1
|
Lun H, Li P, Li J, Liu F. The effect of intestinal flora metabolites on macrophage polarization. Heliyon 2024; 10:e35755. [PMID: 39170251 PMCID: PMC11337042 DOI: 10.1016/j.heliyon.2024.e35755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Intestinal flora metabolites played a crucial role in immunomodulation by influencing host immune responses through various pathways. Macrophages, as a type of innate immune cell, were essential in chemotaxis, phagocytosis, inflammatory responses, and microbial elimination. Different macrophage phenotypes had distinct biological functions, regulated by diverse factors and mechanisms. Advances in intestinal flora sequencing and metabolomics have enhanced understanding of how intestinal flora metabolites affect macrophage phenotypes and functions. These metabolites had varying effects on macrophage polarization and different mechanisms of influence. This study summarized the impact of gut microbiota metabolites on macrophage phenotype and function, along with the underlying mechanisms associated with different metabolites produced by intestinal flora.
Collapse
Affiliation(s)
- Hengzhong Lun
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fenfen Liu
- Department of Nephrology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
2
|
Rohwer N, Jelleschitz J, Höhn A, Weber D, Kühl AA, Wang C, Ohno RI, Kampschulte N, Pietzner A, Schebb NH, Weylandt KH, Grune T. Prevention of colitis-induced liver oxidative stress and inflammation in a transgenic mouse model with increased omega-3 polyunsaturated fatty acids. Redox Biol 2023; 64:102803. [PMID: 37392516 DOI: 10.1016/j.redox.2023.102803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated gut dysfunction, which might also be associated with an inflammatory phenotype in the liver. It is known that the nutritional intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is inversely correlated to the severity and occurrence of IBD. In order to investigate whether n-3 PUFA can also reduce liver inflammation and oxidative liver damage due to colon inflammation, we explored the dextran sulfate sodium (DSS)-induced colitis model in wild-type and fat-1 mice with endogenously increased n-3 PUFA tissue content. Besides confirming previous data of alleviated DSS-induced colitis in the fat-1 mouse model, the increase of n-3 PUFA also resulted in a significant reduction of liver inflammation and oxidative damage in colitis-affected fat-1 mice as compared to wild-type littermates. This was accompanied by a remarkable increase of established inflammation-dampening n-3 PUFA oxylipins, namely docosahexaenoic acid-derived 19,20-epoxydocosapentaenoic acid and eicosapentaenoic acid-derived 15-hydroxyeicosapentaenoic acid and 17,18-epoxyeicosatetraenoic acid. Taken together, these observations demonstrate a strong inverse correlation between the anti-inflammatory lipidome derived from n-3 PUFA and the colitis-triggered inflammatory changes in the liver by reducing oxidative liver stress.
Collapse
Affiliation(s)
- Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany; Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Julia Jelleschitz
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anja A Kühl
- iPATH.Berlin-Immunopathology for Experimental Models, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Chaoxuan Wang
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany; Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rei-Ichi Ohno
- University of Wuppertal, Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Wuppertal, Germany
| | - Nadja Kampschulte
- University of Wuppertal, Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Wuppertal, Germany
| | - Anne Pietzner
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Nils Helge Schebb
- University of Wuppertal, Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Wuppertal, Germany
| | - Karsten-H Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, Potsdam, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany.
| |
Collapse
|
3
|
Vatsalya V, Royer AJ, Jha SK, Parthasarathy R, Tiwari H, Feng W, Ramchandani VA, Kirpich IA, McClain CJ. Drinking and laboratory biomarkers, and nutritional status characterize the clinical presentation of early-stage alcohol-associated liver disease. Adv Clin Chem 2023; 114:83-108. [PMID: 37268335 DOI: 10.1016/bs.acc.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic and heavy alcohol consumption is commonly observed in alcohol use disorder (AUD). AUD often leads to alcohol-associated organ injury, including alcohol-associated liver disease (ALD). Approximately 10-20% of patients with AUD progress to ALD. Progression of ALD from the development phase to more advanced states involve the interplay of several pathways, including nutritional alterations. Multiple pathologic processes have been identified in the progression and severity of ALD. However, there are major gaps in the characterization and understanding of the clinical presentation of early-stage ALD as assessed by clinical markers and laboratory measures. Several Institutions and Universities, including the University of Louisville, in collaboration with the National Institutes of Health, have published a series of manuscripts describing early-stage ALD over the past decade. Here, we comprehensively describe early-stage ALD using the liver injury and drinking history markers, and the laboratory biomarkers (with a focus on nutrition status) that are uniquely involved in the development and progression of early-stage ALD.
