1
|
Wong Chin JM, Jeewon R, Fahad Alrefaei A, Puchooa D, Bahorun T, Neergheen VS. Marine-derived fungi from the genus Aspergillus (Ascomycota) and their anticancer properties. Mycology 2024; 16:545-592. [PMID: 40415918 PMCID: PMC12096698 DOI: 10.1080/21501203.2024.2402309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/03/2024] [Indexed: 05/27/2025] Open
Abstract
Marine fungi are promising sources of bioactive natural products. The harsh marine conditions favour the production of natural products with unique structures and functions. The different classes of bioactive metabolites produced by these marine fungi can exhibit cytotoxic, apoptotic, anti-proliferative, antiangiogenic, and autophagy inducing effects on a plethora of cancer cell lines. This review, based on research articles that have been published from 2002 to 2023, provides a concise overview of the anticancer properties of metabolites from marine Aspergillus fungal species. A total of 204 papers are reviewed and 208 most active cytotoxic molecules are reported from Aspergillus. The source as well as the growth medium utilised for the production of cytotoxic metabolites are listed. The mechanism of action of some compounds, which could be used as potential drugs, is also reported. These fungi, under optimal growth conditions, have immense potential as anticancer agents, produce novel metabolites with specific structures that can kill a panel of human cancer cells. However, there is a dire need for more clinical trials and understanding of the mechanisms of action of pharmacologically active constituent. Research should also target how to improve culture methods and perform clinical research on human subjects with more scientific reproducibility.
Collapse
Affiliation(s)
- Jessica Mélanie Wong Chin
- Biopharmaceutical Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Reduit, Mauritius
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Daneshwar Puchooa
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Theeshan Bahorun
- Biopharmaceutical Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Reduit, Mauritius
- Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Vidushi S. Neergheen
- Biopharmaceutical Unit, Center for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Reduit, Mauritius
| |
Collapse
|
2
|
Li Y, Liu Q, Ding J, Zou J, Yang B. Responsive Supramolecular Nanomicelles Formed through Self-Assembly of Acyclic Cucurbit[ n]uril for Targeted Drug Delivery to Cancer Cells. Mol Pharm 2024; 21:5784-5796. [PMID: 39374616 DOI: 10.1021/acs.molpharmaceut.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The supramolecular drug delivery systems (SDDSs) based on host-guest recognition through noncovalent interactions, capable of responsive behavior and dynamic switching to external stimuli, have attracted considerable attention in cancer therapy. In this study, a targeted dual-functional drug delivery system was designed and synthesized. A hydrophilic macrocyclic host molecule (acyclic cucurbit[n]uril ACB) was modified with folic acid (FA) as a targeting ligand. The guest molecule consists of a disulfide bond attached to adamantane (DA) and cannabidiol (CBD) at both ends of the response element of glutathione. Recognition and self-assembly of host and guest molecules successfully functionalize supramolecular nanomicelles (SNMs), targeting cancer cells and releasing drugs in a high glutathione environment. The interactions between host and guest molecules were investigated by using nuclear magnetic resonance (NMR), fluorescence titration, Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis (TGA). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the nanostructure of the SNMs. Experimentation with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) demonstrated the responsiveness of SNMs to glutathione (GSH). In vitro cytotoxicity assays demonstrated that SNMs had a greater targeting efficacy for four types of cancer cells (HeLa, HCT-116, A549, and HepG2) compared to normal 293T cells. Cellular uptake studies revealed that HeLa cells more readily absorbed SNMs, leading to their accumulation in the tumor cell cytoplasm. Fluorescence colocalization assays verified that SNMs efficiently accumulated in organelles related to energy metabolism and signaling, including mitochondria and the endoplasmic reticulum, affecting cellular metabolic death. Both flow cytometry and confocal nuclear staining assays confirmed that SNMs effectively induced apoptosis over time, ultimately resulting in the death of cancer cells. These findings demonstrate that SNMs exhibit excellent targeting ability, responsiveness, high bioavailability, and stability, suggesting significant potential in drug delivery applications.
