1
|
Yang Z, Syed Faizan Ali S, Huang X, Wei L, Zhong Y, Shi X, Wu X, Gan C, Wang Z, Yang C. A Multi-Level Study on the Anti-Lung Cancer Mechanism of Peiminine, a Key Component of Fritillaria ussuriensis Maxim.: Integrating Quality Analysis, Network Pharmacology, Bioinformatics Analysis, and Experimental Validation. Int J Mol Sci 2025; 26:3506. [PMID: 40331978 PMCID: PMC12027391 DOI: 10.3390/ijms26083506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Globally, lung cancer is the primary cause of deaths associated with cancer; however, current therapies are costly and toxic, highlighting the need for novel treatments. Peiminine (Verticinone), a key bioactive compound derived from Fritillaria ussuriensis Maxim., has demonstrated diverse biological activities. However, the precise pharmacological mechanisms underlying its anti-lung cancer effects remain unclear. The objective of this study was to quantify the content of peiminine in Fritillaria ussuriensis Maxim. from different geographical regions using UHPLC-MS/MS and to elucidate the anti-lung cancer mechanisms of peiminine through network pharmacology, bioinformatics, and in vitro experiments. The content of peiminine in Fritillaria ussuriensis Maxim. from various regions was determined using UHPLC-MS/MS. Potential target genes associated with peiminine and lung cancer were systematically screened from multiple databases. To identify core genes, we set up a PPI (protein-protein interaction) network, followed by in-depth analyses of their corresponding target proteins. Survival analysis, molecular docking, and dynamics simulations were used to explore potential anti-cancer mechanisms. In vitro experiments on human H1299 NSCLC cells assessed peiminine's anti-tumor activity and measured key gene transcription levels. UHPLC-MS/MS analysis revealed that Fritillaria ussuriensis Maxim. from Mudanjiang (Heilongjiang Province) exhibited the highest peiminine content. Network pharmacological analysis identified PIK3CG, SRC, JAK3, AKT2, and PRKCA as key potential targets of peiminine in lung cancer treatment. Molecular docking results demonstrated strong binding affinities between peiminine and PIK3CG, SRC, and JAK3; these results were further confirmed using molecular dynamics simulations. Survival analysis indicated that a high AKT2 and PRKCA expression correlated with bad prognosis in lung cancer patients. In vitro, peiminine inhibited H1299 cell viability and regulated genes involved in the PI3K-Akt pathway (PI3K, AKT, and PTEN) and apoptosis (Bcl-2, Bax), suggesting that it may induce its effects via PI3K-Akt pathway inhibition. Peiminine from Fritillaria ussuriensis Maxim. exhibits significant anti-lung cancer potential by targeting key genes such as PIK3CG, SRC, and JAK3, as well as by modulating the PI3K-Akt signaling pathway and apoptosis-related genes. These results lay a foundation for further investigations into peiminine as a potentially effective therapeutic option for treating lung cancer. Additionally, the identified targets (PIK3CG, SRC, JAK3, AKT2, and PRKCA) may function as possible biomarkers for predicting lung cancer prognosis and guiding personalized therapy.
Collapse
Affiliation(s)
- Ziwen Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China; (Z.Y.); (S.S.F.A.); (X.H.); (L.W.); (Y.Z.); (X.S.); (X.W.); (C.G.)
| | - Shah Syed Faizan Ali
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China; (Z.Y.); (S.S.F.A.); (X.H.); (L.W.); (Y.Z.); (X.S.); (X.W.); (C.G.)
| | - Xinhui Huang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China; (Z.Y.); (S.S.F.A.); (X.H.); (L.W.); (Y.Z.); (X.S.); (X.W.); (C.G.)
| | - Lin Wei
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China; (Z.Y.); (S.S.F.A.); (X.H.); (L.W.); (Y.Z.); (X.S.); (X.W.); (C.G.)
| | - Yinze Zhong
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China; (Z.Y.); (S.S.F.A.); (X.H.); (L.W.); (Y.Z.); (X.S.); (X.W.); (C.G.)
| | - Xuepeng Shi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China; (Z.Y.); (S.S.F.A.); (X.H.); (L.W.); (Y.Z.); (X.S.); (X.W.); (C.G.)
| | - Xiaotian Wu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China; (Z.Y.); (S.S.F.A.); (X.H.); (L.W.); (Y.Z.); (X.S.); (X.W.); (C.G.)
| | - Chunli Gan
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China; (Z.Y.); (S.S.F.A.); (X.H.); (L.W.); (Y.Z.); (X.S.); (X.W.); (C.G.)
