1
|
Harbour K, Eid F, Serafin E, Hayes M, Baccei ML. Early life stress modulates neonatal somatosensation and the transcriptional profile of immature sensory neurons. Pain 2025; 166:888-901. [PMID: 40106369 PMCID: PMC11926333 DOI: 10.1097/j.pain.0000000000003416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 12/13/2024]
Abstract
ABSTRACT Early life stress (ELS) is associated with an increased risk of experiencing chronic pain during adulthood, but surprisingly little is known about the short-term influence of ELS on nociceptive processing in the immature nervous system and the concomitant effects on somatosensation in the neonate. Here, we investigate how ELS modulates pain in neonatal mice and the transcriptional and electrophysiological signatures of immature dorsal root ganglia (DRG). Shortly after the administration of a neonatal limiting bedding (NLB) paradigm from postnatal days (P)2 to P9, both male and female pups exhibited robust hypersensitivity in response to tactile, pressure, and noxious cold stimuli compared with a control group housed under standard conditions, with no change in their sensitivity to noxious heat. Bulk RNA-seq analysis of L3-L5 DRGs at P9 revealed significant alterations in the transcription of pain- and itch-related genes following ELS, highlighted by a marked downregulation in Sst , Nppb , Chrna6 , Trpa1 , and Il31ra . Nonetheless, ex vivo whole-cell patch-clamp recordings from putative A- and C-fiber sensory neurons in the neonatal DRG found no significant changes in their intrinsic membrane excitability following NLB. Overall, these findings suggest that ELS triggers hyperalgesia in neonates across multiple pain modalities that is accompanied by transcriptional plasticity within developing sensory neurons. A better understanding of the mechanisms governing the interactions between chronic stress and pain during the neonatal period could inform the future development of novel interventional strategies to relieve pain in infants and children who have experienced trauma.
Collapse
Affiliation(s)
- Kyle Harbour
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Fady Eid
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elizabeth Serafin
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Madailein Hayes
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Mark L Baccei
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| |
Collapse
|
2
|
Liang YF, Chen XQ, Zhang MT, Tang HY, Shen GM. Research Progress of Central and Peripheral Corticotropin-Releasing Hormone in Irritable Bowel Syndrome with Comorbid Dysthymic Disorders. Gut Liver 2024; 18:391-403. [PMID: 37551453 PMCID: PMC11096901 DOI: 10.5009/gnl220346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 08/09/2023] Open
Abstract
Irritable bowel syndrome (IBS) is considered a stress disorder characterized by psychological and gastrointestinal dysfunction. IBS patients not only suffer from intestinal symptoms such as abdominal pain, diarrhea, or constipation but also, experience dysthymic disorders such as anxiety and depression. Studies have found that corticotropin-releasing hormone plays a key role in IBS with comorbid dysthymic disorders. Next, we will summarize the effects of corticotropin-releasing hormone from the central nervous system and periphery on IBS with comorbid dysthymic disorders and relevant treatments based on published literatures in recent years.
Collapse
Affiliation(s)
- Yi Feng Liang
- College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Qi Chen
- College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Meng Ting Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - He Yong Tang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guo Ming Shen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Armstrong M, Castellanos J, Christie D. Chronic pain as an emergent property of a complex system and the potential roles of psychedelic therapies. FRONTIERS IN PAIN RESEARCH 2024; 5:1346053. [PMID: 38706873 PMCID: PMC11066302 DOI: 10.3389/fpain.2024.1346053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Despite research advances and urgent calls by national and global health organizations, clinical outcomes for millions of people suffering with chronic pain remain poor. We suggest bringing the lens of complexity science to this problem, conceptualizing chronic pain as an emergent property of a complex biopsychosocial system. We frame pain-related physiology, neuroscience, developmental psychology, learning, and epigenetics as components and mini-systems that interact together and with changing socioenvironmental conditions, as an overarching complex system that gives rise to the emergent phenomenon of chronic pain. We postulate that the behavior of complex systems may help to explain persistence of chronic pain despite current treatments. From this perspective, chronic pain may benefit from therapies that can be both disruptive and adaptive at higher orders within the complex system. We explore psychedelic-assisted therapies and how these may overlap with and complement mindfulness-based approaches to this end. Both mindfulness and psychedelic therapies have been shown to have transdiagnostic value, due in part to disruptive effects on rigid cognitive, emotional, and behavioral patterns as well their ability to promote neuroplasticity. Psychedelic therapies may hold unique promise for the management of chronic pain.