Collapse
Affiliation(s)
- Yamin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qingmeng Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiawei Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jia Zou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| |
Collapse
|
3
|
Mani I, Thangavel M, Surendrababu A, Sneha MJX, Rajagopal R, Alfarhan A, Ponnuraj N, Pandi M. Unveiling the Bioprospecting Efficacy and Textile Dyeing of a Novel Endophytic Mycobial Red Pigment. Indian J Microbiol 2024; 64:618-634. [PMID: 39011001 PMCID: PMC11246333 DOI: 10.1007/s12088-024-01211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/14/2024] [Indexed: 07/17/2024] Open
Abstract
Natural pigments are becoming increasingly popular owing of their reliability. Microbial pigments provide an alternative to natural colours. A total of 24 fungal cultures were collected from leaf bits of Senna auriculata, with one strain (FNG1) producing an extracellular red orange pigment. Nigrospora oryzae was confirmed by using physical criteria and molecular phylogenetic study by using ITS and β- tubulin analysis. In EtOAc, the crude red pigment was the most soluble. The TLC analysis was used to partly purify the natural pigment. The partially purified fungal pigment was used in successive bioprospecting studies. The antimicrobial activity of the partially purified sample was assessed against eight human pathogens, with Leucobacter AA7 showing the largest zone of inhibition (200-500 µg/mL). The compound's DPPH scavenging activity enhanced from 38.2 to 67.9%, with an IC50 value of 34.195 ± 2.33 µg/mL. Cancer cells were suppressed by partly pure fungal pigment, but non-cancerous HEK 293 cells were unaffected. The GC-MS analysis was used to characterize the molecule present in the partly purified pigment. In addition, the cotton textiles have the greatest staining capability for crude mycobial pigment, which dyes quickly and has a negative cytotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01211-y.
Collapse
Affiliation(s)
- Israel Mani
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Myithili Thangavel
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Akash Surendrababu
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - M. Joe Xavier Sneha
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box-2455, 11451 Riyadh, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box-2455, 11451 Riyadh, Saudi Arabia
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illiniois, Urbana, IL 61802 USA
| | - Mohan Pandi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| |
Collapse
|
4
|
Venkatachalam J, Jeyadoss VS, Bose KSC, Subramanian R. Marine seaweed endophytic fungi-derived active metabolites promote reactive oxygen species-induced cell cycle arrest and apoptosis in human breast cancer cells. Mol Biol Rep 2024; 51:611. [PMID: 38704796 DOI: 10.1007/s11033-024-09511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Endophytic fungi have an abundant sources rich source of rich bioactive molecules with pivotal pharmacological properties. Several studies have found that endophytic fungi-derived bioactive secondary metabolites have antiproliferative, anti-oxidant, and anti-inflammatory properties, but the molecular mechanism by which they induce cell cycle arrest and apoptosis pathways is unknown. This study aimed to determine the molecular mechanism underlying the anticancer property of the endophytic fungi derived active secondary metabolites on human breast cancer cells. METHODS In this study, we identified four endophytic fungi from marine seaweeds and partially screened its phytochemical properties by Chromatography-Mass Spectrometry (GC-MS) analysis. Moreover, the molecular mechanism underlying the anticancer property of these active secondary metabolites (FA, FB, FC and FE) on human breast cancer cells were examined on MCF-7 cells by TT assay, Apoptotic assay by Acridine orang/Ethidium Bromide (Dual Staining), DNA Fragmentation by DAPI Staining, reactive oxygen species (ROS) determination by DCFH-DA assay, Cell cycle analysis was conducted Flow cytometry and the apoptotic signalling pathway was evaluated by westernblot analysis. Doxorubicin was used as a positive control drug for this experiment. RESULTS The GC-MS analysis of ethyl acetate extract of endophytic fungi from the marine macro-algae revealed the different functional groups and bioactive secondary metabolites. From the library, we observed the FC (76%), FB (75%), FA (73%) and FE (71%) have high level of antioxidant activity which was assessed by DPPH scavenging assay. Further, we evaluated the cytotoxic potentials of these secondary metabolites on human breast cancer MCF-7 cells for 24 h and the IC50 value were calculated (FA:28.62 ± 0.3 µg/ml, FB:49.81 ± 2.5 µg/ml, FC:139.42 ± µg/ml and FE:22.47 ± 0.5 µg/ul) along with positive control Doxorubicin 15.64 ± 0.8 µg/ml respectively by MTT assay. The molecular mechanism by which the four active compound induced apoptosis via reactive oxygen species (ROS) and cell cycle arrest in MCF-7 cells was determined H2DCFDA staining, DAPI staining, Acridine orange and ethidium bromide (AO/EtBr) dual staining, flowcytometry analysis with PI staining and apoptotic key regulatory proteins expression levels measured by westernblot analysis. CONCLUSION Our findings, revealed the anticancer potential of endophytic fungi from marine seaweed as a valuable source of bioactive compounds with anticancer properties and underscore the significance of exploring marine-derived endophytic fungi as a promising avenue for the development of novel anticancer agents. Further investigations are necessary to isolate and characterize specific bioactive compounds responsible for these effects and to validate their therapeutic potential in preclinical and clinical settings.
