1
|
Li C, Deng Y, Pan Y, Liao X, Xie H, Xue X, Yu S, Yu W, Yu G. Metformin dampens the progression of cholangiofibrosis induced by thioacetamide using deep learning. Heliyon 2024; 10:e37347. [PMID: 39309781 PMCID: PMC11416239 DOI: 10.1016/j.heliyon.2024.e37347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose The consistent use of metformin has been linked to a reduced incidence of neoplastic diseases among diabetic populations. As a preventive intervention, metformin may offer a more favorable risk-benefit profile. Here, we explored the efficacy of metformin in the primary prevention of cholangiofibrosis, which can precede the carcinogen-induced development of cholangiocarcinoma (CCA). Our objective was to assess the potential of metformin to act as an intervention prior to the onset of these conditions. Methods A rat model of thioacetamide (TAA)-induced cholangiofibrosis was utilized to assess the impact of metformin on the induction process of cholangiocarcinoma (CCA). Liver tissues were harvested and analyzed histologically using light microscopy, complemented by a deep-learning convolutional neural network for enhanced evaluation. Additionally, RNA sequencing (RNA-seq) was performed to investigate the genetic alterations associated with metformin treatment in this TAA-induced cholangiofibrosis model. Results In the rat model, the TAA control group exhibited an increased incidence and average count of cholangiofibrosis cases in the liver, with rates of 100 % and an average of 12.0, compared to the metformin-treated group, which showed an incidence of 70 % and an average of 3.3. Notably, the progression from normal cholangioles to cholangiofibrosis was associated with the upregulation of several proteins critical for metabolic processes and the tumor microenvironment. These alterations were significantly mitigated by metformin treatment. Conclusions Long-term metformin use may offer protective benefits against cholangiofibrosis, partially by regulating metabolic processes and improving the tumor microenvironment.
Collapse
Affiliation(s)
- Chaofu Li
- Department of Oncology, Liuzhou Worker's Hospital, Guangxi, 545005, China
| | - Yating Deng
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yating Pan
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xinyi Liao
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Huadong Xie
- Department of Surgery, Liuzhou Worker's Hospital, Guangxi, 545005, China
| | - Xiaoli Xue
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shaoqing Yu
- Allergy and Cancer Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wenlong Yu
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guanzhen Yu
- Allergy and Cancer Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Medical Artificial Intelligence Laboratory, Zhejiang Institute of Digital Media, Chinese Academy of Science, Shaoxing, 312366, China
| |
Collapse
|
2
|
Lu KC, Shen MC, Wang RL, Chen WW, Chiu SH, Kao YH, Liu FC, Hsiao PJ. Using oral molecular hydrogen supplements to combat microinflammation in humans: a pilot observational study. Int J Med Sci 2024; 21:2390-2401. [PMID: 39310256 PMCID: PMC11413900 DOI: 10.7150/ijms.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Persistent inflammation over time can cause gradual harm to the body. Molecular hydrogen has the potential to specifically counteract reactive oxygen species (ROS), reduce disease severity, and enhance overall health. Investigations of the anti-inflammatory and antioxidant properties of oral solid hydrogen capsules (OSHCs) are currently limited, prompting our examination of the beneficial effects of OSHCs. Subsequently, we conducted a clinical study to assess the impact of OSHCs supplementation on individuals with chronic inflammation. Materials and methods: Initially, we evaluated the oxidative reduction potential (ORP) properties of the OSHCs solution by comparing it to hydrogen-rich water (HRW) and calcium hydride (CaH2) treated water. In our outpatient department, stable patients with chronic illnesses who were treated with varying doses of OSHCs were randomized into low-, medium-, and high-dose groups for 4 weeks. Primary outcomes included changes in the serum erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) concentrations after four weeks of OSHCs consumption. Secondary outcomes included changes in the Brief Fatigue Inventory-Taiwan (BFI-T) fatigue scale, Control Status Scale for Diabetes (CSSD70) scores, and Disease Activity Score 28 (DAS28). Results: Compared to HRW and CaH2, OSHCs demonstrated a prolonged reduction in ORP for 60 minutes in vitro and enabled a regulated release of hydrogen over 24 hours. A total of 30 participants, with 10 in each dosage (low/medium/high) group, completed the study. The average ESR120 significantly decreased from the first week to the fourth week, with a noticeable dose effect (low-dose group, p = 0.494; high-dose group, p = 0.016). Overall, the average CRP concentration showed a distinct decreasing trend after four weeks of OSHCs administration (w0 vs. w4, p = 0.077). The average DAS28 score demonstrated a significant decrease following OSHCs treatment. Furthermore, there were improvements in the BFI-T and CSSD70 scores. Conclusion: OSHCs supplementation may exert anti-inflammatory and antioxidant effects on individuals with chronic inflammation. However, further clinical studies could be investigated to explore the potential therapeutic effects of OSHCs.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Min-Chung Shen