Collapse
Affiliation(s)
- Maya Armstrong
- Department of Family & Community Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Joel Castellanos
- Division of Pain Medicine, Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Devon Christie
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Chang X, Zhang H, Chen S. Neural circuits regulating visceral pain. Commun Biol 2024; 7:457. [PMID: 38615103 PMCID: PMC11016080 DOI: 10.1038/s42003-024-06148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
Visceral hypersensitivity, a common clinical manifestation of irritable bowel syndrome, may contribute to the development of chronic visceral pain, which is a major challenge for both patients and health providers. Neural circuits in the brain encode, store, and transfer pain information across brain regions. In this review, we focus on the anterior cingulate cortex and paraventricular nucleus of the hypothalamus to highlight the progress in identifying the neural circuits involved in visceral pain. We also discuss several neural circuit mechanisms and emphasize the importance of cross-species, multiangle approaches and the identification of specific neurons in determining the neural circuits that control visceral pain.
Collapse
Affiliation(s)
- Xiaoli Chang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Haiyan Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shaozong Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Li YC, Zhang FC, Xu TW, Weng RX, Zhang HH, Chen QQ, Hu S, Gao R, Li R, Xu GY. Advances in the pathological mechanisms and clinical treatments of chronic visceral pain. Mol Pain 2024; 20:17448069241305942. [PMID: 39673493 PMCID: PMC11645724 DOI: 10.1177/17448069241305942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024] Open
Abstract
Chronic visceral pain stems from internal organs and is frequently associated with functional gastrointestinal disorders, like irritable bowel syndrome (IBS). Since the underlying mechanisms of visceral pain remain largely unclear, clinical management is often limited and ineffective. Comprehensive research into the pathogenesis of visceral pain, along with the development of personalized therapeutic strategies, is crucial for advancing treatment options. Studies suggest that imbalances in purinergic receptors and neural circuit function are closely linked to the onset of visceral pain. In this review, we will explore the etiology and pathological mechanisms underlying visceral pain, with a focus on ion channels, epigenetic factors, and neural circuits, using functional gastrointestinal disorders as case studies. Finally, we will summarize and evaluate emerging treatments and potential initiatives aimed at managing visceral pain.
Collapse
Affiliation(s)
- Yong-Chang Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Chao Zhang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Timothy W Xu
- Department of Earth Sciences, University College London, London, UK
| | - Rui-Xia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian-Qian Chen
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Shufen Hu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Rong Gao
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Yuan Y, Wang X, Huang S, Wang H, Shen G. Low-level inflammation, immunity, and brain-gut axis in IBS: unraveling the complex relationships. Gut Microbes 2023; 15:2263209. [PMID: 37786296 PMCID: PMC10549202 DOI: 10.1080/19490976.2023.2263209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder, and it has been shown that the etiology of irritable bowel syndrome is a multifactorial complex of neurological, inflammatory, and immunological changes. There is growing evidence of low-grade chronic inflammation in irritable bowel patients. The peripheral action response of their intestinal immune factors is integrated into the central nervous system, while the microbiota interacts with the brain-gut axis contributing to the development of low-grade chronic inflammation. The objective of this review is to present a discussion about the impact of immune-brain-gut axis-inflammation interactions on irritable bowel syndrome, its clinical relevance in the course of irritable bowel syndrome disease, and possible therapeutic modalities.
Collapse
Affiliation(s)
- Yi Yuan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiyang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shun Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guoming Shen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Huang ST, Wu K, Guo MM, Shao S, Hua R, Zhang YM. Glutamatergic and GABAergic anteroventral BNST projections to PVN CRH neurons regulate maternal separation-induced visceral pain. Neuropsychopharmacology 2023; 48:1778-1788. [PMID: 37516802 PMCID: PMC10579407 DOI: 10.1038/s41386-023-01678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Early-life stress (ELS) is thought to cause the development of visceral pain disorders. While some individuals are vulnerable to visceral pain, others are resilient, but the intrinsic circuit and molecular mechanisms involved remain largely unclear. Herein, we demonstrate that inbred mice subjected to maternal separation (MS) could be separated into susceptible and resilient subpopulations by visceral hypersensitivity evaluation. Through a combination of chemogenetics, optogenetics, fiber photometry, molecular and electrophysiological approaches, we discovered that susceptible mice presented activation of glutamatergic projections or inhibition of GABAergic projections from the anteroventral bed nucleus of the stria terminalis (avBNST) to paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) neurons. However, resilience develops as a behavioral adaptation partially due to restoration of PVN SK2 channel expression and function. Our findings suggest that PVN CRH neurons are dually regulated by functionally opposing avBNST neurons and that this circuit may be the basis for neurobiological vulnerability to visceral pain.
