1
|
Lin X, Zhuang Y, Gao F. ACE2 Alleviates Endoplasmic Reticulum Stress and Protects against Pyroptosis by Regulating Ang1-7/Mas in Ventilator-Induced Lung Injury. FRONT BIOSCI-LANDMRK 2024; 29:334. [PMID: 39344337 DOI: 10.31083/j.fbl2909334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 02/04/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is a consequence of inflammation and increased alveolar-capillary membrane permeability due to alveolar hyperdistention or elevated intrapulmonary pressure, but the precise mechanisms remain unclear. The aim of the study was to analyze the mechanism by which angiotensin converting enzyme 2 (ACE2) alleviates endoplasmic reticulum stress (ERS) and protects alveolar cells from pyroptosis in VILI by regulating angiotensin (Ang)1-7/Mas. METHODS VILI was induced in mice by mechanical ventilation by regulating the tidal volume. The alveolar cell line, A549, mimics VILI in vitro by cyclic stretch (CS). Ang (1-7) (100 nmol/L) was added to the medium. ERS was induced in cells by stimulating with tunicamycin (TM, 2 μg/mL). ERS was inhibited by tracheal instillation of 4-phenylbutyric acid (4-PBA) (1 mg/kg). ACE2's enzymatic function was activated or inhibited by subcutaneous injection of resorcinolnaphthalein (RES, 20 μg/kg) or MLN-4760 (20 μg/kg). pGLV-EF1a-GFP-ACE2 was instilled into the trachea to increase the protein expression of ACE2. The Ang (1-7) receptor, Mas, was antagonized by injecting A779 subcutaneously (80 μg/kg). RESULTS ACE2 protein levels decreased after modeling. Ang (1-7) level was decreased and Ang II was accumulated. ERS was significantly induced in VILI mice, and pyroptosis was observed in cells. When ERS was inhibited, pyroptosis under the VILI condition was significantly inhibited. Ang (1-7) alleviated ERS and pyroptosis under CS. When ERS was continuously activated, the function of Ang (1-7) in inhibiting pyroptosis was blocked. Resorcinolnaphthalein (RES) effectively promoted Ang II conversion, alleviated the Ang (1-7) level in VILI, ameliorated lung injury, and inhibited ERS and cell pyroptosis. Inhibiting ACE2's function in VILI hindered the production of Ang (1-7), promoted the accumulation of Ang II, and exacerbated ERS and pyroptosis, along with lung injury. The Mas antagonist significantly blocked the inhibitory effects of ACE2 on ERS and pyroptosis in VILI. CONCLUSIONS Reduced ACE2 expression in VILI is involved in ERS and pyroptosis-related injury. ACE2 can alleviate ERS in alveolar cells by catalyzing the production of Ang (1-7), thus inhibiting pyroptosis in VILI.
Collapse
Affiliation(s)
- Xingsheng Lin
- Department of Intensive Care Unit, Fuzhou University Affiliated Provincial Hospital, 350001 Fuzhou, Fujian, China
| | - Yingfeng Zhuang
- Department of Intensive Care Unit, Fuzhou University Affiliated Provincial Hospital, 350001 Fuzhou, Fujian, China
| | - Fengying Gao
- Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 200071 Shanghai, China
| |
Collapse
|
2
|
Pelizzo G, Calcaterra V, Baldassarre P, Marinaro M, Taranto S, Ceresola M, Capelo G, Gazzola C, Zuccotti G. The impact of hormones on lung development and function: an overlooked aspect to consider from early childhood. Front Endocrinol (Lausanne) 2024; 15:1425149. [PMID: 39371928 PMCID: PMC11449876 DOI: 10.3389/fendo.2024.1425149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
The impact of hormones on the respiratory system constitutes a multifaceted and intricate facet of human biology. We propose a comprehensive review of recent advancements in understanding the interactions between hormones and pulmonary development and function, focusing on pediatric populations. We explore how hormones can influence ventilation, perfusion, and pulmonary function, from regulating airway muscle tone to modulating the inflammatory response. Hormones play an important role in the growth and development of lung tissues, influencing them from early stages through infancy, childhood, adolescence, and into