1
|
Chen J, Ou G, Gu W, Shi J, Lyu R, Wu X, Wang J, Liu C. Role in Preventing Alcoholic Liver Disease Progression: A Comparative Study of Whole-Component Finger Citron Essential Oil and Its Major Component D-Limonene. Nutrients 2025; 17:1255. [PMID: 40219012 PMCID: PMC11990129 DOI: 10.3390/nu17071255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Chronic alcohol overconsumption triggers alcohol liver injury, and therapeutic strategies targeting alcohol-triggered oxidative stress and hepatic inflammatory responses represent potential approaches to ameliorating alcohol-related hepatotoxicity. This study aimed to determine the hepatoprotective activity of finger citron essential oil (FCEO) in alcoholic liver disease (ALD)-afflicted rats and explore its underlying mechanisms. In order to identify the effective components, we compared the effects of FCEO and D-limonene. Methods: The regulatory effects of FCEO on metabolic enzymes were systematically evaluated through in vitro experiments. In vivo studies were conducted to investigate and compare the hepatoprotective effects of FCEO and D-limonene. Staining methods, assay kits, and Western Blot were used to determine the roles of FCEO and D-limonene in the ALD rats. Results: We found that FCEO downregulated phase I metabolic enzymes and upregulated phase II metabolic enzymes in Buffalo Rat Liver-3A (BRL-3A) cells. FCEO and/or D-limonene intervention reduced transaminase levels in ALD rats and effectively alleviated inflammatory cell infiltration and lipid droplet accumulation in their liver tissue. Additionally, FCEO and D-limonene played a regulatory role in oxidative stress and inflammation-related pathways such as the MAPK/Nrf2 and NF-κB/AMPK pathways. FCEO was superior to D-limonene as an antioxidant in alleviating alcoholic liver injury. Conclusions: This study revealed the alleviative effects and mechanisms of FCEO on alcoholic liver injury, demonstrating better efficacy compared to its monomer, thus providing a strategy for the development and utilization of finger citron resources.
Collapse
Affiliation(s)
- Jingxin Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Genghua Ou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Wenting Gu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Jian Shi
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Ruiying Lyu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Xueping Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Junming Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| |
Collapse
|
2
|
Deng Y, Cui J, Jiang Y, Zhang J, Jiang J, Zhang Q, Hu Y. Exploring the Nutraceutical Potential of a Food-Medicine Compound for Metabolic-Associated Fatty Liver Disease via Lipidomics and Network Pharmacology. Foods 2025; 14:1257. [PMID: 40238509 PMCID: PMC11988326 DOI: 10.3390/foods14071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a prevalent global health issue closely tied to dietary habits, impacting a significant portion of the adult population. MAFLD is linked to various metabolic disorders, elevating risks of cirrhosis and hepatocellular carcinoma and severely impacting patients' quality of life. While therapeutic research has progressed, effective food-based interventions remain scarce. Natural products, rich in bioactive compounds and offering health benefits, have gained attention for their potential in managing MAFLD. This study employed network pharmacology and lipidomics to investigate the therapeutic effects of Food and Medicine Homology (FMH) on MAFLD using a high-fat-diet-induced HepG2 cell model. We identified 169 potential bioactive components from Radix Puerariae, Hericium erinaceus, Rhizoma Curcumae longae, Camellia oleifera, and Hoveniae Dulcis Semen, constructing a drug-component-target network that highlighted 34 key targets. The characteristic components of this FMH compound solution (HSD) were identified using UPLC-QTOF-MS/MS. In vitro, HSD significantly reduced intracellular lipid accumulation, decreased inflammatory markers, and mitigated hepatocyte damage. Lipidomics analysis revealed significant alterations in lipid metabolites, suggesting HSD's potential to modulate sphingolipid and glycerophospholipid metabolism, thus improving MAFLD outcomes. This research underscores the critical role of the FMH complex in modulating lipid metabolism and inflammatory pathways, offering valuable insights for developing FMH-based dietary supplements and functional foods to alleviate MAFLD. By leveraging the synergistic effects of natural compounds, our findings hold significant implications for innovative nutritional strategies in managing this prevalent metabolic disorder.