Collapse
Affiliation(s)
- Si-Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Miao-Miao Guo
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Rong Hua
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Emergency Department, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221116, Jiangsu, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
8
|
Dou Z, Su N, Zhou Z, Mi A, Xu L, Zhou J, Sun S, Liu Y, Hao M, Li Z. Modulation of visceral pain by brain nuclei and brain circuits and the role of acupuncture: a narrative review. Front Neurosci 2023; 17:1243232. [PMID: 38027491 PMCID: PMC10646320 DOI: 10.3389/fnins.2023.1243232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Visceral pain is a complex and heterogeneous pain condition that is often associated with pain-related negative emotional states, including anxiety and depression, and can exert serious effects on a patient's physical and mental health. According to modeling stimulation protocols, the current animal models of visceral pain mainly include the mechanical dilatation model, the ischemic model, and the inflammatory model. Acupuncture can exert analgesic effects by integrating and interacting input signals from acupuncture points and the sites of pain in the central nervous system. The brain nuclei involved in regulating visceral pain mainly include the nucleus of the solitary tract, parabrachial nucleus (PBN), locus coeruleus (LC), rostral ventromedial medulla (RVM), anterior cingulate cortex (ACC), paraventricular nucleus (PVN), and the amygdala. The neural circuits involved are PBN-amygdala, LC-RVM, amygdala-insula, ACC-amygdala, claustrum-ACC, bed nucleus of the stria terminalis-PVN and the PVN-ventral lateral septum circuit. Signals generated by acupuncture can modulate the central structures and interconnected neural circuits of multiple brain regions, including the medulla oblongata, cerebral cortex, thalamus, and hypothalamus. This analgesic process also involves the participation of various neurotransmitters and/or receptors, such as 5-hydroxytryptamine, glutamate, and enkephalin. In addition, acupuncture can regulate visceral pain by influencing functional connections between different brain regions and regulating glucose metabolism. However, there are still some limitations in the research efforts focusing on the specific brain mechanisms associated with the effects of acupuncture on the alleviation of visceral pain. Further animal experiments and clinical studies are now needed to improve our understanding of this area.
Collapse
Affiliation(s)
- Zhiqiang Dou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Na Su
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Ziyang Zhou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Aoyue Mi
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Luyao Xu
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Jiazheng Zhou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Sizhe Sun
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yanyi Liu
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Mingyao Hao
- External Treatment Center of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
- International Office, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| |
Collapse
|
9
|
Chen JY, Wu K, Guo MM, Song W, Huang ST, Zhang YM. The PrL Glu→avBNST GABA circuit rapidly modulates depression-like behaviors in male mice. iScience 2023; 26:107878. [PMID: 37810240 PMCID: PMC10551841 DOI: 10.1016/j.isci.2023.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Depression is a global disease with a high prevalence. Here, we examine the role of the circuit from prelimbic mPFC (PrL) to the anterior ventral bed nucleus of the stria terminalis (avBNST) in depression-like mice through behavioral tests, immunofluorescence, chemogenetics, optogenetics, pharmacology, and fiber photometry. Mice exposed to chronic restraint stress with individual housing displayed depression-like behaviors. Optogenetic or chemogenetic activation of the avBNST-projecting glutamatergic neurons in the PrL had an antidepressant effect. Moreover, we found that α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptors (AMPARs) play a dominant role in this circuit. Systemic administration of ketamine profoundly alleviated depression-like behaviors in the mice and rapidly rescued the decreased activity in the PrLGlu→avBNSTGABA circuit. Furthermore, the fast-acting effect of ketamine on depressive behaviors was diminished when the circuit was inhibited. To summarize, activating the PrLGlu→avBNSTGABA circuit quickly ameliorated depression-like behaviors. Thus, we propose the PrLGlu→avBNSTGABA circuit as a target for fast regulation of depression.