adulthood. Glucocorticoids, thyroid hormones, insulin, ghrelin, leptin, glucagon-like peptide 1 (GLP-1), retinoids, cholecalciferol sex steroids, hormones derived from adipose tissue, factors like insulin, granulocyte-macrophage colony-stimulating factor (GM-CSF) and glucagon are key players in modulating respiratory mechanics and inflammation. While ample evidence underscores the impact of hormones on lung development and function, along with sex-related differences in the prevalence of respiratory disorders, further research is needed to clarify their specific roles in these conditions. Further research into the mechanisms underlying hormonal effects is essential for the development of customizing therapeutic approaches for respiratory diseases. Understanding the impact of hormones on lung function could be valuable for developing personalized monitoring approaches in both medical and surgical pediatric settings, in order to improve outcomes and the quality of care for pediatric patients.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, Milan, Italy
| | | | - Michela Marinaro
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
| | - Silvia Taranto
- Pediatric Department, Buzzi Children’s Hospital, Milan, Italy
| | - Michele Ceresola
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
| | - Gerson Capelo
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
- Pediatric Department, Buzzi Children’s Hospital, Milan, Italy
| |
Collapse
|
3
|
Fan SY, Zhao ZC, Liu XL, Peng YG, Zhu HM, Yan SF, Liu YJ, Xie Q, Jiang Y, Zeng SZ. Metformin Mitigates Sepsis-Induced Acute Lung Injury and Inflammation in Young Mice by Suppressing the S100A8/A9-NLRP3-IL-1β Signaling Pathway. J Inflamm Res 2024; 17:3785-3799. [PMID: 38895139 PMCID: PMC11182881 DOI: 10.2147/jir.s460413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background Globally, the subsequent complications that accompany sepsis result in remarkable morbidity and mortality rates. The lung is among the vulnerable organs that incur the sepsis-linked inflammatory storm and frequently culminates into ARDS/ALI. The metformin-prescribed anti-diabetic drug has been revealed with anti-inflammatory effects in sepsis, but the underlying mechanisms remain unclear. This study aimed to ascertain metformin's effects and functions in a young mouse model of sepsis-induced ALI. Methods Mice were randomly divided into 4 groups: sham, sham+ Met, CLP, and CLP+ Met. CLP was established as the sepsis-induced ALI model accompanied by intraperitoneal metformin treatment. At day 7, the survival state of mice was noted, including survival rate, weight, and M-CASS. Lung histological pathology and injury scores were determined by hematoxylin-eosin staining. The pulmonary coefficient was used to evaluate pulmonary edema. Furthermore, IL-1β, CCL3, CXCL11, S100A8, S100A9 and NLRP3 expression in tissues collected from lungs were determined by qPCR, IL-1β, IL-18, TNF-α by ELISA, caspase-1, ASC, NLRP3, P65, p-P65, GSDMD-F, GSDMD-N, IL-1β and S100A8/A9 by Western blot. Results The data affirmed that metformin enhanced the survival rate, lessened lung tissue injury, and diminished the expression of inflammatory factors in young mice with sepsis induced by CLP. In contrast to sham mice, the CLP mice were affirmed to manifest ALI-linked pathologies following CLP-induced sepsis. The expressions of pro-inflammatory factors, for instance, IL-1β, IL-18, TNF-α, CXCL11, S100A8, and S100A9 are markedly enhanced by CLP, while metformin abolished this adverse effect. Western blot analyses indicated that metformin inhibited the sepsis-induced activation of GSDMD and the upregulation of S100A8/A9, NLRP3, and ASC. Conclusion Metformin could improve the survival rate, lessen lung tissue injury, and minimize the expression of inflammatory factors in young mice with sepsis induced by CLP. Metformin reduced sepsis-induced ALI via inhibiting the NF-κB signaling pathway and inhibiting pyroptosis by the S100A8/A9-NLRP3-IL-1β pathway.
