabolic syndromes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular, renal and cerebrovascular diseases are discussed. This review examines current and potential therapeutic regimens and illuminates the journey from disrupted UA to gout.
Collapse
Affiliation(s)
- Wei-Zheng Zhang
- VIDRL, The Peter Doherty Institute, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Hou SW, Chen SJ, Shen JD, Chen HY, Wang SJ, Wang CH, Man KM, Liu PL, Tsai MY, Chen YH, Chen WC. Emodin, a Natural Anthraquinone, Increases Uric Acid Excretion in Rats with Potassium Oxonate-Induced Hyperuricemia. Pharmaceuticals (Basel) 2023; 16:789. [PMID: 37375737 DOI: 10.3390/ph16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The treatment of hyperuricemia and gout is mostly based on lowering serum uric acid levels using drugs, such as allopurinol, or increasing urinary excretion of uric acid. However, some patients still experience adverse reactions to allopurinol and turn to Chinese medicine as an alternative. Therefore, it is crucial to design a preclinical study to obtain more convincing data on the treatment of hyperuricemia and gout with Chinese medicine. This study aimed to explore the therapeutic effect of emodin, a Chinese herbal extract, in a rat model of hyperuricemia and gout. In this study, we used 36 Sprague-Dawley rats, which were randomly divided into six groups for experimentation. Hyperuricemia was induced in rats by intraperitoneal injections of potassium oxonate. The efficacy of emodin in reducing serum uric acid levels was demonstrated by comparing the positive control group with groups treated with three different concentrations of emodin. The inflammatory profiles, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels, were unaffected by emodin treatment. In the experimental results, it was observed that the serum uric acid concentration in the vehicle control group was 1.80 ± 1.14, while the concentrations in the moderate and high concentration emodin groups were 1.18 ± 0.23 and 1.12 ± 0.57, resulting in no significant difference in uric acid concentration between these treatment groups and the control group, indicating that emodin has a therapeutic effect on hyperuricemia. The increase in the fractional excretion of uric acid (FEUA) demonstrated that emodin promoted urinary uric acid excretion without significantly affecting the inflammatory profile. Thus, emodin reduced the serum uric acid concentration to achieve effective treatment of hyperuricemia and gout by increasing urinary excretion. These results were supported by the measured serum uric acid and FEUA levels. Our data have potential implications for the treatment of gout and other types of hyperuricemia in clinical practice.
Collapse
Affiliation(s)
- Shen-Wei Hou
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Szu-Ju Chen
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Jing-Dung Shen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Division of Urology, Department of Surgery, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
- National Defense Medical Center, Taipei 114, Taiwan
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Obstetrics and Gynecology, Department of Medical Research, Department of Urology, China Medical University Hospital, Taichung 404, Taiwan
| | - Shih-Jing Wang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Chia-Han Wang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kee-Ming Man
- Department of Medicinal Botanicals and Health Applications, College of Biotechnology and Bioresources, Da Yeh University, Changhua 515, Taiwan
- Department of Anesthesiology, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Yen Tsai
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Kaohsiung Municipal Feng Shan Hospital-Under the Management of Chang Gung Medical Foundation, Kaohsiung 830, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Obstetrics and Gynecology, Department of Medical Research, Department of Urology, China Medical University Hospital, Taichung 404, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Obstetrics and Gynecology, Department of Medical Research, Department of Urology, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
8
|
Zhang CL, Zhang JJ, Zhu QF, Guan HY, Yang YX, He X, Fu Y, Chen TX, Dong L, Yang XS, Tang KF, Xu GB, Liao SG. Antihyperuricemia and antigouty arthritis effects of Persicaria capitata herba in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153765. [PMID: 34610527 DOI: 10.1016/j.phymed.2021.153765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hyperuricemia (HUA) is an important risk factor for gout, renal dysfunction and cardiovascular diseases. The whole plant of Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, namely Persicaria capitata herba, is a well-known ethnic herb with potent therapeutic effects on urinary tract infections and urinary calculus, yet previous reports have only focused on its effect on urinary tract infections. PURPOSE To evaluate the therapeutic potential of P. capitata herba against gout by investigating its antihyperuricemia and antigouty arthritis effects and possible mechanisms. METHODS The ethanol extract (EP) and water extract (WP) of P. capitata herba were prepared by extracting dried and ground whole plants of P. capitata with 75% ethanol and water, respectively, followed by removal of solvents and characterization by UHPLC-Q-TOF/MS. The antihyperuricemia and antigouty arthritis effects of the two extracts were evaluated in a potassium oxonate- and hypoxanthine-induced hyperuricemia mouse model and a monosodium urate crystal (MSUC)-induced acute gouty arthritis mouse model, respectively. The mechanisms were investigated by testing their effects on the expression of correlated proteins (by Western blot) and mRNAs (by RT-PCR). RESULTS UHPLC-HRMS fingerprinting and two chemical markers (i.e., quercetin and quercitrin) determination were used for the characterization of the WP and EP extracts. Both WP and EP extracts showed pronounced antihyperuricemia activities, with a remarkable decline in serum uric acid and a marked increase in urine uric acid in hyperuricemic mice. Unlike the clinical xanthine oxidase (XOD) inhibitor allopurinol, WP and EP did not show any distinct renal toxicities. The underlying antihyperuricemia mechanism involves the inhibition of the activity and expression of XOD and the downregulation of the mRNA and protein expression of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1). The extracts of P. capitata herba also demonstrated remarkable anti-inflammatory activity in MSUC-induced acute gouty arthritis mice. The mechanism might involve inhibitory effects on the expression of proinflammatory factors. CONCLUSIONS The extracts of P. capitata herba possessed pronounced antihyperuricemia and antigouty arthritis effects and were, therefore, promising natural medicines for hyperuricemia-related disorders and gouty arthritis. The use of P. capitata herba for the treatment of urinary calculus may be, at least to some degree, related to its potential as an antihyperuricemia and antigouty arthritis drug.