Collapse
Affiliation(s)
| | | | | | - Raghunandhakumar Subramanian
- Cancer and Stem cell Research Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, Tamilnadu, India.
| |
Collapse
|
5
|
Mohammed-Geba K, ElShaarawy RS, Alian A, Ibrahim HM, Galal-Khallaf A. Unraveling the Red Sea soft coral Sarcophyton convolutum potentials against oxidative and inflammatory stresses in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109442. [PMID: 38354966 DOI: 10.1016/j.fsi.2024.109442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The Red Sea is one of the world's hotspots for biodiversity, and for marine natural products (MNPs) as well. These MNPs attract special interest for their capabilities to combat inflammatory and oxidative stress-related diseases, being some of the most serious health problems worldwide nowadays. The current study aimed to identify the bioactive ingredients of the Red Sea soft coral Sarcophyton convolutum, and to assess its protective potentials against oxidative and inflammatory stresses. Coral extract (CE) was analyzed using GC-MS and HPLC. In a protection trial, adult zebrafish were intraperitoneally injected with two doses of crab extract, i.e. 50 and 500 μg/fish in 1 % DMSO as a vehicle, then challenged with 30 μg L-1 of CuSO4 for 48 h. All groups, but the negative control one, were challenged with 30 μg L-1 of CuSO4. Total antioxidant activity, as well as mRNA levels of proinflammatory markers and antioxidant enzyme genes were measured. The results showed richness of S. convolutum extract with various bioactive ingredients, including phenolic compounds, flavonoids, alkanes, fatty acids, sesquiterpenes, and pheromone-like substances. CuSO4 significantly induced the expected signals of inflammatory and oxidative stress, reducing both the antioxidant activity and increasing proinflammatory marker genes. However, CE, especially the low dose, showed significant capability to reduce proinflammatory markers and elevating the total antioxidant activity. Therefore, we concluded that S. convolutum can be a promising source for future efforts of drug discovery and a wide spectrum of pharmaceutical products.
Collapse
Affiliation(s)
- Khaled Mohammed-Geba
- Zoology Department, Faculty of Science, Menoufia University, 32511, Shebin El-Kom, Menoufia, Egypt.
| | - Reham Salah ElShaarawy
- Zoology Department, Faculty of Science, Menoufia University, 32511, Shebin El-Kom, Menoufia, Egypt
| | - AbdAllah Alian
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Hany Mohammed Ibrahim
- Zoology Department, Faculty of Science, Menoufia University, 32511, Shebin El-Kom, Menoufia, Egypt
| | - Asmaa Galal-Khallaf
- Zoology Department, Faculty of Science, Menoufia University, 32511, Shebin El-Kom, Menoufia, Egypt.
| |
Collapse
|
6
|
Lee W, Kim DG, Perera RH, Kim JS, Cho Y, Lee JW, Seo CW, Lim YW. Diversity of Nigrospora ( Xylariales, Apiosporaceae) Species Identified in Korean Macroalgae Including Five Unrecorded Species. MYCOBIOLOGY 2023; 51:401-409. [PMID: 38179117 PMCID: PMC10763912 DOI: 10.1080/12298093.2023.2283272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024]
Abstract
Nigrospora (Xylariales, Apiosporaceae) consists of species of terrestrial plant endophytes and pathogens. Nigrospora has also been reported in marine environments such as mangroves, sea fans, and macroalgae. However, limited research has been conducted on Nigrospora associated with macroalgae. Here, we isolated Nigrospora species from three types of algae (brown, green, and red algae) from Korean islands (Chuja, Jeju, and Ulleung) based on phylogenetic analyses of multigenetic markers: the internal transcribed spacers (ITS), beta-tubulin (BenA), and translation elongation factor 1 (TEF1-α). A total of 17 Nigrospora strains were isolated from macroalgae and identified as nine distinct species. The majority of Nigrospora species (seven) were found on brown algae, followed by red algae (three), and then green algae (two). To our understanding, this study represents the first account of N. cooperae, N. covidalis, N. guilinensis, N. lacticolonia, N. osmanthi, N. pyriformis, and N. rubi occurring in marine environments. Additionally, this study provides the first report of the occurrence of N. cooperae, N. covidalis, N. guilinensis, N. lacticolonia, and N. osmanthi in South Korea. This study will provide valuable insights for future research exploring the functions of fungi in macroalgal communities.