Collapse
Affiliation(s)
- Yuru Deng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; dengyuru-@njtech.edu.cn (Y.D.); (J.Z.); (J.J.); (Y.H.)
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; dengyuru-@njtech.edu.cn (Y.D.); (J.Z.); (J.J.); (Y.H.)
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
| | - Yuxuan Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; dengyuru-@njtech.edu.cn (Y.D.); (J.Z.); (J.J.); (Y.H.)
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; dengyuru-@njtech.edu.cn (Y.D.); (J.Z.); (J.J.); (Y.H.)
| | - Quanbin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; dengyuru-@njtech.edu.cn (Y.D.); (J.Z.); (J.J.); (Y.H.)
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
3
|
Liao Y, Lv F, Quan T, Wang C, Li J. Flavonoids in natural products for the therapy of liver diseases: progress and future opportunities. Front Pharmacol 2024; 15:1485065. [PMID: 39512816 PMCID: PMC11540641 DOI: 10.3389/fphar.2024.1485065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
The liver is the largest, important organ and the site for essential biochemical reactions in the human body. It has the function to detoxify toxic substances and synthesize useful biomolecules. Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. For centuries, flavonoids and their preparations which have the beneficial health effects in chronic diseases have been used to treat various human illnesses. Flavonoids mainly include flavones, isoflavones, flavanols, dihydroflavones, dihydroflavonols, anthocyanins and chalcones. The primary objective of this review is to assess the efficacy and safety of flavonoids, mainly from a clinical point of view and considering clinically relevant end-points. We summarized the recent progress in the research of hepatoprotective and molecular mechanisms of different flavonoids bioactive ingredients and also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in flavonoids and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
Affiliation(s)
- Yanmei Liao
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Fei Lv
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Tianwen Quan
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Jike Li
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
4
|
He YX, Liu MN, Wu H, Lan Q, Liu H, Mazhar M, Xue JY, Zhou X, Chen H, Li Z. Puerarin: a hepatoprotective drug from bench to bedside. Chin Med 2024; 19:139. [PMID: 39380120 PMCID: PMC11460048 DOI: 10.1186/s13020-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
Pueraria is a time-honored food and medicinal plant, which is widely used in China. Puerarin, the main component extracted from pueraria, has a variety of pharmacological characteristics. In recent years, puerarin has received increasing attention for its significant hepatoprotective effects, such as metabolic dysfunction-associated steatotic liver disease, alcohol-related liver disease, and hepatic carcinoma. This paper explores the pharmacological effects of puerarin on various liver diseases through multiple mechanisms, including inflammation factors, oxidative stress, lipid metabolism, apoptosis, and autophagy. Due to its restricted solubility, pharmacokinetic studies revealed that puerarin has a low bioavailability. However, combining puerarin with novel drug delivery systems can improve its bioavailability. Meanwhile, puerarin has very low toxicity and high safety, providing a solid foundation for its further. In addition, this paper discusses puerarin's clinical trials, highlighting its unique advantages. Given its excellent pharmacological effects, puerarin is expected to be a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Yi-Xiang He
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meng-Nan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hao Wu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qi Lan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hao Liu
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Maryam Mazhar
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jin-Yi Xue
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xin Zhou
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Chen
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhi Li
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Sun J, Liu Y, Zhang J, Shi H, Jiang R, Guo M, Liu Y, Liu B, Wang N, Ma R, Zhang D, Zhang F, Wang S, Wu Y. Puerarin Attenuates Insulin Resistance by Inhibiting Endoplasmic Reticulum Stress and Suppresses Inflammation by Modulating the JNK and IKKβ/NF-κB Pathways in Epididymal White Adipose Tissue of Mice on a High-Fat Diet. Mol Nutr Food Res 2024; 68:e2400003. [PMID: 39072916 DOI: 10.1002/mnfr.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/16/2024] [Indexed: 07/30/2024]
Abstract