Collapse
Affiliation(s)
- Jie-ying Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Ke Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Miao-miao Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Wei Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Si-ting Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Yong-mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
10
|
Tao E, Wu Y, Hu C, Zhu Z, Ye D, Long G, Chen B, Guo R, Shu X, Zheng W, Zhang T, Jia X, Du X, Fang M, Jiang M. Early life stress induces irritable bowel syndrome from childhood to adulthood in mice. Front Microbiol 2023; 14:1255525. [PMID: 37849921 PMCID: PMC10577190 DOI: 10.3389/fmicb.2023.1255525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Background Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorder. Traditionally, early life stress (ELS) is predisposed to IBS in adult. However, whether ELS induces IBS in early life remains unclear. Methods Separated cohort studies were conducted in neonatal male pups of C57BL/6 mice by maternal separation (MS) model. MS and non-separation mice were scheduled to be evaluated for prime IBS-phenotypes, including visceral hypersensitivity, intestinal motility, intestinal permeability, and anxiety-like behavior. Ileal contents and fecal samples were collected and analyzed by 16S rRNA gene sequencing and bacterial community analyses. Subcellular structures of intestinal epithelial, such as epithelial tight junctions and mitochondria, were observed under transmission electron microscopy. Results MS induced visceral hypersensitivity and decreased total intestinal transit time from childhood to adulthood. In addition, MS induced intestinal hyperpermeability and anxiety-like behavior from adolescence to adulthood. Besides, MS affected intestinal microbial composition from childhood to adulthood. Moreover, MS disrupted intestinal mitochondrial structure from childhood to adulthood. Conclusion The study showed for the first time that MS induced IBS from early life to adulthood in mice. The disrupted intestinal mitochondrial structure and the significant dysbiosis of intestinal microbiota in early life may contribute to the initiation and progress of IBS from early life to adulthood.
Collapse
Affiliation(s)
- Enfu Tao
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Neonatology and NICU, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Yuhao Wu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Zhenya Zhu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Diya Ye
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Gao Long
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Wei Zheng
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Ting Zhang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xinyi Jia
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xiao Du
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
11
|
Tanaka K, Kuzumaki N, Hamada Y, Suda Y, Mori T, Nagumo Y, Narita M. Elucidation of the mechanisms of exercise-induced hypoalgesia and pain prolongation due to physical stress and the restriction of movement. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100133. [PMID: 37274841 PMCID: PMC10239008 DOI: 10.1016/j.ynpai.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023]
Abstract
Persistent pain signals cause brain dysfunction and can further prolong pain. In addition, the physical restriction of movement (e.g., by a cast) can cause stress and prolong pain. Recently, it has been recognized that exercise therapy including rehabilitation is effective for alleviating chronic pain. On the other hand, physical stress and the restriction of movement can prolong pain. In this review, we discuss the neural circuits involved in the control of pain prolongation and the mechanisms of exercise-induced hypoalgesia (EIH). We also discuss the importance of the mesolimbic dopaminergic network in these phenomena.
Collapse
Affiliation(s)
- Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yasuyuki Nagumo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
12
|
Liu HM, Liao ML, Liu GX, Wang LJ, Lian D, Ren J, Chi XT, Lv ZR, Liu M, Wu Y, Xu T, Wei JY, Feng X, Jiang B, Zhang XQ, Xin WJ. IPAC integrates rewarding and environmental memory during the acquisition of morphine CPP. SCIENCE ADVANCES 2023; 9:eadg5849. [PMID: 37352353 PMCID: PMC10289658 DOI: 10.1126/sciadv.adg5849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
The association between rewarding and drug-related memory is a leading factor for the formation of addiction, yet the neural circuits underlying the association remain unclear. Here, we showed that the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) integrated rewarding and environmental memory information by two different receiving projections from ventral tegmental area (VTA) and nucleus accumbens shell region (NAcSh) to mediate the acquisition of morphine conditioned place preference (CPP). A projection from the VTA GABAergic neurons (VTAGABA) to the IPAC lateral region GABAergic neurons (IPACLGABA) mediated the effect of morphine rewarding, whereas the pathway from NAcSh dopamine receptor 1-expressing neurons (NAcShD1) to the IPAC medial region GABAergic neurons (IPACMGABA) was involved in the acquisition of environmental memory. These findings demonstrated that the distinct IPAC circuits VTAGABA→IPACLGABA and NAcShD1R→IPACMGABA were attributable to the rewarding and environmental memory during the acquisition of morphine CPP, respectively, and provided the circuit-based potential targets for preventing and treating opioid addiction.