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China;
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150000, China; (Z.Y.); (S.S.F.A.); (X.H.); (L.W.); (Y.Z.); (X.S.); (X.W.); (C.G.)
| |
Collapse
|
2
|
Tong Z, Wang Z, Jiang J, Fu W, Hu S. Glycyrrhizin enhances the antitumor activity of cisplatin in non‑small cell lung cancer cells by influencing DNA damage and apoptosis. Oncol Lett 2025; 29:207. [PMID: 40070780 PMCID: PMC11894513 DOI: 10.3892/ol.2025.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
The objective of the present study was to elucidate the mechanism by which glycyrrhizin enhances the antitumor activity of cisplatin in non-small cell lung cancer. Initially, A549 cells were treated with different concentrations of glycyrrhizin (0.25-8 mM) or cisplatin (10-160 µM) for 48 h to investigate the effect of glycyrrhizin combined with cisplatin on A549 cells in vitro. Subsequently, A549 cells were divided into control (untreated), CP (20 µM cisplatin), GL (2 mM glycyrrhizin) and CP + GL (20 µM cisplatin + 2 mM glycyrrhizin) groups to elucidate the underlying mechanism of glycyrrhizin. After 48 h incubation, the viability and colony-forming ability of the cells were assessed using MTT and colony formation assays. Apoptosis levels and cell cycle progression were analyzed using flow cytometry and western blotting was used to evaluate apoptosis- and cell cycle-related proteins. Additionally, comet assays and western blotting were used to evaluate DNA damage and relevant proteins. The results demonstrated both glycyrrhizin and cisplatin individually reduced A549 cell viability in a concentration-dependent manner. Cisplatin demonstrated a lower half-maximal inhibitory concentration (IC50) at higher glycyrrhizin concentrations, with an IC50 value of ~35 µM with 2 mM glycyrrhizin. Furthermore, the combined treatment of glycyrrhizin and cisplatin synergistically reduced cell colony-forming ability, induced apoptosis and arrested the cell cycle at the G2 phase, showing greater efficacy when compared with either treatment individually. In addition, western blotting analysis demonstrated that, in comparison with treatment with cisplatin or glycyrrhizin alone, the combined treatment markedly increased the protein expression levels of B-cell lymphoma 2-associated X protein, cleaved-caspase-3/caspase-3, γH2AX, phosphorylated-checkpoint kinase 1 and phosphorylated-p53/p53, while notably reducing the protein levels of B-cell lymphoma 2, cyclin D1, cyclin-dependent kinase 2 and cyclin-dependent kinase 4. The findings of the present study indicate that glycyrrhizin enhances the antitumor efficacy of cisplatin in non-small cell lung cancer cells by modulating DNA damage and apoptosis.
Collapse
Affiliation(s)
- Zhufeng Tong
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Zhen Wang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Jinghan Jiang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Wenqi Fu
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Siying Hu
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
3
|
Xi Z, Dai R, Ze Y, Jiang X, Liu M, Xu H. Traditional Chinese medicine in lung cancer treatment. Mol Cancer 2025; 24:57. [PMID: 40001110 PMCID: PMC11863959 DOI: 10.1186/s12943-025-02245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains a major global health challenge and one of the leading causes of cancer-related deaths worldwide. Despite significant advancements in treatment, challenges such as drug resistance, side effects, metastasis and recurrence continue to impact patient outcomes and quality of life. In response, there is growing interest in complementary and integrative approaches to cancer care. Traditional Chinese medicine (TCM), with its long history, abundant clinical experience, holistic perspective and individualized approach, has garnered increasing attention for its role in lung cancer prevention and management. This review provides a comprehensive overview of the advances in TCM for lung cancer treatment, covering its theoretical foundation, treatment principles, clinical experiences and evidence supporting its efficacy. We also provide a systematic summary of the preclinical mechanisms, through which TCM impacts lung cancer, including the induction of cell death, reversal of drug resistance, inhibition of metastasis and modulation of immune responses. Additionally, future prospects for TCM in lung cancer treatment are discussed, offering insights into its expanded application and integration with modern medicine to address this challenging disease.