Collapse
Affiliation(s)
- Vatsalya Vatsalya
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States; Alcohol Research Center, University of Louisville, Louisville, KY, United States; National Institute on Alcohol Abuse and Alcoholism, NIAAA, NIH, Bethesda, MD, United States; Robley Rex VA Medical Center, Louisville, KY, United States.
| | - Amor J Royer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Suman Kumar Jha
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Ranganathan Parthasarathy
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Harsh Tiwari
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Wenke Feng
- Alcohol Research Center, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY United States
| | - Vijay A Ramchandani
- National Institute on Alcohol Abuse and Alcoholism, NIAAA, NIH, Bethesda, MD, United States
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States; Alcohol Research Center, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY United States; Department of Microbiology and Immunology, University of Louisville, Louisville KY United States
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States; Alcohol Research Center, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY United States; Robley Rex VA Medical Center, Louisville, KY, United States
| |
Collapse
|
4
|
Hardesty JE, Warner JB, Song YL, Floyd A, McClain CJ, Warner DR, Kirpich IA. Fpr2-/- Mice Developed Exacerbated Alcohol-Associated Liver Disease. BIOLOGY 2023; 12:639. [PMID: 37237453 PMCID: PMC10215685 DOI: 10.3390/biology12050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Alcohol-associated liver disease (ALD) is the most common chronic liver disease and carries a significant healthcare burden. ALD has no long-term treatment options aside from abstinence, and the mechanisms that contribute to its pathogenesis are not fully understood. This study aimed to investigate the role of formyl peptide receptor 2 (FPR2), a receptor for immunomodulatory signals, in the pathogenesis of ALD. WT and Fpr2-/- mice were exposed to chronic-binge ethanol administration and subsequently assessed for liver injury, inflammation, and markers of regeneration. The differentiation capacity of liver macrophages and the oxidative burst activity of neutrophils were also examined. Compared to WT, Fpr2-/- mice developed more severe liver injury and inflammation and had compromised liver regeneration in response to ethanol administration. Fpr2-/- mice had fewer hepatic monocyte-derived restorative macrophages, and neutrophils isolated from Fpr2-/- mice had diminished oxidative burst capacity. Fpr2-/- MoMF differentiation was restored when co-cultured with WT neutrophils. Loss of FPR2 led to exacerbated liver damage via multiple mechanisms, including abnormal immune responses, indicating the crucial role of FPR2 in ALD pathogenesis.
Collapse
Affiliation(s)
- Josiah E. Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jeffrey B. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Ying L. Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Alison Floyd
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA
- University of Louisville Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
| | - Dennis R. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Irina A. Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
5
|
López-Vicario C, Sebastián D, Casulleras M, Duran-Güell M, Flores-Costa R, Aguilar F, Lozano JJ, Zhang IW, Titos E, Kang JX, Zorzano A, Arita M, Clària J. Essential lipid autacoids rewire mitochondrial energy efficiency in metabolic dysfunction-associated fatty liver disease. Hepatology 2023; 77:1303-1318. [PMID: 35788956 DOI: 10.1002/hep.32647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Injury to hepatocyte mitochondria is common in metabolic dysfunction-associated fatty liver disease. Here, we investigated whether changes in the content of essential fatty acid-derived lipid autacoids affect hepatocyte mitochondrial bioenergetics and metabolic efficiency. APPROACH AND RESULTS The study was performed in transgenic mice for the fat-1 gene, which allows the endogenous replacement of the membrane omega-6-polyunsaturated fatty acid (PUFA) composition by omega-3-PUFA. Transmission electron microscopy revealed that hepatocyte mitochondria of fat-1 mice had more abundant intact cristae and higher mitochondrial aspect ratio. Fat-1 mice had increased expression of oxidative phosphorylation complexes I and II and translocases of both inner (translocase of inner mitochondrial membrane 44) and outer (translocase of the outer membrane 20) mitochondrial membranes. Fat-1 mice also showed increased mitofusin-2 and reduced dynamin-like protein 1 phosphorylation, which mediate mitochondrial fusion and fission, respectively. Mitochondria of fat-1 mice exhibited enhanced oxygen consumption rate, fatty acid β-oxidation, and energy substrate utilization as determined by high-resolution respirometry, [1- 14 C]-oleate oxidation and nicotinamide adenine dinucleotide hydride/dihydroflavine-adenine dinucleotide production, respectively. Untargeted lipidomics identified a rich hepatic omega-3-PUFA composition and a specific docosahexaenoic acid (DHA)-enriched lipid fingerprint in fat-1 mice. Targeted lipidomics uncovered a higher content of DHA-derived lipid autacoids, namely resolvin D1 and maresin 1, which rescued hepatocytes from TNFα-induced mitochondrial dysfunction, and unblocked the tricarboxylic acid cycle flux and metabolic utilization of long-chain acyl-carnitines, amino acids, and carbohydrates. Importantly, fat-1 mice were protected against mitochondrial injury induced by obesogenic and fibrogenic insults. CONCLUSION Our data uncover the importance of a lipid membrane composition rich in DHA and its lipid autacoid derivatives to have optimal hepatic mitochondrial and metabolic efficiency.