- Rheumatology/Immunology and Allergy, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
| | - Reui-Lin Wang
- Division of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
| | - Wen-Wen Chen
- Nursing Department, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Szu-Han Chiu
- Division of Endocrinology and Metabolism, Department of Medicine, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
| | - Yung-His Kao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Feng-Cheng Liu
- Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| |
Collapse
|
3
|
Jiang Z, Ainiwaer M, Liu J, Ying B, Luo F, Sun X. Hydrogen therapy: recent advances and emerging materials. Biomater Sci 2024; 12:4136-4154. [PMID: 39021349 DOI: 10.1039/d4bm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen therapy, leveraging its selective attenuation of hydroxyl radicals (˙OH) and ONOO-, has emerged as a pivotal pathophysiological modulator with antioxidant, anti-inflammatory, and antiapoptotic attributes. Hydrogen therapy has been extensively studied both preclinically and clinically, especially in diseases with an inflammatory nature. Despite the substantial progress, challenges persist in achieving high hydrogen concentrations in target lesions, especially in cancer treatment. A notable breakthrough lies in water/acid reactive materials, offering enhanced hydrogen generation and sustained release potential. However, limitations include hydrogen termination upon material depletion and reduced bioavailability at targeted lesions. To overcome these challenges, catalytic materials like photocatalytic and sonocatalytic materials have surfaced as promising solutions. With enhanced permeability and retention effects, these materials exhibit targeted delivery and sustained stimuli-reactive hydrogen release. The future of hydrogen therapy hinges on continuous exploration and modification of catalytic materials. Researchers are urged to prioritize improved catalytic efficiency, enhanced lesion targeting effects, and heightened biosafety and biocompatibility in future development.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Mailudan Ainiwaer
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jun Liu
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
4
|
Zargar S, Wani TA, Alamery S, Yaseen F. Olmutinib Reverses Thioacetamide-Induced Cell Cycle Gene Alterations in Mice Liver and Kidney Tissues, While Wheat Germ Treatment Exhibits Limited Efficacy at Gene Level. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:639. [PMID: 38674285 PMCID: PMC11052166 DOI: 10.3390/medicina60040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: TAA is potent hepatic/renal toxicant. Conversely, WGO is a potent dietary supplement with impressive antioxidant properties. Olmutinib is an apoptotic chemotherapy drug that does not harm the liver or kidney. This study investigated the impact of olmutinib and wheat germ oil (WGO) on Thioacetamide (TAA)-induced gene alterations in mice liver and kidney tissues. Materials and Methods: Adult male C57BL/6 mice were exposed to 0.3% TAA in drinking water for 14 days, followed by the oral administration of olmutinib (30 mg/kg) and WGO (1400 mg/kg) for 5 consecutive days. Treatment groups included the following: groups I (control), II (TAA-exposed), III (TAA + olmutinib), IV (TAA + WGO), and V (TAA + olmutinib + WGO). Results: The findings revealed that TAA exposure increased MKi67 and CDKN3 gene expression in liver and kidney tissues. Olmutinib treatment effectively reversed these TAA-induced effects, significantly restoring MKi67 and CDKN3 gene expression. WGO also reversed MKi67 effects in the liver but exhibited limited efficacy in reversing CDKN3 gene alterations induced by TAA exposures in both the liver and kidney. TAA exposure showed the tissue-specific expression of TP53, with decreased expression in the liver and increased expression in the kidney. Olmutinib effectively reversed these tissue-specific alterations in TP53 expression. While WGO treatment alone could not reverse the gene alterations induced by TAA exposure, the co-administration of olmutinib and WGO exhibited a remarkable potentiation of therapeutic effects in both the liver and kidney. The gene interaction analysis revealed 77.4% of physical interactions and co-localization between MKi67, CDKN3, and TP53 expressions. Protein-protein interaction networks also demonstrated physical interactions between MKi67, TP53, and CDKN3, forming complexes or signaling cascades. Conclusions: It was predicted that the increased expression of the MKi67 gene by TAA leads to the increase in TP53, which negatively regulates the cell cycle via increased CDKN3 expression in kidneys and the restoration of TP53 levels in the liver. These findings contribute to our understanding of the effects of olmutinib and WGO on TAA-induced gene expression changes and highlight their contrasting effects based on cell cycle alterations.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| | - Fatimah Yaseen
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| |
Collapse
|
5
|
