1
|
Dai HR, Liu Y, Guo HL, Lu KY, Hu YH, Zhang YY, Wang J, Ding XS, Jiao Z, Cheng R, Chen F. A small step toward precision dosing of caffeine in preterm infants: An external evaluation of published population pharmacokinetic models. Eur J Pharm Biopharm 2024; 204:114484. [PMID: 39251033 DOI: 10.1016/j.ejpb.2024.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Several population pharmacokinetic (PopPK) models of caffeine in preterm infants have been published, but the extrapolation of these models to facilitate model-informed precision dosing (MIPD) in clinical practice is uncertain. This study aimed to comprehensively evaluate their predictive performance using an external, independent dataset. METHODS Data used for external evaluation were based on an independent cohort of preterm infants. Currently available PopPK models for caffeine in preterm infants were identified and re-established. Prediction- and simulation-based diagnostics were used to assess model predictability. The influence of prior information was assessed using Bayesian forecasting. RESULTS 120 plasma samples from 76 preterm infants were included in the evaluation dataset. Twelve PopPK models of caffeine in preterm infants were re-established based on our previously published study. Although two models showed superior predictive performance, none of the 12 PopPK models met all the clinical acceptance criteria of these external evaluation items. Besides, the external predictive performances of most models were unsatisfactory in prediction- and simulation-based diagnostics. Nevertheless, the application of Bayesian forecasting significantly improved the predictive performance, even with only one prior observation. CONCLUSIONS Two models that included the most covariates had the best predictive performance across all external assessments. Inclusion of different covariates, heterogeneity of preterm infant characteristics, and different study designs influenced predictive performance. Thorough evaluation is needed before these PopPK models can be implemented in clinical practice. The implementation of MIPD for caffeine in preterm infants could benefit from the combination of PopPK models and Bayesian forecasting as a helpful tool.
Collapse
Affiliation(s)
- Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun Liu
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ke-Yu Lu
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jie Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Rui Cheng
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
2
|
Wong PK, Syafruddin SE, Cheah FC, Azmi N, Ng PY, Chua EW. Introduction of a single-nucleotide variant, rs16851030, into the ADORA1 gene increased cellular susceptibility to hypoxia. Per Med 2024; 21:353-366. [PMID: 39440484 DOI: 10.1080/17410541.2024.2412514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Aim: Rs16851030, a single-nucleotide variant located in the 3'-untranslated region of the ADORA1 gene, has been proposed as a potential marker of caffeine sensitivity in apnea of prematurity. Besides, it is associated with aspirin-induced asthma and the development of acute chest syndrome. However, its functional significance is still unconfirmed. This study aimed to elucidate the functional impact of rs16851030 by using CRISPR/Cas9 approach to induce the DNA variant and attendant physiological changes.Methods: Rs16851030 was introduced into HEK293 cells via homology-directed repair (HDR). Edited cells were fluorescence-enriched, sorted, isolated, and expanded into single-cell-derived clones. The edit was confirmed by Sanger sequencing. RNA sequencing was used to analyze affected pathways.Results: Rs16851030-mutant cells showed increased susceptibility to hypoxia, a condition related to apnea of prematurity. After 24 h of hypoxia, the viability of mutant clones 1 and 2 was low compared with wild-type cells (75.45% and 74.47% vs. 96.34%). RNA sequencing revealed transcriptomic changes linked to this increased vulnerability.Conclusion: Rs16851030 impairs cellular resistance to hypoxia, suggesting its role in conditions like apnea of prematurity. Further research should investigate the molecular mechanisms and transcriptomic alterations caused by rs16851030 under hypoxic conditions.