Collapse
Affiliation(s)
- Cristina López-Vicario
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - David Sebastián
- Institute for Research in Biomedicine , The Barcelona Institute of Science and Technology , Departament de Bioquímica i Biomedicina Molecular , University of Barcelona , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas , Madrid , Spain
| | - Mireia Casulleras
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
| | - Ingrid W Zhang
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Esther Titos
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
- Department of Biomedical Sciences , University of Barcelona , Barcelona , Spain
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts , USA
| | - Antonio Zorzano
- Institute for Research in Biomedicine , The Barcelona Institute of Science and Technology , Departament de Bioquímica i Biomedicina Molecular , University of Barcelona , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas , Madrid , Spain
| | - Makoto Arita
- Laboratory for Metabolomics , RIKEN Center for Integrative Medical Sciences , Yokohama , Japan
- Division of Physiological Chemistry and Metabolism , Graduate School of Pharmaceutical Sciences , Keio University , Tokyo , Japan
| | - Joan Clària
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
- Department of Biomedical Sciences , University of Barcelona , Barcelona , Spain
| |
Collapse
|
6
|
Warner JB, Zirnheld KH, Hu H, Floyd A, Kong M, McClain CJ, Kirpich IA. Analysis of alcohol use, consumption of micronutrient and macronutrients, and liver health in the 2017-2018 National Health and Nutrition Examination Survey. Alcohol Clin Exp Res 2022; 46:2025-2040. [PMID: 36124871 PMCID: PMC9722540 DOI: 10.1111/acer.14944] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alcohol use is a major global healthcare burden that contributes to numerous adverse health outcomes, including liver disease. Many factors influence individual susceptibility to alcohol-associated diseases, including nutritional factors. The objective of the current study was to examine inter-relations among alcohol, dietary micronutrients and macronutrient consumption, and liver health by analyzing data from the 2017-2018 National Health and Nutrition Examination Survey (NHANES). METHODS Based on self-reported alcohol consumption, NHANES respondents were assigned to one of four categories: never drinkers (lifetime abstainers), non-drinkers (past-year abstainers), moderate drinkers (1/2 drinks per day for females/males, respectively), and heavy drinkers (>1/>2 drinks per day for females/males, respectively, and/or frequent binge drinking). Survey-weighted regression analyses (adjusted for gender, age, race, education, and body mass index) were performed to examine associations between alcohol intake, dietary, and liver health characteristics. RESULTS Individuals categorized as heavy drinkers were significantly younger, most often well-educated males with low incidences of diabetes and other comorbidities. They consumed the most overall calories and various micronutrients, indicating a diet that was not necessarily nutrient poor. Neither moderate nor heavy drinkers had liver steatosis or fibrosis as measured by liver elastography, although heavy drinkers had modestly elevated plasma biomarkers of liver injury, including ALT, AST, and GGT, compared with the other groups. CONCLUSIONS Our findings suggest that the category of heavy drinkers in the 2017-2018 NHANES consisted of generally healthy individuals with high-energy intake and no evidence of liver steatosis or fibrosis. However, slightly increased plasma liver markers may indicate a risk of future progression to more advanced stages of liver disease over time in some individuals. Several limitations should be considered when interpreting these data, including the potential misclassification of drinking categories and the lack of standardized cutoff scores for fatty liver as assessed by elastography, among others.