Wu Q, Shi X, Pan Y, Liao X, Xu J, Gu X, Yu W, Chen Y, Yu G. The Chemopreventive Role of β-Elemene in Cholangiocarcinoma by Restoring PCDH9 Expression. Front Oncol 2022; 12:874457. [PMID: 35903688 PMCID: PMC9314746 DOI: 10.3389/fonc.2022.874457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background β-Elemene, an effective anticancer component isolated from the Chinese herbal medicine Rhizoma Zedoariae, has been proved to have therapeutic potential against multiple cancers by extensive clinical trials and experimental research. However, its preventive role in cholangiocarcinoma (CCA) and the mechanisms of action of β-elemene on CCA need to be further investigated. Methods A thioacetamide (TAA)-induced pre-CCA animal model was well-established, and a low dosage of β-elemene was intragastrically (i.g.) administered for 6 months. Livers were harvested and examined histologically by a deep-learning convolutional neural network (CNN). cDNA array was used to analyze the genetic changes of CCA cells following β-elemene treatment. Immunohistochemical methods were applied to detect β-elemene-targeted protein PCDH9 in CCA specimens, and its predictive role was analyzed. β-Elemene treatment at the cellular or animal level was performed to test the effect of this traditional Chinese medicine on CCA cells. Results In the rat model of pre-CCA, the ratio of cholangiolar proliferation lesions was 0.98% ± 0.72% in the control group, significantly higher than that of the β-elemene (0. 47% ± 0.30%) groups (p = 0.0471). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the top 10 pathways affected by β-elemene treatment were associated with energy metabolism, and one was associated with the cell cycle. β-Elemene inactivated a number of oncogenes and restored the expression of multiple tumor suppressors. PCDH9 is a target of β-elemene and displays an important role in predicting tumor recurrence in CCA patients. Conclusions These findings proved that long-term use of β-elemene has the potential to interrupt the progression of CCA and improve the life quality of rats. Moreover, β-elemene exerted its anticancer potential partially by restoring the expression of PCDH9.
Collapse
Affiliation(s)
- Qing Wu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xintong Shi
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yating Pan
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Liao
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahua Xu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqiang Gu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenlong Yu
- Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ying Chen
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Ying Chen,
| | - Guanzhen Yu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Ying Chen,
| |
Collapse
|
6
|
Pan Y, Liao X, Yang L, Zhang C, Wang J, Zheng P, Yu G, Song H. Extract of Marsdenia tenacissima (Roxb.) Moon [Apocynaceae] Suppresses Hepatocellular Carcinoma by Inhibiting Angiogenesis. Front Pharmacol 2022; 13:900128. [PMID: 35847002 PMCID: PMC9279733 DOI: 10.3389/fphar.2022.900128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022] Open
Abstract
The extract of Marsdeniatenacissima (Roxb.) Moon [Apocynaceae] (MTE) has shown a significant anti-cancer effect on hepatocellular carcinoma (HCC), but its mechanism remains unclear. In this study, we used transcriptomics methods to investigate the underlying mechanism of MTE against HCC. Both MHCC97H and HepG2 cell lines were treated with MTE. The cell viability and migration were measured using the cell counting kit-8 assay and transwell assay. RNA-sequencing was used to identify differentially expressed genes (DEGs) between HepG2 cells treated with and without MTE. The expression levels of selected DEGs—vascular endothelial growth factor-A (VEGFA), platelet-derived growth factor receptor-β (PDGFRB), and von Willebrand factor (VWF)—were verified by RT-PCR and Western blot. The effect of conditioned medium from HCC cells with MTE treatment (CM-MTE) on blood vessels was observed by tube formation assay of HUVECs and chick chorioallantoic membrane (CAM) assay. A mouse model of HCC patient-derived tumor xenograft (PDX) was established and treated with MTE. The effect of MTE on the growth and angiogenesis of HCC-PDX was analyzed. The results demonstrated that MTE inhibited the viability and migration of HCC cells. RNA-seq showed that MTE treatment downregulated multiple genes associated with metabolism and angiogenesis. The expression levels of VEGFA, VWF, PDGFB, and PDGFRB in HCC cells were significantly suppressed by MTE. Meanwhile, MTE effectively inhibited the tube-forming capability of HUVECs and the angiogenesis of chick CAM. In vivo experiments revealed that the extract reduced tumor volume, inhibited the proliferation of HCC cells, and expanded the necrotic area of the tumor. Immunohistochemical results showed that the expression levels of CD31, PDGFB, VEGF, VWF, and PDGFRB in the HCC-PDX tumor tissues were all downregulated by MTE in a dose-dependent manner. Taken together, MTE could inhibit angiogenesis by repressing the expression of VEGF, VWF, PDGF, and PDGFRB in HCC cells, a mechanism that may enable MTE to counter HCC development.
Collapse
Affiliation(s)
- Yating Pan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Liao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Zhang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Haiyan Song, ; Peiyong Zheng,
| | - Guanzhen Yu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Haiyan Song, ; Peiyong Zheng,
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guanzhen Yu, ; Haiyan Song, ; Peiyong Zheng,
| |
Collapse
|