Collapse
Affiliation(s)
- Chun-Lei Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 550025, Guizhou, China.
| | - Jin-Juan Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou 550025, China.
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 550025, Guizhou, China.
| | - Huan-Yu Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 550025, Guizhou, China.
| | - Ya-Xin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 550025, Guizhou, China.
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 550025, Guizhou, China.
| | - Yao Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 550025, Guizhou, China.
| | - Teng-Xiang Chen
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Li Dong
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 550025, Guizhou, China.
| | - Xiao-Sheng Yang
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, Guizhou, China.
| | - Kai-Fa Tang
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 550025, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, 550004, Guizhou, China.
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New Area, 550025, Guizhou, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
9
|
Xu L, Lu LL, Gao JD. Traditional Chinese Herbal Medicine Plays a Role in the Liver, Kidney, and Intestine to Ameliorate Hyperuricemia according to Experimental Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4618352. [PMID: 34876914 PMCID: PMC8645359 DOI: 10.1155/2021/4618352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
In the last few decades, hyperuricemia has drawn increasing attention owing to its global prevalence. Observational surveys have manifested that there is a relation between hyperuricemia and increased risks of hypertension, chronic kidney disease, cardiovascular events, metabolic disorders, end stage renal disease, and mortality. As alternatives, Traditional Chinese medicinal herbs have demonstrated concrete effects in mitigating hyperuricemia in different experiments. Researchers have made efforts to investigate the role of herbal medicine in attenuating hyperuricemia. This review focuses on traditional Chinese herbal medicines that have been reported to ameliorate hyperuricemia in experimental studies.
Collapse
Affiliation(s)
- Li Xu
- Department of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (20DZ2272200), Shanghai, China
| | - Li Li Lu
- Department of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (20DZ2272200), Shanghai, China
| | - Jian Dong Gao
- Department of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (20DZ2272200), Shanghai, China
| |
Collapse
|
10
|
Recent Updates of Natural and Synthetic URAT1 Inhibitors and Novel Screening Methods. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5738900. [PMID: 34754317 PMCID: PMC8572588 DOI: 10.1155/2021/5738900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
Human urate anion transporter 1 (hURAT1) is responsible for the reabsorption of uric acid in the proximal renal tubules and is a promising therapeutic target for treating hyperuricemia. To mitigate the side effects of URAT1-targeted clinical agents such as benzbromarone, there is significant interest in discovering new URAT1 inhibitors and developing technology that can evaluate URAT1 inhibition. This review summarizes the methods for assay of URAT1 inhibition and the progress on the discovery of natural and synthetic URAT1 inhibitors in the past five years.
Collapse
|
11
|
A brief review on in vivo models for Gouty Arthritis. Metabol Open 2021; 11:100100. [PMID: 34189452 PMCID: PMC8219997 DOI: 10.1016/j.metop.2021.100100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/29/2021] [Accepted: 06/11/2021] [Indexed: 01/21/2023] Open
Abstract
Gout is more common in men than in women, by a factor of 3.1–10.1. Gout prevalence and incidence have increased in recent decades, with prevalence reaching 11–13% and incidence reaching 0.4% in people over the age of 80. Age-related renal impairment, altered drug distribution, and increased prevalence of comorbidities have significant consequences for safe and effective gout pharmacotherapy. The Discovery of Fruitful in-vivo animal models needs the effective screening of drugs or formulations used in the treatment of gout. In vivo animal models of Gouty arthritis are extensively used to investigate pathogenic mechanisms governing inflammation-driven bone and cartilage damage. Four commonly utilized models include the Potassium oxonate induced hyperuricemic model, MSU crystals induced gouty arthritis animal model, Animal Model of Acute Gouty Arthritis with Hyperuricemia, and Diet-induced hyperuricemia. These offer unique advantages for correlating different aspects of gouty arthritis with human disease. In-vivo animal models served as testing beds for novel biological therapies, including cytokine blockers and small molecule inhibitors of intracellular signaling that have revolutionized gouty arthritis treatment. This review highlights a brief overview of in vivo experimental models for assessment of hypouricemic, anti-inflammatory, as well as renal protective effects of test compounds with some evaluation parameters in detail.
Collapse
|