Collapse
Affiliation(s)
- Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| |
Collapse
|
4
|
Iksen, Witayateeraporn W, Hardianti B, Pongrakhananon V. Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res 2024; 38:2249-2275. [PMID: 38415799 DOI: 10.1002/ptr.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia
| | - Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Besse Hardianti
- Laboratory of Pharmacology and Clinical Pharmacy, Faculty of Health Sciences, Almarisah Madani University, South Sulawesi, Indonesia
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Yang FR, Li HL, Hu XW, Fu R, Li XR, Li HJ. Chinese Herbal Compound Xiaoliu Pingyi Recipe Inhibits the Growth of Lung Adenocarcinoma by Regulating the Tumor Vascular Microenvironment. Integr Cancer Ther 2024; 23:15347354241273962. [PMID: 39223822 PMCID: PMC11369880 DOI: 10.1177/15347354241273962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/23/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The traditional Chinese medicine (TCM) Xiaoliu Pingyi recipe (XLPYR) has been clinically used for several decades, demonstrating favorable therapeutic effects. However, the underlying regulatory mechanisms remain unclear. The aim of this study was to explore the anti-tumor effects of XLPYR and its regulatory role in the vascular microenvironment through in vivo and in vitro experiment. MATERIALS AND METHODS In the in vivo study, a C57BL/6J mouse model of lung adenocarcinoma (LUAD) allografts was established, and various interventions were administered for 14 days (Model group: administered normal saline via oral gavage; Pemetrexed (PEM) group: intraperitoneally injected with a solution of pemetrexed, once every 3d; XLPYR group: administered XLPYR via oral gavage; Combination (COMBI) group: received XLPYR via oral gavage simultaneously with intraperitoneal injection of pemetrexed solution). Tumor volume and weight were then compared among the groups. The impact of XLPYR on the tumor vascular microenvironment was assessed using immunohistochemistry staining. In the in vitro study, XLPYR-containing serum was prepared by oral administration to SD rats. The CCK-8 assay evaluated the effect of the serum on the proliferation of normal lung epithelial BEAS-2B cells and LUAD A549 cells, determining the optimal intervention concentrations. The cell migration and invasion abilities were evaluated using the wound-healing assay and Transwell assay, respectively. Finally, ELISA assay measured VEGF secretion levels in the LUAD cell supernatant, and RT-qPCR and Western Blot were employed to detect differences in HIF-1α, VEGFA, Ang-2, and PI3K/Akt mRNA and protein expression levels in both in vivo and in vitro experiments. RESULTS In the in vivo study, XLPYR significantly inhibited the growth of mice LUAD allografts, with enhanced anti-tumor effects observed with prolonged drug intervention. Immunohistochemistry staining revealed reduced MVD and increased pericyte coverage in all intervention groups. Regarding vascular function, FITC-Dextran extravasation in the tumor tissues of the Model group was significantly higher than in the intervention groups, particularly with lower extravasation in the COMBI group compared to the PEM group. In the in vitro study, XLPYR demonstrated a time- and concentration-dependent inhibitory effect on LUAD cells, and with greater sensitivity in inhibiting LUAD cells compared to BEAS-2B cells. The wound-healing assay and Transwell assay confirmed that XLPYR significantly suppressed the migration and invasion abilities of LUAD cells. ELISA experiments further revealed a significant decrease in VEGF expression in the supernatant of each intervention group. RT-qPCR and Western Blot results showed consistent findings between the in vivo and in vitro experiments. HIF-1α, VEGFA, and Ang-2 mRNA and protein expression levels were significantly downregulated in the PEM group, XLPYR group, and COMBI group. There were no significant differences in the expression of PI3K and Akt mRNA and total protein, but the expression levels of phosphorylated p-PI3K and p-Akt were notably downregulated. CONCLUSION XLPYR significantly inhibited C57BL/6J mouse LUAD allograft growth and improved the vascular microenvironment, thereby intervening in tumor angiogenesis and inducing vascular normalization. It suppressed LUAD cell proliferation, migration, and invasion, while reducing VEGF concentration in the cell supernatant. The regulatory mechanism may involve inhibiting PI3K/Akt protein phosphorylation and downregulating angiogenesis-related factors, such as HIF-1α, VEGF, and Ang-2.