Collapse
Affiliation(s)
- Wonjun Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Dong-Geon Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Rekhani H. Perera
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Ji Seon Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Yoonhee Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Jun Won Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Chang Wan Seo
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Damavandi MS, Shojaei H, Esfahani BN. The anticancer and antibacterial potential of bioactive secondary metabolites derived From bacterial endophytes in association with Artemisia absinthium. Sci Rep 2023; 13:18473. [PMID: 37891400 PMCID: PMC10611800 DOI: 10.1038/s41598-023-45910-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
The continuous search for secondary metabolites in microorganisms isolated from untapped reservoirs is an effective prospective approach to drug discovery. In this study, an in-depth analysis was conducted to investigate the diversity of culturable bacterial endophytes present in the medicinal plant A. absinthium, as well as the antibacterial and anticancer potential of their bioactive secondary metabolites. The endophytic bacteria recovered from A. absinthium, were characterized via the implementation of suitable biochemical and molecular analyses. Agar well diffusion and broth microdilution were used to screen antibacterial activity. SEM was performed to assess the impact of the extracted metabolite on MRSA strain cell morphology. Apoptosis and cytotoxicity assays were used to evaluate anticancer activity against MCF7 and A549. The FTIR, GC-MS were used to detect bioactive compounds in the active solvent fraction. Of the various endophytic bacteria studied, P. aeruginosa SD01 showed discernible activity against both bacterial pathogens and malignancies. The crude ethyl acetate extract of P. aeruginosa SD01 showed MICs of 32 and 128 µg/mL for S. aureus and MRSA, respectively. SEM examination demonstrated MRSA bacterial cell lysis, hole development, and intracellular leaking. This study revealed that the crude bioactive secondary metabolite SD01 has potent anticancer activity. In this study, 2-aminoacetophenone, 1,2-apyrazine-1,4-dione, phenazine and 2-phenyl-4-cyanopyridine were the major bioactive secondary metabolites. In conclusion, our findings indicate that the bacteria recovered from A. absinthium plants and in particular, P. aeruginosa SD01 is a remarkable source of untapped therapeutic, i.e., antimicrobial and anticancer compounds.
Collapse
Affiliation(s)
- Mohammad Sadegh Damavandi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hasan Shojaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Shah ZA, Khan K, Shah T, Ahmad N, Muhammad A, Rashid HU. Biological investigations of Aspergillus ficuum via in vivo, in vitro and in silico analyses. Sci Rep 2023; 13:17260. [PMID: 37828066 PMCID: PMC10570320 DOI: 10.1038/s41598-023-43819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Serious human health impacts have been observed worldwide due to several life-threatening diseases such as cancer, candidiasis, hepatic coma, and gastritis etc. Exploration of nature for the treatment of such fatal diseases is an area of immense interest for the scientific community. Based on this idea, the genus Aspergillus was selected to discover its hidden therapeutic potential. The genus Aspergillus is known to possess several biologically active compounds. The current research aimed to assess the biological and pharmacological potency of the extracts of less-studied Aspergillus ficuum (FCBP-DNA-1266) (A. ficuum) employing experimental and bioinformatics approaches. The disc diffusion method was used for the antifungal investigation, and the MTT assay was performed to assess the anticancer effects. Mice were employed as an in vivo model to evaluate the antispasmodic effects. A standard spectrophotometric technique was applied to gauge the urease inhibitory activity. The antifungal studies indicate that both n-hexane and ethyl acetate extracts were significantly active against Candida albicans (C. albicans) with their zone of inhibitions (ZOI) values reported as 19 ± 1.06 mm and 25 ± 0.55 mm, respectively at a dose of 30 µg.mL-1. In vitro cytotoxicity assay against HeLa, fibroblast 3T3, prostate PC3, and breast MCF-7 cancer cell lines was performed. The ethyl acetate extract of A. ficuum was found to be significantly active against MCF-7 with its IC50 value of 43.88 µg.mL-1. However, no substantial effects on the percent cell death of HeLa cancer cell lines were observed. In addition, the A. ficuum extracts also inhibited the urease enzyme compared to standard thiourea. The antispasmodic activity of A. ficuum extract was assessed by an in vivo model and the results demonstrated promising activity at 150 mg.kg-1. Molecular docking results also supported the antifungal, anticancer, and antiurease potency of A. ficuum extract. Overall, the results display promising aspects of A. ficuum extract as a future pharmacological source.
Collapse
Affiliation(s)
- Zafar Ali Shah
- Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Khan
- Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Tanzeel Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Akhtar Muhammad
- Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Haroon Ur Rashid
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas RS, Brazil.
- Institute of Chemistry, Sao Paulo State University, Araraquara, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Parthasarathy R, Chandrika M, Sruthi D, Yashavantha Rao HC, Jayabaskaran C. Clonostachys rosea, a marine algal endophyte, as an alternative source of chrysin and its anticancer effect. Arch Microbiol 2023; 205:275. [PMID: 37410212 DOI: 10.1007/s00203-023-03615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/20/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Endophytic fungi were isolated from the marine green alga Chaetomorpha antennina and identified as Clonostachys rosea through molecular analysis. C. rosea was grown in a tryptophan medium for 21 days and after that, the metabolites were extracted by ethyl acetate. The ethyl acetate extract showed a high cytotoxic effect on MCF-7 cells. GC-MS analysis of the ethyl acetate extract revealed the presence of many compounds, and chrysin was one of the major compounds among them. Hence, further studies were concentrated on chrysin, as it was assumed to be the major attributor to the potent cytotoxicity, based on its high anticancer efficacies reported earlier. The fungal ethyl acetate extract had been analysed for chrysin using HPTLC and compared its Rf value with authentic chrysin and it was matched. Further, the purified fungal chrysin was structurally elucidated using techniques like LC-MS and NMR analyses. Quantification revealed that C. rosea produced 1050 mg/L of chrysin. This surplus production of chrysin was the major significance of the study. The purified fungal chrysin was found to be highly cytotoxic to MCF-7 cells with a low IC50 value 35.5 ± 0.6 µM. Furthermore, DNA fragmentation and apoptosis analysis indicated the selective inhibition of MCF-7 by DNA damage. Thus, the present study implies that C. rosea is an alternative source and new method for surplus production of chrysin in the tryptophan medium. All results indicate that the marine algae endophytic C. rosa produces chrysin, and for the first time, an excess amount of production was revealed by the study.
