1
|
Hoseini SM, Montazeri F. Cell origin and microenvironment: The players of differentiation capacity in human mesenchymal stem cells. Tissue Cell 2025; 93:102709. [PMID: 39765135 DOI: 10.1016/j.tice.2024.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Mesenchymal stem cells (MSCs) have several important properties that make them desirable for regenerative medicine. These properties include immunomodulatory ability, growth factor production, and differentiation into various cell types. Despite extensive research and promising results in clinical trials, our understanding of MSC biology, their mechanism of action, and their targeted and routine use in clinics is limited. Differentiation of human MSCs (hMSCs) is a complex process influenced by various elements such as growth factors, pharmaceutical compounds, microRNAs, 3D scaffolds, and mechanical and electrical stimulation. Research has shown that different culture conditions can affect the differentiation potential of hMSCs obtained from multiple fetal and adult sources. Additionally, it seems that what affects the differentiation capacities of these cells is their secretory characteristics, which are influenced by the origin of the cells and the local microenvironment where the cells are located. The review can provide insights into the microenvironment-based mechanisms involved in MSC differentiation, which can be valuable for future therapeutic applications.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
2
|
Orsini EM, Roychowdhury S, Gangadhariah M, Cross E, Abraham S, Reinhardt A, Grund ME, Zhou JY, Stuehr O, Pant B, Olman MA, Vachharajani V, Scheraga RG. TRPV4 Regulates the Macrophage Metabolic Response to Limit Sepsis-induced Lung Injury. Am J Respir Cell Mol Biol 2024; 70:457-467. [PMID: 38346220 PMCID: PMC11160412 DOI: 10.1165/rcmb.2023-0456oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness-dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for LPS-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by BAL fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. It is interesting that BALF lactate is increased in patients with sepsis compared with healthy control participants, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.
Collapse
Affiliation(s)
- Erica M. Orsini
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mahesha Gangadhariah
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Emily Cross
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Susamma Abraham
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amanda Reinhardt
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Megan E. Grund
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Julie Y. Zhou
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Olivia Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bishnu Pant
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mitchell A. Olman
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Vidula Vachharajani
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rachel G. Scheraga
- Department of Pulmonary and Critical Care, Integrated Hospital Care Institute, and
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
3
|
Povo-Retana A, Sánchez-García S, Alvarez-Lucena C, Landauro-Vera R, Prieto P, Delgado C, Martín-Sanz P, Boscá L. Crosstalk between P2Y receptors and cyclooxygenase activity in inflammation and tissue repair. Purinergic Signal 2024; 20:145-155. [PMID: 37052777 PMCID: PMC10997571 DOI: 10.1007/s11302-023-09938-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
The role of extracellular nucleotides as modulators of inflammation and cell stress is well established. One of the main actions of these molecules is mediated by the activation of purinergic receptors (P2) of the plasma membrane. P2 receptors can be classified according to two different structural families: P2X ionotropic ion channel receptors, and P2Y metabotropic G protein-coupled receptors. During inflammation, damaged cells release nucleotides and purinergic signaling occurs along the temporal pattern of the synthesis of pro-inflammatory and pro-resolving mediators by myeloid and lymphoid cells. In macrophages under pro-inflammatory conditions, the expression and activity of cyclooxygenase 2 significantly increases and enhances the circulating levels of prostaglandin E2 (PGE2), which exerts its effects both through specific plasma membrane receptors (EP1-EP4) and by activation of intracellular targets. Here we review the mechanisms involved in the crosstalk between PGE2 and P2Y receptors on macrophages, which is dependent on several isoforms of protein kinase C and protein kinase D1. Due to this crosstalk, a P2Y-dependent increase in calcium is blunted by PGE2 whereas, under these conditions, macrophages exhibit reduced migratory capacity along with enhanced phagocytosis, which contributes to the modulation of the inflammatory response and tissue repair.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Patricia Prieto