SCOPE Obesity is associated with insulin resistance (IR), which is characterized by endoplasmic reticulum (ER) stress in multiple organs. ER stress in adipose tissue causes metabolic disturbances and activates inflammatory signaling pathways. Puerarin, an isoflavone extracted from Pueraria lobata, exhibits antioxidant, anti-inflammatory, and antidiabetic effects. This study explores the potential mechanisms underlying puerarin's role in mitigating insulin resistance in high-fat diet (HFD)-induced obese mice. METHODS AND RESULTS In this study, insulin resistant in mice is induced by a high-fat diet, followed by treatment with puerarin. The results demonstrate that puerarin effectively attenuates insulin resistance, including weight loss, improvement of glucose tolerance and insulin sensitivity, and activation of insulin signaling pathway. Additionally, puerarin administration suppresses ER stress by down-regulation of ATF6, ATF4, CHOP, GRP78 expressions in epididymal white adipose tissue (eWAT), along with decreased phosphorylation IRE1α, PERK, and eIF2α. Furthermore, puerarin exerts anti-inflammatory effects by inhibiting JNK and IKKβ/NF-κB pathways, leading to reduction of TNF-α and IL-6. CONCLUSION These findings suggest that puerarin mitigates insulin resistance by inhibiting ER stress and suppressing inflammation through the JNK and IKKβ/NF-κB pathways. This highlights the promising clinical application of puerarin in the treatment of insulin resistance.
Collapse
Affiliation(s)
- Jie Sun
- Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian, 116044, China
| | - Yan Liu
- Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian, 116044, China
| | - Jinjin Zhang
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, China
| | - Huilin Shi
- Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian, 116044, China
| | - Rujiao Jiang
- Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian, 116044, China
| | - Meihua Guo
- Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian, 116044, China
| | - Yilin Liu
- College of Basic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Bo Liu
- Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian, 116044, China
| | - Ning Wang
- Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian, 116044, China
| | - Rui Ma
- Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian, 116044, China
| | - Danna Zhang
- Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian, 116044, China
| | - Fang Zhang
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, China
| | - Shujing Wang
- College of Basic Medicine, Dalian Medical University, Dalian, 116044, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, College of Integrative Medicine, National Center of Genetically Engineered Animal Models for International Research, Liaoning Province Key Lab of Genetically Engineered Animal Models, Dalian Medical University, Dalian, 116044, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, China
| |
Collapse
|
6
|
Yang F, Gao H, Niu Z, Ni Q, Zhu H, Wang J, Lu J. Puerarin protects the fatty liver from ischemia-reperfusion injury by regulating the PI3K/AKT signaling pathway. Braz J Med Biol Res 2024; 57:e13229. [PMID: 38381885 PMCID: PMC10880884 DOI: 10.1590/1414-431x2024e13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
The incidence of non-alcoholic fatty liver (NAFLD) remains high, and many NAFLD patients suffer from severe ischemia-reperfusion injury (IRI). Currently, no practical approach can be used to treat IRI. Puerarin plays a vital role in treating multiple diseases, such as NAFLD, stroke, diabetes, and high blood pressure. However, its role in the IRI of the fatty liver is still unclear. We aimed to explore whether puerarin could protect the fatty liver from IRI. C57BL/6J mice were fed with a high-fat diet (HFD) followed by ischemia reperfusion injury. We showed that hepatic IRI was more severe in the fatty liver compared with the normal liver, and puerarin could significantly protect the fatty liver against IRI and alleviate oxidative stress. The PI3K-AKT signaling pathway was activated during IRI, while liver steatosis decreased the level of activation. Puerarin significantly protected the fatty liver from IRI by reactivating the PI3K-AKT signaling pathway. However, LY294002, a PI3K-AKT inhibitor, attenuated the protective effect of puerarin. In conclusion, puerarin could significantly protect the fatty liver against IRI by activating the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zheyu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianlu Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
7
|
Wang X, Sun Y, Li P, Wu Z, Chen Y, Fu Y, Wu H, Ye Y, Wang J, Yang Z, Zhou E. The protective effects of myricetin against acute liver failure via inhibiting inflammation and regulating oxidative stress via Nrf2 signaling. Nat Prod Res 2023; 37:798-802. [PMID: 35707887 DOI: 10.1080/14786419.2022.2089138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study aimed to investigate the protective effects and mechanisms of myricetin on acute liver failure in mice induced by lipopolysaccharide (LPS)/D-galactosamine (D-Gal). Our results showed myricetin (25, 50 and 100 mg/kg) pretreatment significantly improved the pathological changes of liver tissues, decreased serum ALT and AST (p < 0.001) induced by LPS/D-GalN. Moreover, MDA and MPO levels were reduced (p < 0.001), CAT and SOD activities were increased (p < 0.001) with myricetin (50 and 100 mg/kg) pretreatment. Likewise, inflammatory cytokines TNF-α and IL-6 mRNA in liver tissues were markedly decreased (p < 0.001) by myricetin. Besides, Nrf2 protein expression was drastically elevated (p < 0.001) by myricetin (25, 50 and 100 mg/kg). All these findings imply that myricetin may protect against acute liver failure by suppressing inflammation and regulating oxidative stress via Nrf2 signaling, and that it may be a possible strategy to avoid liver damage.