Collapse
Affiliation(s)
- Poh Kuan Wong
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
- Faculty of Pharmacy, MAHSA University, Jenjarom, 42610, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Fook Choe Cheah
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| | - Norazrina Azmi
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Pei Yuen Ng
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Eng Wee Chua
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
3
|
Al-Hersh E, Abushanab D, AbouNahia F, Rainkie D, Al Hail M, Abdulrouf PV, El-Kassem W, Al-Badriyeh D. A cost-effectiveness analysis for high versus standard (low) dose caffeine for the treatment of apnea in neonatal intensive care unit. J Pharm Policy Pract 2024; 17:2345218. [PMID: 38798766 PMCID: PMC11123466 DOI: 10.1080/20523211.2024.2345218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Objective Preterm babies are prone to experiencing apnea of prematurity (AOP), mostly characterised by a pause in breathing lasting a minimum of 20 seconds. Recent literature supported higher maintenance doses of caffeine, indicating benefits. This study evaluated the cost-effectiveness of high maintenance dose (HD) versus low maintenance dose (LD) caffeine for AOP in neonates. Methods From the hospital perspective of Hamad Medical Corporation (HMC), Qatar, a cost-effectiveness decision-analytic model was constructed to follow the use of a HD maintenance caffeine of 20 mg/kg/dose versus a LD maintenance caffeine of 10 mg/kg/dose, in a simulated cohort of AOP neonates, over a therapy follow-up duration of six weeks, until neonatal intensive care (NICU) discharge. The clinical inputs were primarily literature-based, while the resource cost and utilisation were locally extracted in HMC. The cost-effectiveness outcome measure was calculated per therapy success, defined as survival with no apnea and successful extubation removal within 72 hours, with or without adverse events. One-way and multivariate sensitivity analyses were performed to confirm the robustness of the results. Results With 0.23 (95% CI, 0.23-0.23) enhancement in success rate, at United States dollar (US$) 3869 (95% CI, US$ 3823-3915) added infant cost, the HD caffeine was between dominant (34.8%) and cost-effective (63.7%), with an average incremental cost-effectiveness ratio of US $16,895 (95% CI, US$ 15,242-18,549) relative to LD caffeine per additional case of success. The hospitalisation contributed the most to the total infant cost, and the probability of patent ductus arteriosus was the model input that influenced the results most. Conclusion This is the first literature economic evaluation of caffeine for AOP. Despite increasing the cost of therapy, HD maintenance caffeine seems to be a cost-effective alternative to LD caffeine in Qatar. Our results support the recent global trends of increased use of HD caffeine for AOP in NICU.
Collapse
Affiliation(s)
| | - Dina Abushanab
- Department of Pharmacy, Hamad Medical Corporation, Doha, Qatar
| | - Fouad AbouNahia
- Neonatal Intensive Care Unit Department, Hamad Medical Corporation, Doha, Qatar
| | - Daniel Rainkie
- College of Pharmacy, Dalhousie University, Halifax, Canada
| | - Moza Al Hail
- Department of Pharmacy, Hamad Medical Corporation, Doha, Qatar
| | | | | | | |
Collapse
|
4
|
Lewis P, Wild U, Pillow JJ, Foster RG, Erren TC. A systematic review of chronobiology for neonatal care units: What we know and what we should consider. Sleep Med Rev 2024; 73:101872. [PMID: 38000120 DOI: 10.1016/j.smrv.2023.101872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
A Cochrane 2016 review indicated cycled light might benefit neonatal health in hospital. We systematically reviewed chronobiological factors for neonatal health in hospital units, identifying 56 relevant studies on light-dark cycles, feeding, noise, massage therapy, rooming-in, incubators vs. cribs, neonatal units vs. homes, and time-of-day of birth. Empirical evidence for benefits from chronobiology is weaker than expected, including light. Mechanisms of clinical benefits are unclear (e.g., changes to sleep/activity vs. other circadian-regulated processes). Regarding light, studies concerning sleep and circadian-related outcomes predominate; yet, neonatologists may be more interested in weight gain and time spent in hospital. Generalisability of findings is limited as most studies targeted neonates in stable condition and without congenital anomalies. Further research is needed, in particular concerning potential circadian entraining signals such as timing of meals or medications. Longer-term outcomes (regarding e.g., neurodevelopment and infection), and who may be at risk from time-of-day of birth effects and why remain to be explored. Overall, there is promise and ample scope for research into how chronobiological factors affect health in hospitalised neonates.