Collapse
Affiliation(s)
- Shi-Yuan Fan
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, 410005, People’s Republic of China
| | - Zi-Chi Zhao
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, 410005, People’s Republic of China
| | - Xing-Lv Liu
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, 410005, People’s Republic of China
| | - Ying-Gang Peng
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, 410005, People’s Republic of China
| | - Hui-Min Zhu
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, 410005, People’s Republic of China
| | - Shi-Fan Yan
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410005, People’s Republic of China
| | - Yan-Juan Liu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410005, People’s Republic of China
| | - Qin Xie
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410005, People’s Republic of China
| | - Yu Jiang
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410005, People’s Republic of China
| | - Sai-Zhen Zeng
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, Hunan, 410005, People’s Republic of China
| |
Collapse
|
4
|
REN L, HAI Y, YANG X, LUO X. Yemazhui () ameliorates lipopolysaccharide-induced acute lung injury modulation of the toll-like receptor 4/nuclear factor kappa-B/nod-like receptor family pyrin domain-containing 3 protein signaling pathway and intestinal flora in rats. J TRADIT CHIN MED 2024; 44:303-314. [PMID: 38504536 PMCID: PMC10927412 DOI: 10.19852/j.cnki.jtcm.20230510.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/06/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To investigate the impact of Yemazhui (Herba Eupatorii Lindleyani, HEL) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore its underlying mechanism in vivo. METHODS The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry method. Then, HEL was found to suppress LPS-induced ALI in vivo. Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups: control, LPS, Dexamethasone (Dex), HEL low dose 6 g/kg (HEL-L), HEL medium dose 18 g/kg (HEL-M) and HEL high dose 54 g/kg (HEL-H) groups. The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model. Leukocyte counts, lung wet/dry weight ratio, as well as myeloperoxidase (MPO) activity were determined followed by the detection with hematoxylin and eosin staining, enzyme linked immunosorbent assay, quantitative real time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. Besides, to explore the effect of HEL on ALI-mediated intestinal flora, we performed 16s rRNA sequencing analysis of intestinal contents. RESULTS HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance. Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats, inhibited leukocytes exudation and MPO activity, and improved the pathological injury of lung tissue. In addition, HEL reduced the expression of tumor necrosis factor-alpha, interleukin-1beta (IL-1β) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid and serum, and inhibited nuclear displacement of nuclear factor kappa-B p65 (NF-κBp65). And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88, NF-κBp65, phosphorylated inhibitor kappa B alpha (phospho-IκBα), nod-like receptor family pyrin domain-containing 3 protein (NLRP3), IL-1β, and interleukin-18 (IL-18) in lung tissue, and regulated intestinal flora disturbance. CONCLUSIONS In summary, our findings revealed that HEL has a protective effect on LPS-induced ALI in rats, and its mechanism may be related to inhibiting TLR4/ NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.
Collapse
Affiliation(s)
- Li REN
- 1 Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yang HAI
- 2 College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xue YANG
- 1 Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xianqin LUO
- 1 Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Zhang S, Li S, Liu Q, Wei D, Huang L, Yin H, Yi M. Electroacupuncture alleviates ventilator-induced lung injury in mice by inhibiting the TLR4/NF-κB signaling pathway. BMC Anesthesiol 2024; 24:37. [PMID: 38263038 PMCID: PMC10804525 DOI: 10.1186/s12871-024-02408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE This study was aimed to explore the protective effect of electroacupuncture (EA) pretreatment at Zusanli point (ST36) on ventilation-induced lung injury (VILI) and its potential anti-inflammatory mechanism. METHODS High tidal volume ventilation was used to induce the VILI in mice, and EA pretreatment at ST36 was given for 7 consecutive days. The wet/dry ratio and pathological injury score of lung tissue, and total protein content of pulmonary alveolar lavage fluid (BALF) were detected after 4 h of mechanical ventilation (MV). Meanwhile, the expressions of TLR4 and NF- κB in lung tissue were evaluated by Western Blot, and the inflammatory factors in lung tissue were detected by ELISA. RESULTS After four hours of mechanical ventilation, mice with ventilator-induced lung injury showed significant increases in lung wet/dry ratio, tissue damage scores, and protein content in bronchoalveolar lavage fluid. Pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) and TLR4/NF-κB expression levels in the lung were also markedly elevated (P < 0.05). Conversely, ST36 acupuncture point pre-treatment significantly reduced these parameters (P < 0.05). CONCLUSION EA pretreatment at ST36 could alleviate the inflammatory response for VILI via inhibiting TLR4/NF- κB pathway.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Anesthesiology, The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, Sichuan Province, China
| | - Shuji Li
- Department of Anesthesiology, North Sichuan Medical College, Chengdu Fifth People's Hospital, Chengdu, 611137, Sichuan Province, China
| | - Qingmei Liu
- Department of Anesthesiology, North Sichuan Medical College, Chengdu Fifth People's Hospital, Chengdu, 611137, Sichuan Province, China
| | - Daneng Wei
- Department of Anesthesiology, The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, Sichuan Province, China
| | - Liping Huang
- Department of Anesthesiology, The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, Sichuan Province, China
| | - Hong Yin
- Department of Anesthesiology, The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, Sichuan Province, China.