Collapse
Affiliation(s)
- Huan-Min Liu
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Ming-Lu Liao
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Guan-Xi Liu
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Lai-Jian Wang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Dian Lian
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Jie Ren
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Xin-Tian Chi
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Zhuo-Ran Lv
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Meng Liu
- Department of Anesthesia and Pain Medicine, Guangzhou First People’s Hospital, Guangzhou 510000, China
| | - Yan Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jia-You Wei
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Xue-Qin Zhang
- The Institute of Mental Psychology, School of Health Management, The Affiliated Brain Hospital (Guangzhou Huiai Hospital), Guangzhou Medical University, Guangzhou 510370, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
13
|
Xu QY, Zhang HL, Du H, Li YC, Ji FH, Li R, Xu GY. Identification of a Glutamatergic Claustrum-Anterior Cingulate Cortex Circuit for Visceral Pain Processing. J Neurosci 2022; 42:8154-8168. [PMID: 36100399 PMCID: PMC9637003 DOI: 10.1523/jneurosci.0779-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic visceral pain is a major challenge for both patients and health providers. Although the central sensitization of the brain is thought to play an important role in the development of visceral pain, the detailed neural circuits remain largely unknown. Using a well-established chronic visceral hypersensitivity model induced by neonatal maternal deprivation (NMD) in male mice, we identified a distinct pathway whereby the claustrum (CL) glutamatergic neuron projecting to the anterior cingulate cortex (ACC) is critical for visceral pain but not for CFA-evoked inflammatory pain. By a combination of in vivo circuit-dissecting extracellular electrophysiological approaches and visceral pain related electromyographic (EMG) recordings, we demonstrated that optogenetic inhibition of CL glutamatergic activity suppressed the ACC neural activity and visceral hypersensitivity of NMD mice whereas selective activation of CL glutamatergic activity enhanced the ACC neural activity and evoked visceral pain of control mice. Further, optogenetic studies demonstrate a causal link between such neuronal activity and visceral pain behaviors. Chemogenetic activation or inhibition of ACC neural activities reversed the effects of optogenetic manipulation of CL neural activities on visceral pain responses. Importantly, molecular detection showed that NMD significantly enhances the expression of NMDA receptors and activated CaMKIIα in the ACC postsynaptic density (PSD) region. Together, our data establish a functional role for CL→ACC glutamatergic neurons in gating visceral pain, thus providing a potential treatment strategy for visceral pain.SIGNIFICANCE STATEMENT Studies have shown that sensitization of anterior cingulate cortex (ACC) plays an important role in chronic pain. However, it is as yet unknown whether there is a specific brain region and a distinct neural circuit that helps the ACC to distinguish visceral and somatic pain. The present study demonstrates that claustrum (CL) glutamatergic neurons maybe responding to colorectal distention (CRD) rather than somatic stimulation and that a CL glutamatergic projection to ACC glutamatergic neuron regulates visceral pain in mice. Furthermore, excessive NMDA receptors and overactive CaMKIIα in the ACC postsynaptic density (PSD) region were observed in mice with chronic visceral pain. Together, these findings reveal a novel neural circuity underlying the central sensitization of chronic visceral pain.