Collapse
Affiliation(s)
- Philip Lewis
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, Cologne, Germany.
| | - Ursula Wild
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, Cologne, Germany
| | - J Jane Pillow
- School of Human Sciences, The University of Western Australia and Telethon Kids Institute, Perth, Western Australia, Australia; Telethon Kids Institute, Perth, Western Australia, Australia
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas C Erren
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Dai HR, Guo HL, Wang WJ, Shen X, Cheng R, Xu J, Hu YH, Ding XS, Chen F. From "wet" matrices to "dry" blood spot sampling strategy: a versatile LC-MS/MS assay for simultaneous monitoring caffeine and its three primary metabolites in preterm infants. Clin Chem Lab Med 2024; 62:97-110. [PMID: 37435827 DOI: 10.1515/cclm-2023-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVES To update traditional "wet" matrices to dried blood spot (DBS) sampling, based on the liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) technique, and develop a method for simultaneous analyzing caffeine and its three primary metabolites (theobromine, paraxanthine, and theophylline), supporting routine therapeutic drug monitoring (TDM) for preterm infants. METHODS DBS samples were prepared by a two-step quantitative sampling method, i.e., volumetric sampling of a quantitative 10 μL volume of peripheral blood and an 8 mm diameter whole punch extraction by a methanol/water (80/20, v/v) mixture containing 125 mM formic acid. Four paired stable isotope labeled internal standards and a collision energy defect strategy were applied for the method optimization. The method was fully validated following international guidelines and industrial recommendations on DBS analysis. Cross validation with previously developed plasma method was also proceeded. The validated method was then implemented on the TDM for preterm infants. RESULTS The two-step quantitative sampling strategy and a high recovery extraction method were developed and optimized. The method validation results were all within the acceptable criteria. Satisfactory parallelism, concordance, and correlation were observed between DBS and plasma concentrations of the four analytes. The method was applied to provide routine TDM services to 20 preterm infants. CONCLUSIONS A versatile LC-MS/MS platform for simultaneous monitoring caffeine and its three primary metabolites was developed, fully validated, and successfully applied into the routine clinical TDM practices. Sampling method switching from "wet" matrices to "dry" DBS will facilitate and support the precision dosing of caffeine for preterm infants.
Collapse
Affiliation(s)
- Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Wei-Jun Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Xian Shen
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Rui Cheng
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
6
|
Mota-Rojas D, Villanueva-García D, Hernández-Ávalos I, Casas-Alvarado A, Domínguez-Oliva A, Lezama-García K, Miranda-Cortés A, Martínez-Burnes J. Cardiorespiratory and Neuroprotective Effects of Caffeine in Neonate Animal Models. Animals (Basel) 2023; 13:1769. [PMID: 37889643 PMCID: PMC10252037 DOI: 10.3390/ani13111769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Caffeine is widely used to improve neonatal health in animals with low vitality. Due to its pharmacokinetics and pharmacodynamics, caffeine stimulates the cardiorespiratory system by antagonism of adenosine receptors and alteration in Ca+2 ion channel activity. Moreover, the availability of intracellular Ca+2 also has positive inotropic effects by increasing heart contractibility and by having a possible positive effect on neonate vitality. Nonetheless, since neonatal enzymatic and tissular systems are immature at birth, there is a controversy about whether caffeine is an effective therapy for newborns. This review aims to analyze the basic concepts of caffeine in neonatal animal models (rat and mouse pups, goat kids, lambs, and piglets), and it will discuss the neuroprotective effect and its physiological actions in reducing apnea in newborns.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Dina Villanueva-García
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico; (I.H.-Á.)
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Agatha Miranda-Cortés
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico; (I.H.-Á.)