| | - Mingliang Yi
- Department of Anesthesiology, The Second Clinical Medical College, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, Sichuan Province, China.
| |
Collapse
|
6
|
Karami S, Khalaj F, Sotoudeh H, Tajabadi Z, Shahidi R, Habibi MA, Sattari MS, Azimi A, Forouzannia SA, Rafiei R, Reihani H, Nemati R, Teimori S, Khalaji A, Sarmadi V, Dadjou A. Acute Necrotizing Encephalopathy in Adult Patients With COVID-19: A Systematic Review of Case Reports and Case Series. J Clin Neurol 2023; 19:597-611. [PMID: 37455513 PMCID: PMC10622717 DOI: 10.3988/jcn.2022.0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 02/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute necrotizing encephalopathy (ANE) is a rare neurological disorder that is often associated with viral infections. Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a few COVID-19-associated ANE cases have been reported. Since very little is known about ANE, the present study aimed to determine the clinical, biochemical, and radiological characteristics of affected patients. METHODS A search was conducted on PubMed, Scopus, Embase, and Web of Science databases for articles published up to August 30, 2022 using relevant keywords. Case reports and series in the English language that reported ANE in adult patients with COVID-19 confirmed by reverse transcription polymerase chain reaction were included in this study. Data on the demographic, clinical, laboratory, and radiological characteristics of patients were extracted and analyzed using the SPSS software (version 26). RESULTS The study included 30 patients (18 males) with COVID-19 and ANE who were aged 49.87±18.68 years (mean±standard deviation). Fever was the most-prevalent symptom at presentation (66.7%). Elevated C-reactive protein was observed in the laboratory assessments of 13 patients. Computed tomography and magnetic resonance imaging were the most-common radiological modalities used for brain assessments. The most commonly prescribed medications were methylprednisolone (30%) and remdesivir (26.7%). Sixteen patients died prior to discharge. CONCLUSIONS The diagnosis of COVID-19-associated ANE requires a thorough knowledge of the disease. Since the clinical presentations of ANE are neither sensitive nor specific, further laboratory and brain radiological evaluations will be needed to confirm the diagnosis. The suspicion of ANE should be raised among patients with COVID-19 who present with progressive neurological symptoms.
Collapse
Affiliation(s)
- Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fattaneh Khalaj
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Houman Sotoudeh
- Department of Radiology and Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Shahidi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Amir Azimi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Forouzannia
- Department of Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Rafiei
- Department of Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reihani
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Nemati
- Department of Neurology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Soraya Teimori
- Young Researchers and Elites Club, Faculty of Medicine, Islamic Azad University, Yazd Branch, Iran
| | | | - Vida Sarmadi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Dadjou
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
7
|
Yang Z, Wu W, Yu Y, Liu H. Atosiban-induced acute pulmonary edema: A rare but severe complication of tocolysis. Heliyon 2023; 9:e15829. [PMID: 37305518 PMCID: PMC10256901 DOI: 10.1016/j.heliyon.2023.e15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Atosiban is commonly used to delay premature labor in pregnant women and is thought to have few side effects. Objectives To report a case of acute pulmonary edema (APE) following administration of atosiban and conduct a systematic review to identify common characteristics and risk factors of atosiban-associated APE. Methods Searches were performed in Pubmed, Embase, and Web of Science using the keyword "Atosiban" combined with the terms "Pulmonary edema" or "Dyspnea" or "Hypoxia" on 9th July 2022. Only case reports of atosiban-associated APE were included without language restrictions. Data were extracted from the reports, and median, range, and percentages were calculated as applicable. The risk of bias was assessed using the Joanna Briggs Institute critical appraisal checklist for case reports. Results Seven cases of atosiban-associated APE were included in the systematic review, including our case. APE occurred at a median gestational age of 32 + 6 weeks. Most patients were nulliparous (6/7, 85.7%) and were in multiple pregnancies (5/7, 71.4%). All patients were prescribed antenatal corticosteroids and tocolytics, with three (42.9%) receiving only atosiban and four (57.1%) receiving atosiban and other tocolytics. The median interval from starting atosiban administration to APE onset was about 40 h, and three patients (42.9%) showed symptoms 2-10 h after the end of atosiban treatment. Radiographic examinations (chest X-ray and/or computer tomography scan) confirmed APE in all patients and pleural effusion in four patients (57.1%). Five patients (71.4%) underwent emergency cesarean section, one patient (14.3%) with twin pregnancy had vaginal delivery with the help of suction cup and forceps, and another patient (14.3%) continued the pregnancy. All patients recovered well after administration of oxygen, diuresis, and other supportive therapy. Conclusion Atosiban may cause acute pulmonary edema in patients with underlying risk factors. This complication remains rare, but caution during tocolytic treatment using atosiban is recommended.