Collapse
Affiliation(s)
- Qi-Ya Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Hai-Long Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Han Du
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| | - Fu-Hai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
14
|
Ji NN, Jiang H, Xia M. Sex-dependent effects of postweaning exposure to an enriched environment on visceral pain and anxiety- and depression-like behaviors induced by neonatal maternal separation. Transl Pediatr 2022; 11:1570-1576. [PMID: 36247886 PMCID: PMC9561520 DOI: 10.21037/tp-22-476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Neonatal maternal separation (NMS) can lead to visceral pain and anxiety- and depression-like behaviors. An enriched environment (EE) can alleviate NMS-induced pain and mental disorders, but previous studies have mostly been performed in male animals. Therefore, the aim of this study was to investigate whether the effects of EE were sex dependent at different stages of development. METHODS Female and Male C57BL/6 J mice that had been subjected to NMS alone and those subjected to both NMS and exposed to EE were used in this study. The visceral pain threshold test (PTT), open field test (OFT), sucrose preference test (SPT), and forced swimming test (FST) were conducted to evaluate visceral pain, anxiety-like behavior, and depression-like behavior in mice, respectively. RESULTS Compared with the male mice in the NMS group without EE exposure, those exposed to EE from postnatal day (P)21 to 41 showed an increase of the visceral pain threshold in the PTT, an increase of the central time and central distance in the OFT, an increase of the sucrose preference rate in the SPT, and a decrease of the time of immobility in the FST. Compared with both female and male mice in the NMS group without EE exposure, those exposed to EE from P21 to P61 had an increase of the visceral pain threshold in the PTT, an increase of the central time and central distance in the OFT, an increase in the sucrose preference rate in the SPT, and a decrease of the time of immobility in the FST. CONCLUSIONS EE is more effective in male NMS mice, while longer EE is required in female NMS mice for positive effects.
Collapse
Affiliation(s)
- Ning-Ning Ji
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Xia
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Ji NN, Jiang H, Xia M. The influence of the enriched environment in different periods on neonatal maternal separation-induced visceral pain, anxiousness, and depressive behaviors. Transl Pediatr 2022; 11:1562-1569. [PMID: 36247898 PMCID: PMC9561516 DOI: 10.21037/tp-22-475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neonatal maternal separation (NMS) is a major early life stress that can induce visceral pain and mental disorders. We have shown that an enriched environment (EE) can alleviate NMS-induced negative effects, but the time window over which EE works is unclear. Therefore, this study aimed to investigate the time window through which EE alleviates NMS-induced visceral pain, anxiousness, and depressive behaviors. METHODS In this study, we used male C57BL/6J mice. The mice were randomly divided into five groups: control group, NMS group, prepubertal EE group (EE1 group), pubertal EE group (EE2 group), and adult EE group (EE3 group). The visceral pain threshold test (PTT), open field test (OFT), elevated plus maze (EPM), forced swimming test (FST), and sucrose preference test (SPT) were performed in all five groups to assay visceral pain, anxiety-, and depression-like behaviors in mice, respectively. Enzyme-linked immunosorbent assay (ELISA) for corticosterone was performed in all five groups to assess the function of the hypothalamic-pituitary-adrenal (HPA) axis. RESULTS There was no significant change in weight between groups. It was shown that NMS induced visceral pain, anxiety, and depression, and EE1 and EE2 reversed these negative effects, but EE3 had no significant effect. Likewise, EE1 and EE2 reversed the NMS-induced increase of corticosterone, but EE3 did not. CONCLUSIONS Adverse life experiences in early life can lead to visceral pain, anxiety, and depression in adulthood, which can be effectively prevented by EE interventions in prepuberty and puberty.
Collapse
Affiliation(s)
- Ning-Ning Ji
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Xia
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Ji NN, Xia M. Enriched environment alleviates adolescent visceral pain, anxiety- and depression-like behaviors induced by neonatal maternal separation. Transl Pediatr 2022; 11:1398-1407. [PMID: 36072545 PMCID: PMC9442205 DOI: 10.21037/tp-22-410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neonatal maternal separation (NMS), a major kind of early life stress, increases the risk of visceral pain, anxiety- and depression-like behaviors in adulthood. An enriched environment (EE) has been shown to successfully rescue the brain from various early life psychological stressors. Therefore, this study aimed to investigate whether NMS induces visceral pain, anxiety- and depression-like behaviors in adolescents and to evaluate the impact of EE in infancy on these symptoms. METHODS Male C57BL/6 J mice that had been subjected to NMS were used in this study. The visceral pain threshold test (PTT), open field test (OFT), and sucrose preference test (SPT) were conducted to evaluate visceral pain, anxiety- and depression-like behaviors in mice, respectively. An enzyme linked immunosorbent assay (ELISA) for tumor necrosis factor-α (TNF-α), interleukin-1β, (IL-1β), and interleukin-10 (IL-10) was performed to assess neuroinflammatory responses. Then, the effects of EE (free-turning running wheels, pipes, stairs, and various colored ocean balls, etc.) on NMS-induced behaviors and neuroinflammatory factors were examined. RESULTS The impacts of NMS included adolescent visceral pain, anxiety- and depression-like behaviors. The medial prefrontal cortex (mPFC), basolateral amygdala (BLA), and paraventricular nucleus (PVN) were biased towards pro-inflammatory features. Further, EE alleviated adolescent visceral pain, anxiety- and depression-like behaviors. The application of EE up-regulated the expression of IL-10, and down-regulated the expression of IL-1β and TNF-α in mPFC, BLA, and PVN. CONCLUSIONS The effects of NMS include adolescent visceral pain, anxiety- and depression-like behaviors, accompanied by an imbalance of neuroinflammation. Intervention with EE in pediatric mice relieved these symptoms by reducing neuroinflammation in the central nervous system.