Collapse
Affiliation(s)
- Fei-ran Yang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Hong-lin Li
- Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Xi-wen Hu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Rong Fu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xiu-rong Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Hui-jie Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
6
|
Pang C, Zhang T, Chen Y, Yan B, Chen C, Zhang Z, Wang C. Andrographis modulates cisplatin resistance in lung cancer via miR-155-5p/SIRT1 axis. Funct Integr Genomics 2023; 23:260. [PMID: 37530871 DOI: 10.1007/s10142-023-01186-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Andrographis (Andro) has been identified as an anti-cancer herbal. This study was to explore its underlying regulatory routes regarding cisplatin (DDP) resistance in lung cancer. The impacts of Andro on cell viability in lung cancer cells and normal cells BEAS-2B were validated using CCK8 tests. Then, cell viability and apoptosis analysis was performed in the cells after DDP, Andro, or combined treatment. RT-qPCR was applied for evaluating miR-155-5p and SIRT1 mRNA expressions, while western blot was for evaluating SIRT1 protein expressions. Binding sites between SIRT1 and miR-155-5p were predicted on TargetScan and were confirmed using luciferase reporter assays. Xenograft animal models were established for in vivo validation of the regulatory function of Andro in lung cancer. Andro decreased the cell viability in lung cancer cells but not normal cells BEAS-2B. The combined treatment with DDP and Andro induced the lowest viability and highest apoptosis in both A549 and A549/DDP cells. MiR-155-5p expression was suppressed, and SIRT was promoted by the Andro treatment, while overexpression of miR-155-5p reversed effects of Andro in cells, which was further counteracted by SIRT1 activation. SIRT1 was verified to be a target of miR-155-5p in A549/DDP cells. Moreover, Andro synergized with DDP in mice with lung cancer via miR-155-5p/SIRT1. Andro modulates cisplatin resistance in lung cancer via miR-155-5p/SIRT1 axis.
Collapse
Affiliation(s)
- Chong Pang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, China
| | - Tengyue Zhang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Affiliated Eye Hospital of NanKai University, Clinical College of Ophthalmology of Tianjin Medical University, Tianjin, China
| | - Yulong Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, China
| | - Bo Yan
- Department of Lung Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, China
| | - Chen Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, China.
| |
Collapse
|
7
|
Andrographolide Induces G2/M Cell Cycle Arrest and Apoptosis in Human Glioblastoma DBTRG-05MG Cell Line via ERK1/2 /c-Myc/p53 Signaling Pathway. Molecules 2022; 27:molecules27196686. [PMID: 36235222 PMCID: PMC9572224 DOI: 10.3390/molecules27196686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Human glioblastoma multiforme (GBM) is one of the most malignant brain tumors, with a high mortality rate worldwide. Conventional GBM treatment is now challenged by the presence of the blood-brain barrier (BBB), drug resistance, and post-treatment adverse effects. Hence, developing bioactive compounds isolated from plant species and identifying molecular pathways in facilitating effective treatment has become crucial in GBM. Based on pharmacodynamic studies, andrographolide has sparked the interest of cancer researchers, who believe it may alleviate difficulties in GBM therapy; however, it still requires further study. Andrographolide is a bicyclic diterpene lactone derived from Andrographis paniculata (Burm.f.) Wallich ex Nees that has anticancer properties in various cancer cell lines. The present study aimed to evaluate andrographolide's anticancer effectiveness and potential molecular pathways using a DBTRG-05MG cell line. The antiproliferative activity of andrographolide was determined using the WST-1 assay, while scratch assay and clonogenic assay were used to evaluate andrographolide's effectiveness against the cancer cell line by examining cell migration and colony formation. Flowcytometry was also used to examine the apoptosis and cell cycle arrest induced by andrographolide. The mRNA and protein expression level involved in the ERK1/2/c-Myc/p53 signaling pathway was then assessed using qRT-PCR and Western blot. The protein-protein interaction between c-Myc and p53 was determined by a reciprocal experiment of the co-immunoprecipitation (co-IP) using DBTRG-05MG total cell lysate. Andrographolide significantly reduced the viability of DBTRG-05MG cell lines in a concentration- and time-dependent manner. In addition, scratch and clonogenic assays confirmed the effectiveness of andrographolide in reducing cell migration and colony formation of DBTRG-05MG, respectively. Andrographolide also promoted cell cycle arrest in the G2/M phase, followed by apoptosis in the DBTRG-05MG cell line, by inducing ERK1/2, c-Myc, and p53 expression at the mRNA level. Western blot results demonstrated that c-Myc overexpression also increased the production of the anti-apoptotic protein p53. Our findings revealed that c-Myc and p53 positively interact in triggering the apoptotic signaling pathway. This study successfully discovered the involvement of ERK1/2/c-Myc/p53 in the suppression of the DBTRG-05MG cell line via cell cycle arrest followed by the apoptosis signaling pathway following andrographolide treatment.