- Departamento de Farmacología, Farmacognosia y Botánica. Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Farach-Carson MC, Wu D, França CM. Proteoglycans in Mechanobiology of Tissues and Organs: Normal Functions and Mechanopathology. PROTEOGLYCAN RESEARCH 2024; 2:e21. [PMID: 39584146 PMCID: PMC11584024 DOI: 10.1002/pgr2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 11/26/2024]
Abstract
Proteoglycans (PGs) are a diverse class of glycoconjugates that serve critical functions in normal mechanobiology and mechanopathology. Both the protein cores and attached glycosaminoglycan (GAG) chains function in mechanically-sensitive processes, and loss of either can contribute to development of pathological conditions. PGs function as key components of the extracellular matrix (ECM) where they can serve as mechanosensors in mechanosensitive tissues including bone, cartilage, tendon, blood vessels and soft organs. The mechanical properties of these tissues depend on the presence and function of PGs, which play important roles in tissue elasticity, osmolarity and pressure sensing, and response to physical activity. Tissue responses depend on cell surface mechanoreceptors that include integrins, CD44, voltage sensitive ion channels, transient receptor potential (TRP) and piezo channels. PGs contribute to cell and molecular interplay in wound healing, fibrosis, and cancer, where they transduce the mechanical properties of the ECM and influence the progression of various context-specific conditions and diseases. The PGs that are most important in mechanobiology vary depending on the tissue and its functions and functional needs. Perlecan, for example, is important in the mechanobiology of basement membranes, cardiac and skeletal muscle, while aggrecan plays a primary role in the mechanical properties of cartilage and joints. A variety of techniques have been used to study the mechanobiology of PGs, including atomic force microscopy, mouse knockout models, and in vitro cell culture experiments with 3D organoid models. These studies have helped to elucidate the tissue-specific roles that PGs play in cell-level mechanosensing and tissue mechanics. Overall, the study of PGs in mechanobiology is yielding fundamental new concepts in the molecular basis of mechanosensing that can open the door to the development of new treatments for a host of conditions related to mechanopathology.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX 77005
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX 77005
| | - Cristiane Miranda França
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, 97201
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201
| |
Collapse
|
5
|
Chang M, Montagne K, Furukawa KS, Ushida T. Intracellular calcium ion transients evoked by cell poking independently of released autocrine ATP in Madin-Darby canine kidney cells. Cell Biochem Funct 2023; 41:845-856. [PMID: 37515551 DOI: 10.1002/cbf.3834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
The mechanical stimulation induced by poking cells with a glass needle activates Piezo1 receptors and the adenosine triphosphate (ATP) autocrine pathway, thus increasing intracellular Ca2+ concentration. The differences between the increase in intracellular Ca2+ concentration induced by cell poking and by ATP-only stimulation have not been investigated. In this study, we investigated the Ca2+ signaling mechanism induced by autocrine ATP release during Madin-Darby Canine Kidney cell membrane deformation by cell poking. The results suggest that the pathways for supplying Ca2+ into the cytoplasm were not identical between cell poking and conventional ATP stimulation. The functions of the G protein-coupled receptor (GPCR) subunits (Gα $\alpha $ q, Gβ γ $\beta \gamma $ ), ATP-activated receptor and the upstream Ca2+ release signal from the intracellular endoplasmic reticulum Ca2+ store, were investigated. The results show that Gα $\alpha $ q plays a major role in the Ca2+ response evoked by ATP-only stimulation, while cell poking induces a Ca2+ response requiring the involvement of both Gα $\alpha $ q and Gβ γ $\beta \gamma $ units simultaneously. These results suggest that GPCR are not only activated by ATP-only stimulation or autocrine ATP release during Ca2+ signaling, but also activated by the mechanical effects of cell poking.