Collapse
Affiliation(s)
- Xia Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Youpeng Sun
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Peixuan Li
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Zhikai Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Yichun Chen
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Yiwu Fu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Hanpeng Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Yingrong Ye
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Jingjing Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, PR China
| |
Collapse
|
8
|
Li Z, Fang X, Hu X, Li C, Wan Y, Yu D. Amelioration of alcohol-induced acute liver injury in C57BL/6 mice by a mixture of TCM phytochemicals and probiotics with antioxidative and anti-inflammatory effects. Front Nutr 2023; 10:1144589. [PMID: 36960204 PMCID: PMC10027757 DOI: 10.3389/fnut.2023.1144589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Background There are many causes of acute liver injury (ALI), such as alcohol, drugs, infection, and toxic materials, which have caused major health problems around the world. Among these causes, alcohol consumption induced liver injury is a common alcoholic liver disease, which can further lead to liver failure even liver cancer. A number of traditional Chinese medicine (TCM) and TCM derived compounds have been used in treating the liver-associated diseases and combination use of probiotics with TCM phytochemicals has attracted interests for enhanced biological effects. Methods This study investigated the hepatoprotective effect of TCM-probiotics complex (TCMPC) and its underlying mechanism for the treatment of ALI in mice. The TCMPC is composed of TCM phytochemicals puerarin, curcumin, ginsenosides, and 5 lactobacteria strains. We first established a mouse model of alcohol-induced ALI, then the therapeutic effects of TCMPC on alcohol-induced ALI were monitored. A series of measurements have been performed on antioxidation, anti-inflammation, and lipid metabolism regulation. Results The results showed that TCMPC can reduce the level of liver injury biomarkers and regulate oxidative stress. Histopathological results indicated that TCMPC could ameliorate ALI in mice. In addition, it can also significantly reduce the production of inflammatory cytokines caused by ALI. Conclusion Our research has proved the therapeutic effect of TCMPC on alcohol-induced ALI. The potential mechanism of hepatoprotective effects of TCMPC may be related to its antioxidative and anti-inflammatory effects. Our research might provide a new way for liver disease treatment.