Collapse
|
8
|
Daurisoline Inhibits ESCC by Inducing G1 Cell Cycle Arrest and Activating ER Stress to Trigger Noxa-Dependent Intrinsic and CHOP-DR5-Dependent Extrinsic Apoptosis via p-eIF2α-ATF4 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5382263. [PMID: 35965681 PMCID: PMC9371853 DOI: 10.1155/2022/5382263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most malignant human cancers in clinic, requires novel treatment. Daurisoline (DAS) is a component of traditional Chinese herb, which exhibits anti-cancer effects by autophagy inhibition and metastasis suppression. However, the effect and mechanism of DAS on ESCC remain unclear. Here, we found that DAS inhibited cell proliferation and colony formation in both human ESCC cell lines EC1 and ECA109. Mechanistically, DAS induced p21-/p27-dependent G1 phase cell cycle arrest and apoptosis in a dose-dependent manner. The induction of apoptosis by DAS was largely dependent on the activation of the transcription factor ATF4 and its downstream NOXA-dependent intrinsic and CHOP-DR5-dependent extrinsic apoptotic pathway. ATF4 activation induced by DAS was due to the generation of excessive reactive oxygen species (ROS) and the subsequent activation of endoplasmic reticulum (ER) stress through the p-eIF2α-ATF4 signal pathway, which can be largely abrogated by N-acetylcysteine (NAC), a scavenger of ROS. Moreover, DAS treatment significantly inhibited tumor growth and reduced tumor weight in the tumor xenograft mouse model by up-regulating key proteins related to cell cycle arrest and apoptotic pathway. Taken together, these findings identified DAS as a novel candidate for the treatment of ESCC.
Collapse
|
9
|
Feng A, Li Y, Li G, Wang Y, Wen Q, Yang Z, Tian K, Lv H, Guo L, Zhang S, Liu X, Jiang D. Genomic Features of Organ-Specific Metastases in Lung Adenocarcinoma. Front Oncol 2022; 12:908759. [PMID: 35912232 PMCID: PMC9331737 DOI: 10.3389/fonc.2022.908759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundThe genomic features of cancer cells may confer the metastatic ability of lung adenocarcinoma (LUAD) to metastasize to specific organs. We aimed to identify the differences in genomic alterations between patients with primary LUAD with and without metastases and to elucidate the metastatic biology that may help developing biomarker-directed therapies for advanced or metastatic disease.MethodsA retrospective cohort of 497 patients with LUAD including 388 primary tumors (PR), 53 bone metastases (MT-bone), 30 liver metastases (MT-liver), and 26 brain metastases (MT-brain) was tested for genomic alterations by a next-generation sequencing assay.ResultsThe EGFR, TP53, TERT, LRP1B, CDKN2A, ERBB2, ALK, and KMT2C genes had a high frequency of mutations, and the mutations were shared by PR and metastases groups. TP53 and EGFR were the most common mutated genes. In comparison with PR, KRAS, STK11, ATM, NPM1, and ROS1 were significantly mutated in MT-brain, and TP53, MYC, RSPO2, CDKN2a, and CDKN2B were significantly mutated in MT-liver. The frequencies of TP53, CDKN2A, MTAP, PRKCI, and APC mutations were higher in MT-bone than that in PR. The ERBB, phosphoinositide-3-kinase/protein kinase B (PI3K-AKT), cell cycle, Fibroblast growth factor (FGF), and homologous recombination deficiency signaling pathways were affected in both PR and metastases, and there is higher frequency of mutations in metastases. Moreover, the co-mutations in patients with PR and metastasis were respectively analyzed. In addition, the programmed death ligand 1 (PD-L1) level was obviously related to tumor stage and tumor metastases, and the tumor mutational burden was correlated to clinicopathological features including age, gender, pathological stages, and tumor metastases. FGFR1, KAT6A, MYC, RAD21, TP53, and DAXX were also dramatically correlated to the tumor mutational burden.ConclusionMetastases are the most devastating stage of tumors and the main cause of cancer-related deaths. Our results provided a clinically relevant view of the tumor-intrinsic mutational landscape of patients with metastatic LUAD.