Collapse
Affiliation(s)
- Ning-Ning Ji
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ming Xia
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Gao Y, Rodríguez LV. The Effect of Chronic Psychological Stress on Lower Urinary Tract Function: An Animal Model Perspective. Front Physiol 2022; 13:818993. [PMID: 35388285 PMCID: PMC8978557 DOI: 10.3389/fphys.2022.818993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic psychological stress can affect urinary function and exacerbate lower urinary tract (LUT) dysfunction (LUTD), particularly in patients with overactive bladder (OAB) or interstitial cystitis–bladder pain syndrome (IC/BPS). An increasing amount of evidence has highlighted the close relationship between chronic stress and LUTD, while the exact mechanisms underlying it remain unknown. The application of stress-related animal models has provided powerful tools to explore the effect of chronic stress on LUT function. We systematically reviewed recent findings and identified stress-related animal models. Among them, the most widely used was water avoidance stress (WAS), followed by social stress, early life stress (ELS), repeated variable stress (RVS), chronic variable stress (CVS), intermittent restraint stress (IRS), and others. Different types of chronic stress condition the induction of relatively distinguished changes at multiple levels of the micturition pathway. The voiding phenotypes, underlying mechanisms, and possible treatments of stress-induced LUTD were discussed together. The advantages and disadvantages of each stress-related animal model were also summarized to determine the better choice. Through the present review, we hope to expand the current knowledge of the pathophysiological basis of stress-induced LUTD and inspire robust therapies with better outcomes.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Larissa V. Rodríguez
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Larissa V. Rodríguez,
| |
Collapse
|
18
|
Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol Ther 2022; 30:990-1005. [PMID: 34861415 PMCID: PMC8899595 DOI: 10.1016/j.ymthe.2021.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.
Collapse
|
19
|
Tao E, Long G, Yang T, Chen B, Guo R, Ye D, Fang M, Jiang M. Maternal Separation Induced Visceral Hypersensitivity Evaluated via Novel and Small Size Distention Balloon in Post-weaning Mice. Front Neurosci 2022; 15:803957. [PMID: 35153662 PMCID: PMC8831756 DOI: 10.3389/fnins.2021.803957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Early life stress (ELS) disposes to functional gastrointestinal diseases in adult, such as irritable bowel syndrome (IBS). Maternal separation (MS) is a well-known animal model of IBS and has been shown to induce visceral hypersensitivity in adult rats and mice. However, to the best of our knowledge, it has not been reported whether MS induces visceral hypersensitivity in young mice, such as the post-weaning mice. Moreover, the method for evaluation of visceral sensitivity also has not been described. Accordingly, the present study aims to evaluate the visceral sensitivity caused by MS in post-weaning mice and develop a novel and small size distention balloon for assessment of visceral sensitivity of such mice. Male pups of C57BL/6 mice were randomly divided into two groups, MS (n = 12) and non-separation (NS) (n = 10). MS pups were separated from the dams through postnatal days (PND) 2 to 14, while NS pups were undisturbed. After, all pups stayed with respective dams and were weaned at PND 22. Visceral sensitivity was evaluated by colorectal distention (CRD) with a novel and small size distention balloon at PND 25. The threshold of abdominal withdrawal reflex (AWR) scores were significantly lower in MS than NS. In addition, AWR scores at different pressures of CRD were significantly higher in MS than NS. The results demonstrate that MS induced visceral hypersensitivity in post-weaning mice. The designed small size distention balloon for evaluation of visceral sensitivity is of significance to further study the pathophysiology of IBS from early life to adulthood.
Collapse
Affiliation(s)
- Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Gao Long
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Ting Yang
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Diya Ye
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- *Correspondence: Mizu Jiang,
| |
Collapse
|