Collapse
Grants
- Ref. no. PDF/2017/001184 Department of Science and Technology and Science and Engineering Research Board (DST-SERB), New Delhi for the National Post-Doctoral fellowship
- Ref.no.45/1/2020-DDI-BMS Indian Council Medical Research-Research Associate (ICMR-RA) New Delhi,
- File no.45/36-2018-PHA/BMS Dated 23/6/2018 Indian Council Medical Research-Research Associate (ICMR-RA), New Delhi
- YSS/2019/000035/ PRCYSS Department of Health Research (DHR),Government of India, New Delhi, Young scientist -HRD Scheme
- YSS/2020/0000054/PRCYSS Department of Health Research (DHR),Government of India, New Delhi, Young scientist -HRD Scheme
- No.F.4-2/2006 (BSR)/BL/17-18/0234 University Grants Commission - DSKPDF, Government of India, New Delhi.
Collapse
Affiliation(s)
| | - Manjegowda Chandrika
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Damodaran Sruthi
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | | |
Collapse
|
10
|
Nicoletti R, Bellavita R, Falanga A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules 2023; 13:1021. [PMID: 37509057 PMCID: PMC10377321 DOI: 10.3390/biom13071021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Fungi in the genus Talaromyces occur in every environment in both terrestrial and marine contexts, where they have been quite frequently found in association with plants and animals. The relationships of symbiotic fungi with their hosts are often mediated by bioactive secondary metabolites, and Talaromyces species represent a prolific source of these compounds. This review highlights the biosynthetic potential of marine-derived Talaromyces strains, using accounts from the literature published since 2016. Over 500 secondary metabolites were extracted from axenic cultures of these isolates and about 45% of them were identified as new products, representing a various assortment of chemical classes such as alkaloids, meroterpenoids, isocoumarins, anthraquinones, xanthones, phenalenones, benzofurans, azaphilones, and other polyketides. This impressive chemodiversity and the broad range of biological properties that have been disclosed in preliminary assays qualify these fungi as a valuable source of products to be exploited for manifold biotechnological applications.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples Federico II, 80100 Napoli, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
11
|
Bhat MP, Chakraborty B, Nagaraja SK, Gunagambhire PV, Kumar RS, Nayaka S, Almansour AI, Perumal K. Aspergillus niger CJ6 extract with antimicrobial potential promotes in-vitro cytotoxicity and induced apoptosis against MIA PaCa-2 cell line. ENVIRONMENTAL RESEARCH 2023; 229:116008. [PMID: 37121347 DOI: 10.1016/j.envres.2023.116008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the increased number of multidrug-resistant strains among pathogens is a severe public health concern and cancer is posing a great threat for humans. These problems should be tackled with the development of novel and broad-spectrum antimicrobials from microbial origin. During the present study, the bioactive secondary metabolites from Aspergillus niger CJ6 were extracted, characterized; their biological properties were evaluated by subjecting them for antimicrobial, antifungal and anticancer activities. The potent isolate Aspergillus niger CJ6 with nucleotide sequence of 959 base pairs showed antagonistic activity against fungal pathogens in dual culture. The chemical profiling of crude ethyl acetate extract indicated the presence of various bioactive molecules belonging to phenolic, hydrocarbons, and phthalate derivative classes. In antimicrobial activity, the crude extract displayed increasing activity with increased concentration; the highest activity observed against Shigella flexneri with 15 ± 1.0, 19 ± 0.5, 20 ± 1.0 and 24 ± 1.0 mm zones of inhibition at 25, 50, 75 and 100 μl concentrations. The MTT assay illustrated deformed cells of MIA PaCa-2 cell line in in-vitro cytotoxic activity; outflow of cell matrix and membrane rupture; the IC50 of 90.78 μg/ml suggested moderate potential of extract to prevent cancer cell growth. The apoptosis/necrosis study by flow cytometer exhibited 8.98 ± 0.85% early and 73 ± 0.7% of late apoptotic population with 3.8 ± 1.1% necrotic cells; only 14.22 ± 0.6% of healthy cells suggested the increased apoptosis inducing capacity of Aspergillus niger CJ6 crude extract. The outcomes of this study persuade further exploration on the identification, purification and development of novel bioactive agents that could help battle fatal diseases in humans.