Collapse
Affiliation(s)
- Zhiguo Li
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Congcong Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
- *Correspondence: Youzhong Wan,
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- Dahai Yu,
| |
Collapse
|
9
|
Wang J, Liu YM, Hu J, Chen C. Trained immunity in monocyte/macrophage: Novel mechanism of phytochemicals in the treatment of atherosclerotic cardiovascular disease. Front Pharmacol 2023; 14:1109576. [PMID: 36895942 PMCID: PMC9989041 DOI: 10.3389/fphar.2023.1109576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases (ASCVD), characterized by persistent chronic inflammation in the vessel wall, in which monocytes/macrophages play a key role. It has been reported that innate immune system cells can assume a persistent proinflammatory state after short stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be influenced by this persistent hyperactivation of the innate immune system, which is termed trained immunity. Trained immunity has also been implicated as a key pathological mechanism, leading to persistent chronic inflammation in AS. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs in mature innate immune cells and their bone marrow progenitors. Natural products are promising candidates for novel pharmacological agents that can be used to prevent or treat cardiovascular diseases (CVD). A variety of natural products and agents exhibiting antiatherosclerotic abilities have been reported to potentially interfere with the pharmacological targets of trained immunity. This review describes in as much detail as possible the mechanisms involved in trained immunity and how phytochemicals of this process inhibit AS by affecting trained monocytes/macrophages.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| |
Collapse
|
10
|
The protective effect of puerarin-loaded mesoporous silicon nanoparticles on alcoholic hepatitis through mTOR-mediated autophagy pathway. Biomed Microdevices 2022; 24:37. [DOI: 10.1007/s10544-022-00622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
|
11
|
Wang D, Bu T, Li Y, He Y, Yang F, Zou L. Pharmacological Activity, Pharmacokinetics, and Clinical Research Progress of Puerarin. Antioxidants (Basel) 2022; 11:2121. [PMID: 36358493 PMCID: PMC9686758 DOI: 10.3390/antiox11112121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/01/2023] Open
Abstract
As a kind of medicine and food homologous plant, kudzu root (Pueraria lobata (Willd.) Ohwi) is called an "official medicine" in Chinese folk medicine. Puerarin is the main active component extracted from kudzu root, and its structural formula is 8-β-D-grapes pyranose-4, 7-dihydroxy isoflavone, with a white needle crystal; it is slightly soluble in water, and its aqueous solution is colorless or light yellow. Puerarin is a natural antioxidant with high health value and has a series of biological activities such as antioxidation, anti-inflammation, anti-tumor effects, immunity improvement, and cardio-cerebrovascular and nerve cell protection. In particular, for the past few years, it has also been extensively used in clinical study. This review focuses on the antioxidant activity of puerarin, the therapy of diverse types of inflammatory diseases, various new drug delivery systems of puerarin, the "structure-activity relationship" of puerarin and its derivatives, and pharmacokinetic and clinical studies, which can provide a new perspective for the puerarin-related drug research and development, clinical application, and further development and utilization.
Collapse
Affiliation(s)
- Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tong Bu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangqian Li
- Asset and Laboratory Management Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yueyue He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Yang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
12
|
Lu Y, Fang L, Xu X, Wu Y, Li J. MicroRNA-142-3p facilitates inflammatory response by targeting ZEB2 and activating NF-κB signaling in gouty arthritis. Cell Cycle 2022; 21:805-819. [PMID: 35239453 PMCID: PMC8973338 DOI: 10.1080/15384101.2022.2031678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystal accumulation in the joints. MSU-mediated inflammation is an important inducing factor in gouty arthritis (GA). Recent studies have demonstrated that microRNAs can influence GA progression. Herein, the role and mechanism of miRNA-142-3p in GA were explored. To establish the in vitro and in vivo GA models, MSU was used to induce inflammatory response in human monocyte cell line THP-1 and male C57BL/6 mice. Protein levels, gene expression and proinflammatory cytokine secretion were respectively tested by Western blotting, RT-qPCR, and enzyme-linked immunosorbent assay (ELISA). Pathological changes in sagittal sections of ankle tissues were exhibited by hematoxylin-eosin (HE) staining. Binding relationship between miRNA-142-3p and zinc finger E-box binding homeobox 2 (ZEB2) was predicted and confirmed by bioinformatics analysis and luciferase reporter assay. In this study, MSU induced inflammatory response and upregulated miRNA-142-3p in THP-1 cells. Functionally, miRNA-142-3p knockdown inhibited inflammatory response in MSU-stimulated THP-1 cells and alleviated pathological symptoms of GA mice. Mechanically, miRNA-142-3p targeted ZEB2 in THP-1 cells. ZEB2 expression was elevated in MSU-administrated THP-1 cells and GA mice. ZEB2 downregulation reserved the inhibitory effect of miRNA-142-3p deficiency on inflammatory response in MSU-treated THP-1 cells. In addition, miRNA-142-3p activated NF-κB signaling by binding with ZEB2 in THP-1 cells upon MSU stimulation. Overall, miRNA-142-3p facilitates inflammatory response by targeting ZEB2 and activating NF-κB signaling in GA.