Collapse
Affiliation(s)
- Alei Feng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Qidu Pharmaceutical Co. Ltd., Shandong Provincial Key Laboratory of Neuroprotective Drugs, Zibo, China
| | - Yanjun Li
- Department of Thoracic Surgery, The Second People’s Hospital of Dezhou, Dezhou, China
| | - Guangxu Li
- Department of Thoracic Surgery, The Second People’s Hospital of Dezhou, Dezhou, China
| | - Yu Wang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wen
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kaihua Tian
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongying Lv
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijie Guo
- Shanghai OrigiMed Co., Ltd, Shanghai, China
| | | | | | - Da Jiang
- Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Da Jiang,
| |
Collapse
|
10
|
Xu T, Jiang Y, Yuan S, Zhang L, Chen X, Zhao W, Cai L, Xiao B, Jia L. Andrographolide Inhibits ER-Positive Breast Cancer Growth and Enhances Fulvestrant Efficacy via ROS-FOXM1-ER-α Axis. Front Oncol 2022; 12:899402. [PMID: 35615146 PMCID: PMC9124841 DOI: 10.3389/fonc.2022.899402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is the main subtype of breast cancer (BRCA) with high incidence and mortality. Andrographolide (AD), a major active component derived from the traditional Chinese medicine Andrographis paniculate, has substantial anti-cancer effect in various tumors. However, the antitumor efficacy and the underlying molecular mechanisms of AD on ER-positive breast cancer are poorly understood. In the present study, we demonstrated that andrographolide (AD) significantly inhibited the growth of ER-positive breast cancer cells. Mechanistically, AD suppressed estrogen receptor 1 (ESR1, encodes ER-α) transcription to inhibit tumor growth. Further studies revealed that AD induced ROS production to down-regulate FOXM1-ER-α axis. Conversely, inhibiting ROS production with N-acetylcysteine (NAC) elevated AD-decreased ER-α expression, which could be alleviated by FOXM1 knockdown. In addition, AD in combination with fulvestrant (FUL) synergistically down-regulated ER-α expression to inhibit ER-positive breast cancer both in vitro and in vivo. These findings collectively indicate that AD suppresses ESR1 transcription through ROS-FOXM1 axis to inhibit ER-positive breast cancer growth and suggest that AD might be a potential therapeutic agent and fulvestrant sensitizer for ER-positive breast cancer treatment.
Collapse
|
11
|
Application of a fluorescent H 2S probe based on excited-state intramolecular proton transfer for detecting latent mechanism of H 2S-induced MCF-7 apoptosis. Future Med Chem 2022; 14:647-663. [PMID: 35383482 DOI: 10.4155/fmc-2021-0309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: H2S is the third gas transmitter affecting the growth, reproduction and survival of cancer cells. However, the H2S anticancer and antitumor mechanism still needs to be further studied. Methods: Here, FHS-1 was synthesized utilizing excited-state intramolecular proton transfer to detect H2S in MCF-7 cells, and investigated the effects of varying concentrations NaHS on apoptosis. Results: The study found that FHS-1 detects H2S levels with high selectivity and pH stability and that H2S may regulate apoptosis in MCF-7 cells through the p53/mTOR/STAT3 pathway. Conclusion: Researching the influence of H2S on apoptosis can serve as a theoretical foundation for future research into H2S-related anticancer medicines, and the H2S probe can be used as an effective cancer screening tool.
Collapse
|