Collapse
Affiliation(s)
| | - Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India.
| | | | | | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad, 580001, Karnataka, India.
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Anticryptococcal activity and mechanistic investigation of histidine-rich short peptides. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Rai N, Gupta P, Verma A, Tiwari RK, Madhukar P, Kamble SC, Kumar A, Kumar R, Singh SK, Gautam V. Ethyl Acetate Extract of Colletotrichum gloeosporioides Promotes Cytotoxicity and Apoptosis in Human Breast Cancer Cells. ACS OMEGA 2023; 8:3768-3784. [PMID: 36743019 PMCID: PMC9893742 DOI: 10.1021/acsomega.2c05746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Fungal endophytes are known to be a paragon for producing bioactive compounds with a variety of pharmacological importance. The current study aims to elucidate the molecular alterations induced by the bioactive compounds produced by the fungal endophyte Colletotrichum gloeosporioides in the tumor microenvironment of human breast cancer cells. GC/MS analysis of the ethyl acetate (EA) extract of C. gloeosporioides revealed the presence of bioactive compounds with anticancer activity. The EA extract of C. gloeosporioides exerted potential plasmid DNA protective activity against hydroxyl radicals of Fenton's reagent. The cytotoxic activity further revealed that MDA-MB-231 cells exhibit more sensitivity toward the EA extract of C. gloeosporioides as compared to MCF-7 cells, whereas non-toxic to non-cancerous HEK293T cells. Furthermore, the anticancer activity demonstrated by the EA extract of C. gloeosporioides was studied by assessing nuclear morphometric analysis and induction of apoptosis in MDA-MB-231 and MCF-7 cells. The EA extract of C. gloeosporioides causes the alteration in cellular and nuclear morphologies, chromatin condensation, long-term colony inhibition, and inhibition of cell migration and proliferation ability of MDA-MB-231 and MCF-7 cells. The study also revealed that the EA extract of C. gloeosporioides treated cells undergoes apoptosis by increased production of reactive oxygen species and significant deficit in mitochondrial membrane potential. Our study also showed that the EA extract of C. gloeosporioides causes upregulation of pro-apoptotic (BAX, PARP, CASPASE-8, and FADD), cell cycle arrest (P21), and tumor suppressor (P53) related genes. Additionally, the downregulation of antiapoptotic genes (BCL-2 and SURVIVIN) and increased Caspase-3 activity suggest the induction of apoptosis in the EA extract of C. gloeosporioides treated MDA-MB-231 and MCF-7 cells. Overall, our findings suggest that the bioactive compounds present in the EA extract of C. gloeosporioides promotes apoptosis by altering the genes related to the extrinsic as well as the intrinsic pathway. Further in vivo study in breast cancer models is required to validate the in vitro observations.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Priyamvada Gupta
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Verma
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rajan Kumar Tiwari
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi, 221005, India
| | - Prasoon Madhukar
- Infectious
Disease Research Laboratory, Department of Medicine, Institute of
Medical Sciences, Banaras Hindu University, Varanasi221005, India
| | - Swapnil C. Kamble
- Department
of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Ajay Kumar
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi, 221005, India
| | - Rajiv Kumar
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
14
|
Kumari M, Kamat S, Singh SK, Kumar A, Jayabaskaran C. Inhibition of Autophagy Increases Cell Death in HeLa Cells through Usnic Acid Isolated from Lichens. PLANTS (BASEL, SWITZERLAND) 2023; 12:519. [PMID: 36771602 PMCID: PMC9919968 DOI: 10.3390/plants12030519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The Western Ghats, India, is a hotspot for lichen diversity. However, the pharmacological importance of lichen-associated metabolites remains untapped. This study aimed to evaluate the cytotoxic potential of lichens of this region. For this, sixteen macrolichens were collected and identified from two locations in the Western Ghats. The acetone extract of Usnea cornuta (UC2A) showed significant cytotoxicity towards multiple human cancer cell lines. Interestingly, co-treatment with chloroquine (CQ), an autophagy inhibitor, increased the cytotoxic potential of the UC2A extract. A gas chromatography mass spectrometry (GCMS) study revealed usnic acid (UA), atraric acid and barbatic acid as the dominant cytotoxic compounds in the UC2A extract. Further, UA was purified and identified from the UC2A extract and evaluated for cytotoxicity in HeLa cells. The monodansyl cadaverine and mitotracker red double staining revealed the autophagy-inducing activities of UA, and the inhibition of autophagy was confirmed via CQ treatment. Autophagy inhibition increased the cytotoxicity of UA by 12-16% in a concentration-dependent manner. It also increased lipid peroxidation, ROS levels and mitochondrial depolarization and decreased glutathione availability. A decrease in zeta potential and a 40% increase in caspase 3/7 activity were also noted after CQ treatment of UA-treated cells. Thus, cytotoxicity of UA can be increased by inhibiting autophagy.