Collapse
Affiliation(s)
- Jeffrey B. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
| | - Kara H. Zirnheld
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
| | - Huirong Hu
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, 485 East Gray Street, Louisville, KY 40202, United States
| | - Alison Floyd
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, 485 East Gray Street, Louisville, KY 40202, United States
- Robley Rex Veterans Affairs Medical Center, 800 Zorn Avenue, Louisville, KY 40206, United States
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
- Alcohol Research Center, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
- Hepatobiology and Toxicology Center, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
- Robley Rex Veterans Affairs Medical Center, 800 Zorn Avenue, Louisville, KY 40206, United States
| | - Irina A. Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
- Alcohol Research Center, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
- Hepatobiology and Toxicology Center, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, 505 South Hancock Street, Louisville KY, 40202, United States
| |
Collapse
|
7
|
Hyun JY, Kim SK, Yoon SJ, Lee SB, Jeong JJ, Gupta H, Sharma SP, Oh KK, Won SM, Kwon GH, Cha MG, Kim DJ, Ganesan R, Suk KT. Microbiome-Based Metabolic Therapeutic Approaches in Alcoholic Liver Disease. Int J Mol Sci 2022; 23:8749. [PMID: 35955885 PMCID: PMC9368757 DOI: 10.3390/ijms23158749] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol consumption is a global healthcare problem. Chronic alcohol consumption generates a wide spectrum of hepatic lesions, the most characteristic of which are steatosis, hepatitis, fibrosis, and cirrhosis. Alcoholic liver diseases (ALD) refer to liver damage and metabolomic changes caused by excessive alcohol intake. ALD present several clinical stages of severity found in liver metabolisms. With increased alcohol consumption, the gut microbiome promotes a leaky gut, metabolic dysfunction, oxidative stress, liver inflammation, and hepatocellular injury. Much attention has focused on ALD, such as alcoholic fatty liver (AFL), alcoholic steatohepatitis (ASH), alcoholic cirrhosis (AC), hepatocellular carcinoma (HCC), a partnership that reflects the metabolomic significance. Here, we report on the global function of inflammation, inhibition, oxidative stress, and reactive oxygen species (ROS) mechanisms in the liver biology framework. In this tutorial review, we hypothetically revisit therapeutic gut microbiota-derived alcoholic oxidative stress, liver inflammation, inflammatory cytokines, and metabolic regulation. We summarize the perspective of microbial therapy of genes, gut microbes, and metabolic role in ALD. The end stage is liver transplantation or death. This review may inspire a summary of the gut microbial genes, critical inflammatory molecules, oxidative stress, and metabolic routes, which will offer future promising therapeutic compounds in ALD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
8
|
Chen L, Zhu Y, Hou X, Yang L, Chu H. The Role of Gut Bacteria and Fungi in Alcohol-Associated Liver Disease. Front Med (Lausanne) 2022; 9:840752. [PMID: 35308525 PMCID: PMC8927088 DOI: 10.3389/fmed.2022.840752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Cirrhosis and liver cancer caused by alcohol-associated liver disease (ALD) are serious threats to people's health. In addition to hepatic cell apoptosis and liver inflammation caused by oxidative stress during alcohol metabolism, intestinal microbiota disorders are also involved in the onset and development of ALD. Ethanol and its' oxidative and non-oxidative metabolites, together with dysbiosis-caused-inflammation, destroys the intestinal barrier. Changes of several microbial metabolites, such as bile acids, short-chain fatty acids, and amino acid, are closely associated with gut dysbiosis in ALD. The alcohol-caused dysbiosis can further influence intestinal barrier-related proteins, such as mucin2, bile acid-related receptors, and aryl hydrocarbon receptor (AhR), and these abnormal changes also participate in the injury of the intestinal barrier and hepatic steatosis. Gut-derived bacteria, fungi, and their toxins, such as lipopolysaccharide (LPS) and β-glucan translocate into the liver through the damaged intestinal barrier and promote the progression of inflammation and fibrosis of ALD. Thus, the prevention of alcohol-induced disruption of intestinal permeability has a beneficial effect on ALD. Currently, multiple therapeutic treatments have been applied to restore the gut microbiota of patients with ALD. Fecal microbial transplantation, probiotics, antibiotics, and many other elements has already shown their ability of restoring the gut microbiota. Targeted approaches, such as using bacteriophages to remove cytolytic Enterococcus faecalis, and supplement with Lactobacillus, Bifidobacterium, or boulardii are also powerful therapeutic options for ALD.
Collapse
Affiliation(s)
- Liuying Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixin Zhu
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|