Collapse
Affiliation(s)
- Minki Chang
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Kevin Montagne
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Katsuko S Furukawa
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Penolazzi L, Notarangelo MP, Lambertini E, Vultaggio-Poma V, Tarantini M, Di Virgilio F, Piva R. Unorthodox localization of P2X7 receptor in subcellular compartments of skeletal system cells. Front Cell Dev Biol 2023; 11:1180774. [PMID: 37215083 PMCID: PMC10192554 DOI: 10.3389/fcell.2023.1180774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Identifying the subcellular localization of a protein within a cell is often an essential step in understanding its function. The main objective of this report was to determine the presence of the P2X7 receptor (P2X7R) in healthy human cells of skeletal system, specifically osteoblasts (OBs), chondrocytes (Chs) and intervertebral disc (IVD) cells. This receptor is a member of the ATP-gated ion channel family, known to be a main sensor of extracellular ATP, the prototype of the danger signal released at sites of tissue damage, and a ubiquitous player in inflammation and cancer, including bone and cartilaginous tissues. Despite overwhelming data supporting a role in immune cell responses and tumor growth and progression, a complete picture of the pathophysiological functions of P2X7R, especially when expressed by non-immune cells, is lacking. Here we show that human wild-type P2X7R (P2X7A) was expressed in different samples of human osteoblasts, chondrocytes and intervertebral disc cells. By fluorescence microscopy (LM) and immunogold transmission electron microscopy we localized P2X7R not only in the canonical sites (plasma membrane and cytoplasm), but also in the nucleus of all the 3 cell types, especially IVD cells and OBs. P2X7R mitochondrial immunoreactivity was predominantly detected in OBs and IVD cells, but not in Chs. Evidence of subcellular localization of P2X7R may help to i. understand the participation of P2X7R in as yet unidentified signaling pathways in the joint and bone microenvironment, ii. identify pathologies associated with P2X7R mislocalization and iii. design specific targeted therapies.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Elisabetta Lambertini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Titanium dioxide nanotubes increase purinergic receptor P2Y6 expression and activate its downstream PKCα-ERK1/2 pathway in bone marrow mesenchymal stem cells under osteogenic induction. Acta Biomater 2023; 157:670-682. [PMID: 36442823 DOI: 10.1016/j.actbio.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. TiO2 nanotubes were prepared on the surface of titanium specimens using the anodizing method and characterized their features. Quantitative reverse transcriptase polymerase chain reaction and western blotting were used to detect the expression of P2Y6, markers of osteogenic differentiation, and PKCα-ERK1/2. A rat femoral defect model was established to evaluate the osseointegration effect of TiO2 nanotubes combined with P2Y6 agonists. The results showed that the average inner diameter of the TiO2 nanotubes increased with an increase in voltage (voltage range of 30-90V), and the expression of P2Y6 in BMSCs could be upregulated by TiO2 nanotubes in osteogenic culture. Inhibition of P2Y6 expression partially inhibited the osteogenic effect of TiO2 nanotubes and downregulated the activity of the PKCα-ERK1/2 pathway. When using in vitro and in vivo experiments, the osteogenic effect of TiO2 nanotubes when combined with P2Y6 agonists was more pronounced. TiO2 nanotubes promoted the P2Y6 expression of BMSCs during osteogenic differentiation and promoted osteogenesis by activating the PKCα-ERK1/2 pathway. The combined application of TiO2 nanotubes and P2Y6 agonists may be an effective new strategy to improve the osseointegration of titanium implants. STATEMENT OF SIGNIFICANCE: Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. For the first time, this study revealed the relationship between TiO2 nanotubes and purine receptor P2Y6, and further explored its mode of action, which may provide clues as to the regulatory role of TiO2 nanotubes on osteogenic differentiation of BMSCs. These findings will help to develop novel methods for guiding material design and biosafety evaluation of nano implants.
Collapse
|
8
|
Zhao Y, Ren X, Li F, Jia B, Wang D, Jia H, Jiao X, Wang L, Li J. P2Y1 receptor in the colonic submucosa of rats and its association with opioid‑induced constipation. Exp Ther Med 2022; 25:67. [PMID: 36605532 PMCID: PMC9798462 DOI: 10.3892/etm.2022.11766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to explore the expression changes of P2Y purinergic receptor 1 (P2Y1) in the distal colonic submucosa of opioid-induced constipation (OIC) rats and its association with the occurrence of OIC, an OIC rat model was generated by intraperitoneal injection of loperamide hydrochloride, a selective agonist of µ-opioid receptors (MORs). At 7 days post-treatment, the model was assessed by analyzing stool scores and calculating the gastrointestinal (GI) transit ratio of rats. The distribution of P2Y1-expressing neurons in the colonic submucosal plexus was demonstrated by immunofluorescence (IF). Western blotting was performed to evaluate the expression changes of MOR, P2Y1 and ATP synthase subunit β (ATPB) proteins in the colonic submucosa, while reverse transcription-quantitative PCR (RT-qPCR) analysis was performed to determine the relative mRNA expression of MOR and P2Y1. After 7 days, the feces of OIC rats exhibited an appearance of sausage-shaped pieces and both the stool weight and GI transit ratio of OIC rats were significantly decreased. IF revealed co-expression of P2Y1 and calbindin and MOR and ATPB in the nerve cells of the distal colonic submucosal plexus. Moreover, RT-qPCR analysis showed that the MOR mRNA levels were significantly increased in the distal colonic submucosa of OIC rats, while mRNA levels of P2Y1 were decreased. WB showed that in the distal colonic submucosa of OIC rats, MOR protein expression was increased, whereas that of P2Y1 was significantly decreased. GI transit ratio analysis suggested that the P2Y agonist ATP significantly relieved constipation symptoms in rats, while the P2Y inhibitor MRS2179 aggravated these symptoms. Finally, P2Y1 expression change was shown to be associated with the occurrence of OIC, while expression of MOR and P2Y1 was associated with OIC development in rats.