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - C. Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Kamat S, Kumari M, Jayabaskaran C. Infrared spectroscopy and flow cytometry studies on the apoptotic effect of nano-chrysin in HeLa cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121666. [PMID: 35921748 DOI: 10.1016/j.saa.2022.121666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Mapping the structural changes in membrane lipids, proteins, polysaccharides and nucleic acids has opened new channels for understanding the mode of action of anticancer natural products. Earlier, we synthesized chrysin nanoparticles (NChr) with good bioavailability, and characterized its size, surface charge, entrapment efficiency, and drug release pattern using PLGA polymer. NChr induced concentration dependent cytotoxicity in HeLa cells with an IC50 of 61.54 ± 1.2 µM in comparison with free chrysin with IC50 of 86.51 ± 2.9 µM. Since nanoparticles interact dynamically with cell membranes, organelles, proteins and DNA, it is necessary to understand the interplay of nanodrug induced macromolecular changes in cancer cells. In this work, we obtained signatures of NChr-induced biochemical changes in HeLa cells by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy technique coupled with flow cytometry. NChr induced cell membrane disruption, G1 phase cell cycle arrest, and increased externalization of phosphatidylserine leading to apoptosis indicating the biochemical perturbations in membrane lipids and DNA of HeLa cells in comparison with untreated cells. The 1300-1000 cm-1 spectral region indicated NChr interaction with the ribose sugar backbone and DNA denaturation. Spectral range 1800-1400 cm-1 indicated a concentration dependent decrease in α helical and β sheet structures which may lead to protein degradation during apoptosis. The spectral range 3000-2800 cm-1 indicated the lipid peroxidation in response to NChr treatment. This is the first study describing the bio-macromolecular changes induced by a nano encapsulated drug and can pave the way to investigate unconventional modes of action for bioactive formulations.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
16
|
Kumari M, Qureshi KA, Jaremko M, White J, Singh SK, Sharma VK, Singh KK, Santoyo G, Puopolo G, Kumar A. Deciphering the role of endophytic microbiome in postharvest diseases management of fruits: Opportunity areas in commercial up-scale production. FRONTIERS IN PLANT SCIENCE 2022; 13:1026575. [PMID: 36466226 PMCID: PMC9716317 DOI: 10.3389/fpls.2022.1026575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
As endophytes are widely distributed in the plant's internal compartments and despite having enormous potential as a biocontrol agent against postharvest diseases of fruits, the fruit-endophyte-pathogen interactions have not been studied detail. Therefore, this review aims to briefly discuss the colonization patterns of endophytes and pathogens in the host tissue, the diversity and distribution patterns of endophytes in the carposphere of fruits, and host-endophyte-pathogen interactions and the molecular mechanism of the endophytic microbiome in postharvest disease management in fruits. Postharvest loss management is one of the major concerns of the current century. It is considered a critical challenge to food security for the rising global population. However, to manage the postharvest loss, still, a large population relies on chemical fungicides, which affect food quality and are hazardous to health and the surrounding environment. However, the scientific community has searched for alternatives for the last two decades. In this context, endophytic microorganisms have emerged as an economical, sustainable, and viable option to manage postharvest pathogens with integral colonization properties and eliciting a defense response against pathogens. This review extensively summarizes recent developments in endophytic interactions with harvested fruits and pathogens-the multiple biocontrol traits of endophytes and colonization and diversity patterns of endophytes. In addition, the upscale commercial production of endophytes for postharvest disease treatment is discussed.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (R.S.R.C.), Division of Biological and Environmental Sciences and Engineering (B.E.S.E.), King Abdullah University of Science and Technology (K.A.U.S.T.), Thuwal, Saudi Arabia
| | - James White
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Vijay Kumar Sharma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gerardo Puopolo
- Center Agriculture Food Environment, University of Trento, Trentino, TN, Italy
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
17
|