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| |
Collapse
|
7
|
Dai HR, Guo HL, Hu YH, Xu J, Ding XS, Cheng R, Chen F. Precision caffeine therapy for apnea of prematurity and circadian rhythms: New possibilities open up. Front Pharmacol 2022; 13:1053210. [PMID: 36532766 PMCID: PMC9753576 DOI: 10.3389/fphar.2022.1053210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2024] Open
Abstract
Caffeine is the globally consumed psychoactive substance and the drug of choice for the treatment of apnea of prematurity (AOP), but its therapeutic effects are highly variable among preterm infants. Many of the molecular underpinnings of the marked individual response have remained elusive yet. Interestingly, the significant association between Clock gene polymorphisms and the response to caffeine therapy offers an opportunity to advance our understanding of potential mechanistic pathways. In this review, we delineate the functions and mechanisms of human circadian rhythms. An up-to-date advance of the formation and ontogeny of human circadian rhythms during the perinatal period are concisely discussed. Specially, we summarize and discuss the characteristics of circadian rhythms in preterm infants. Second, we discuss the role of caffeine consumption on the circadian rhythms in animal models and human, especially in neonates and preterm infants. Finally, we postulate how circadian-based therapeutic initiatives could open new possibilities to promote precision caffeine therapy for the AOP management in preterm infants.
Collapse
Affiliation(s)
- Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Cheng
- Neonatal Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Dai HR, Liu Y, Lu KY, He X, Guo HL, Hu YH, Xu J, Ding XS, Chen F, Cheng R, Jiao Z. Population pharmacokinetic modeling of caffeine in preterm infants with apnea of prematurity: New findings from concomitant erythromycin and AHR genetic polymorphisms. Pharmacol Res 2022; 184:106416. [PMID: 36029933 DOI: 10.1016/j.phrs.2022.106416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 11/26/2022]
Abstract
Current standard-dose caffeine therapy results in significant intersubject variability. The aims of this study were to develop and evaluate population pharmacokinetic (PPK) models of caffeine in preterm infants through comprehensive screening of covariates and then to propose model-informed precision dosing of caffeine for this population. A total of 129 caffeine concentrations from 96 premature neonates were incorporated into this study. Comprehensive medical record and genotype data of these neonates were collected for analysis. PPK modeling was performed by a nonlinear mixed effects modeling program (NONMEM). Final models based on the current weight (CW) or body surface area (BSA) were evaluated via multiple graphic and statistical methods. The model-informed dosing regimen was performed through Monte Carlo simulations. In addition to CW or BSA, postnatal age, coadministration with erythromycin (ERY), and aryl hydrocarbon receptor coding gene (AHR) variant (rs2158041) were incorporated into the final PPK models. Multiple evaluation results showed satisfactory prediction performance and stability of the CW- and BSA-based models. Monte Carlo simulations demonstrated that trough concentrations of caffeine in preterm infants would be affected by concomitant ERY therapy and rs2158041 under varying dose regimens. For the first time, ERY and rs2158041 were found to be associated with the clearance of caffeine in premature infants. Similar predictive performance and stability were obtained for both CW- and BSA-based PPK models. These findings provide novel insights into caffeine precision therapy for preterm infants.
Collapse
Affiliation(s)
- Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun Liu
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ke-Yu Lu
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xin He
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Rui Cheng
- Neonatal Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
9
|
谢 江, 林 新. [Recent research on gene polymorphisms related to caffeine therapy in preterm infants with apnea of prematurity]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:832-837. [PMID: 35894202 PMCID: PMC9336620 DOI: 10.7499/j.issn.1008-8830.2203134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Apnea of prematurity (AOP) is one of the common diseases in preterm infants. The main cause of AOP is immature development of the respiratory control center. If AOP is not treated timely and effectively, it will lead to respiratory failure, hypoxic brain injury, and even death in severe cases. Caffeine is the first choice for the treatment of AOP, but its effectiveness varies in preterm infants. With the deepening of AOP research, more and more genetic factors have been confirmed to play important roles in the pathogenesis and treatment of AOP; in particular, the influence of single nucleotide polymorphism on the efficacy of caffeine has become a research hotspot in recent years. This article reviews the gene polymorphisms that affect the efficacy of caffeine, in order to provide a reference for individualized caffeine therapy. Citation.
Collapse
|