Collapse
Affiliation(s)
- Yao Lu
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan 316021, Zhejiang, China
| | - Li Fang
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan 316021, Zhejiang, China
| | - Xiangfeng Xu
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan 316021, Zhejiang, China,CONTACT Xiangfeng Xu Zhoushan Hospital of Zhejiang Province, No.739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China
| | - Yanying Wu
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan 316021, Zhejiang, China
| | - Jiajia Li
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan 316021, Zhejiang, China
| |
Collapse
|
13
|
Lu Y, Shao M, Xiang H, Wang J, Ji G, Wu T. Qinggan Huoxue Recipe Alleviates Alcoholic Liver Injury by Suppressing Endoplasmic Reticulum Stress Through LXR-LPCAT3. Front Pharmacol 2022; 13:824185. [PMID: 35431945 PMCID: PMC9009225 DOI: 10.3389/fphar.2022.824185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) plays a key role in alcohol liver injury (ALI). Lysophosphatidylcholine acyltransferase 3 (LPCAT3) is a potential modifier of ERS. It was examined whether the protective effect of Qinggan Huoxue Recipe (QGHXR) against ALI was associated with LPCAT3 by suppressing ERS from in vivo and in vitro experiment. Male C57BL/6 mice were randomly divided into five groups (n = 10, each) and treated for 8 weeks as follows: the control diet-fed group (pair-fed), ethanol diet-fed group (EtOH-fed), QGHXR group (EtOH-fed + QGHXR), Qinggan recipe group (EtOH-fed + QGR), and Huoxue recipe group (EtOH-fed + HXR). QGHXR, QGR, and HXR groups attenuated liver injury mainly manifested in reducing serum ALT, AST, and liver TG and reducing the severity of liver cell necrosis and steatosis in ALI mouse models. QGHXR mainly inhibited the mRNA levels of Lxrα, Perk, Eif2α, and Atf4 and activated the mRNA levels of Lpcat3 and Ire1α, while inhibiting the protein levels of LPCAT3, eIF2α, IRE1α, and XBP1u and activating the protein levels of GRP78 to improve ALI. QGR was more inclined to improve ALI by inhibiting the mRNA levels of Lxrα, Perk, Eif2α, Atif4, and Chop and activating the mRNA levels of Lpcat3 and Ire1α while inhibiting the protein levels of LPCAT3, PERK, eIF2α, IRE1α, and XBP1u. HXR was more inclined to improve ALI by inhibiting the mRNA levels of Perk, Eif2α, Atf4, and Chop mRNA while inhibiting the protein levels of LPCAT3, PERK, eIF2α, IRE1α, and XBP1u and activating the protein levels of GRP78. Ethanol (100 mM) was used to intervene HepG2 and AML12 to establish an ALI cell model and treated by QGHXR-, QGR-, and HXR-medicated serum (100 mg/L). QGHXR, QGR, and HXR groups mainly reduced the serum TG level and the expression of inflammatory factors such as IL-6 and TNF-α in the liver induced by ethanol. In AML12 cells, QGHXR and its disassembly mainly activated Grp78 mRNA expression together with inhibiting Lxrα, Lpcat3, Eif2α, Atf4, and Xbp1 mRNA expression. The protein expression of eIF2α and XBP1u was inhibited, and the expression of PERK and GRP78 was activated to alleviate ALI. In HepG2 cells, QGHXR mainly alleviated ALI by inhibiting the mRNA expression of LPCAT3, CHOP, IRE1α, XBP1, eIF2α, CHOP, and IRE1α protein. QGR was more inclined to inhibit the protein expression of PERK, and HXR was more likely to inhibit the protein expression of ATF4.
Collapse
Affiliation(s)
- Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Teaching Department, Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|