Collapse
Affiliation(s)
- Yuqiong Zhao
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Xiaojie Ren
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Fan Li
- Department of Gastrointestinal Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, Hubei 433000, P.R. China
| | - Binghan Jia
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Dengke Wang
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Hua Jia
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Xuwen Jiao
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Lixin Wang
- The Medical Laboratory Center of General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China,Correspondence to: Dr Junping Li, Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Junping Li
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China,Correspondence to: Dr Junping Li, Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| |
Collapse
|
9
|
GYARMATI GEORGINA, TOMA ILDIKÓ, IZUHARA AUDREY, BURFORD JAMESL, SHROFF URVINIKHIL, PAPADOURI STELLA, DEEPAK SACHIN, PETI-PETERDI JÁNOS. The role of TRPC6 calcium channels and P2 purinergic receptors in podocyte mechanical and metabolic sensing. Physiol Int 2021; 109:2021.00205. [PMID: 34978536 PMCID: PMC9200898 DOI: 10.1556/2060.2021.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Podocyte calcium (Ca2+) signaling plays important roles in the (patho)physiology of the glomerular filtration barrier. Overactivation of podocyte transient receptor potential canonical (TRPC) channels including TRPC6 and purinergic signaling via P2 receptors that are known mechanosensors can increase podocyte intracellular Ca2+ levels ([Ca2+]i) and cause cell injury, proteinuria and glomerular disease including in diabetes. However, important mechanistic details of the trigger and activation of these pathways in vivo in the intact glomerular environment are lacking. Here we show direct visual evidence that podocytes can sense mechanical overload (increased glomerular capillary pressure) and metabolic alterations (increased plasma glucose) via TRPC6 and purinergic receptors including P2Y2. Multiphoton microscopy of podocyte [Ca2+]i was performed in vivo using wild-type and TRPC6 or P2Y2 knockout (KO) mice expressing the calcium reporter GCaMP3/5 only in podocytes and in vitro using freshly dissected microperfused glomeruli. Single-nephron intra-glomerular capillary pressure elevations induced by obstructing the efferent arteriole lumen with laser-induced microthrombus in vivo and by a micropipette in vitro triggered >2-fold increases in podocyte [Ca2+]i. These responses were blocked in TRPC6 and P2Y2 KO mice. Acute elevations of plasma glucose caused >4-fold increases in podocyte [Ca2+]i that were abolished by pharmacological inhibition of TRPC6 or P2 receptors using SAR7334 or suramin treatment, respectively. This study established the role of Ca2+ signaling via TRPC6 channels and P2 receptors in mechanical and metabolic sensing of podocytes in vivo, which are promising therapeutic targets in conditions with high intra-glomerular capillary pressure and plasma glucose, such as diabetic and hypertensive nephropathy.
Collapse
Affiliation(s)
- GEORGINA GYARMATI
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - ILDIKÓ TOMA
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - AUDREY IZUHARA
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - JAMES L. BURFORD
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - URVI NIKHIL SHROFF
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - STELLA PAPADOURI
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - SACHIN DEEPAK
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - JÁNOS PETI-PETERDI
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Zhou Y, Arredondo HM, Wang N. P2Y Receptors in Bone - Anabolic, Catabolic, or Both? Front Endocrinol (Lausanne) 2021; 12:818499. [PMID: 35069456 PMCID: PMC8777008 DOI: 10.3389/fendo.2021.818499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
P2Y receptors, including eight subtypes, are G protein-coupled receptors that can be activated by extracellular nucleotides. Nearly all P2Y receptors are expressed in bone cells, suggesting their involvements in bone physiology and pathology. However, their exact roles in bone homeostasis are not entirely clear. Therefore, this mini review summarizes new research developments regarding individual P2Y receptors and their roles in bone biology, particularly detailing those which execute both anabolic and catabolic functions. This dual function has highlighted the conundrum of pharmacologically targeting these P2Y receptors in bone-wasting diseases. Further research in finding more precise targeting strategy, such as promoting anabolic effects via combining with physical exercise, should be prioritized.
Collapse
|