Collapse
Affiliation(s)
| | | | | | - Haiyan Liu
- Corresponding author. 419, Fangxie Road, Huangpu District, Shanghai, China.
| |
Collapse
|
8
|
Liu M, Zhang Y, Yan J, Wang Y. Aerobic exercise alleviates ventilator-induced lung injury by inhibiting NLRP3 inflammasome activation. BMC Anesthesiol 2022; 22:369. [PMID: 36456896 PMCID: PMC9714243 DOI: 10.1186/s12871-022-01874-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is caused by stretch stimulation and other factors related to mechanical ventilation (MV). NOD-like receptor protein 3 (NLRP3), an important innate immune component, is strongly associated with VILI. This study aimed to investigate the effect and mechanisms of aerobic exercise (EX) on VILI. METHODS To test the effects of the PKC inhibitor bisindolylmaleimide I on PKC and NLRP3, male C57BL/6 mice (7 weeks old, 19 ~ 23 g) were randomly divided into four groups: control group(C), bisindolylmaleimide I-pretreated group(B), MV group, and bisindolylmaleimide I-pretreated + MV (B + MV) group. The mice were pretreated with bisindolylmaleimide I through intraperitoneal injection (0.02 mg/kg) 1 h before MV. MV was performed at a high tidal volume (30 ml/kg). To explore the ameliorative effect of EX on VILI, the mice were randomly divided into C group, MV group, EX group and EX + MV group and subjected to either MV or 5 weeks of EX training. After ventilation, haematoxylin-eosin (HE) staining and wet/dry weight ratio was used to assess lung pathophysiological changes. PKCɑ, P-PKCɑ, ASC, procaspase-1, caspase-1, pro-IL-1β, IL-1β, NLRP3 and occludin (tight junction protein) expression in lung tissues was determined by Western blotting. The level of IL-6 in alveolar lavage fluid was determined by ELISA. RESULTS NLRP3, P-PKCɑ, and PKCɑ levels were inceased in MV group, but bisindolylmaleimide I treatment reversed these changes. Inhibition of PKC production prevented NLRP3 activation. Moreover, MV increased ASC, procaspase-1, caspase-1, pro-IL-1β, and IL1β levels and decreased occludin levels, but EX alleviated these changes. HE staining and lung injury scoring confirmed an absence of obvious lung injury in C group and EX group. Lung injury was most severe in MV group but was improved in EX + MV group. Overall, these findings suggest that MV activates the NLRP3 inflammasome by activating PKCɑ and inducing occludin degradation, while Exercise attenuates NLRP3 inflammasome and PKCɑ activation. Besides, exercise improves cyclic stretch-induced degradation of occludin. CONCLUSION PKC activation can increase the level of NLRP3, which can lead to lung injury. Exercise can reduce lung injury by inhibiting PKCɑ and NLRP3 activation. Exercise maybe a potential measure for clinical prevention of VILI.
Collapse
Affiliation(s)
- Mengjie Liu
- grid.27255.370000 0004 1761 1174Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012 Jinan, Shandong China ,grid.452422.70000 0004 0604 7301Department of Anesthesiology and Perioperative Medicine, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014 Jinan, Shandong China
| | - Yaqiang Zhang
- grid.411614.70000 0001 2223 5394Beijing Sport University, Xinxi Road, Haidian District, 100084 Beijing, China
| | - Jie Yan
- grid.452422.70000 0004 0604 7301Department of Anesthesiology and Perioperative Medicine, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014 Jinan, Shandong China
| | - Yuelan Wang
- grid.27255.370000 0004 1761 1174Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 250012 Jinan, Shandong China ,grid.452422.70000 0004 0604 7301Department of Anesthesiology and Perioperative Medicine, Shandong Institute of Anesthesia and Respiratory Intensive Care Medicine, The First Affiliated Hospital of Shandong First Medical University, 250014 Jinan, Shandong China ,grid.27255.370000 0004 1761 1174Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766, Jingshi Road, 250014 Jinan, China
| |
Collapse
|