Kumari M, Kamat S, Jayabaskaran C. Usnic acid induced changes in biomolecules and their association with apoptosis in squamous carcinoma (A-431) cells: A flow cytometry, FTIR and DLS spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121098. [PMID: 35257985 DOI: 10.1016/j.saa.2022.121098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Many natural products induce apoptotic cell death in cancer cells, though studies on their interactions with macromolecules are limited. For the first time, this study demonstrated the cytotoxic potential of usnic acid (UA) against squamous carcinoma (A-431) cells and the associated changes in cell surface proteins, lipids and DNA by attenuated total reflection- fourier transform infrared spectroscopy (ATR-FTIR) and dynamic light scattering (DLS) spectroscopic studies. The IC50 for UA was 98.9 µM after treatment of A-431 cells for 48 h, while the IC50 reduced to 39.2 µM after 72 h of incubation time. UA induced oxidative stress in treated cells as confirmed by DCFHDA flow cytometry assay, depletion in reduced glutathione and increase in lipid peroxidation. The oxidative stress resulted in conformation change in amide I, amide II protein bands and DNA as observed by ATR-FTIR in UA treated A-431 cells. Shift in secondary structures of proteins from α helix to β sheets and structural changes in DNA was observed in UA treated A-431 cells. An increase in the band intensity of phospholipids, increased distribution of lipid and change in membrane potential was noted in UA treated cells, which was confirmed by externalization of phosphatidylserine to the outer membrane by annexin V-FITC/PI assay. Increase in mitochondrial membrane potential, cell cycle arrest at G0/G1 phase by flow cytometry and activation of caspase-3/7 dependent proteins confirmed the UA induced apoptosis in treated A-431 cells. FTIR and DLS spectroscopy confirmed the changes in biomolecules after UA treatment, which were associated with apoptosis, as observed by flow cytometry.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
18
|
Rodrigo S, García-Latorre C, Santamaria O. Metabolites Produced by Fungi against Fungal Phytopathogens: Review, Implementation and Perspectives. PLANTS (BASEL, SWITZERLAND) 2021; 11:81. [PMID: 35009084 PMCID: PMC8747711 DOI: 10.3390/plants11010081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/06/2023]
Abstract
Many fungi, especially endophytes, have been found to produce multiple benefits in their plant hosts, with many of these benefits associated with the protection of plants against fungal diseases. This fact could be used in the development of new bio-products that could gradually reduce the need for chemical fungicides, which have been associated with multiple health and environmental problems. However, the utilization of the living organism may present several issues, such as an inconsistency in the results obtained and more complicated management and application, as fungal species are highly influenced by environmental conditions, the type of relationship with the plant host and interaction with other microorganisms. These issues could be addressed by using the bioactive compounds produced by the fungus, in cases where they were responsible for positive effects, instead of the living organism. Multiple bioactive compounds produced by fungal species, especially endophytes, with antifungal properties have been previously reported in the literature. However, despite the large amount of these metabolites and their potential, extensive in-field application on a large scale has not yet been implemented. In the present review, the main aspects explaining this limited implementation are analyzed, and the present and future perspectives for its development are discussed.
Collapse
Affiliation(s)
- Sara Rodrigo
- Department of Agronomy and Forest Environment Engineering, University of Extremadura, Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain; (S.R.); (C.G.-L.)
| | - Carlos García-Latorre
- Department of Agronomy and Forest Environment Engineering, University of Extremadura, Avda, Adolfo Suárez s/n, 06007 Badajoz, Spain; (S.R.); (C.G.-L.)
| | - Oscar Santamaria
- Department of Construction and Agronomy, University of Salamanca, Avda, Cardenal Cisneros 34, 49029 Zamora, Spain
| |
Collapse
|
19
|
Chen X, Wei J, Tang J, Wu B. Two new prenylated glycine derivatives from the marine-derived fungus Fusarium sp. TW56-10. Chem Biodivers 2021; 19:e202100899. [PMID: 34957670 DOI: 10.1002/cbdv.202100899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022]
Abstract
Two new prenylated glycine derivatives (2-(4-((3-methylbut-2-en-1-yl)oxy)phenyl)acetyl)glycine (1) and methyl (2-(4-((3-methylbut-2-en-1yl)oxy)phenyl)acetyl)glycinate (2), along with nine known compounds (3-11) were purified from the marine-derived fungus Fusarium sp. TW56-10. Their chemical structures were determined by spectroscopic evidence, including extensive nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectroscopy (HRESIMS) data, infrared radiation (IR) and Ultraviolet spectra (UV). Compound 4 (8-O-methyl-fusarubin) exhibited cytotoxic activity with IC50 value of 11.45 μM for A549 cells.
Collapse
Affiliation(s)
- Xuexia Chen
- Zhejiang University, Ocean College, Yuhangtang Road, No.688, 310058, Hangzhou, CHINA
| | - Jihua Wei
- Zhejiang University, Ocean College, Yuhangtang Road, No.688, 310058, Hangzhou, CHINA
| | - Jinshan Tang
- Jinan University, College of Pharmacy, Shougouling Road, 337, 510632, Guangzhou, CHINA
| | - Bin Wu
- Zhejiang University, Ocean College, Yuhangtang Road, No.866, 310058, Hangzhou, CHINA
| |
Collapse
|
20
|
Deep learning strategies for active secondary metabolites biosynthesis from fungi: Harnessing artificial manipulation and application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|