1
|
Qiao T, Liu N, Cui Y, Gao Y, Lu J. A Review on the Potential Therapeutic Application of Macrophage Polarization in Recurrent Spontaneous Abortion; With an Emphasis on Natural Components. TOHOKU J EXP MED 2025; 265:47-58. [PMID: 39048350 DOI: 10.1620/tjem.2024.j069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Three or more consecutive spontaneous pregnancy losses are the hallmark of recurrent spontaneous abortion (RSA) as a complex challenge in reproductive health, requiring a comprehensive understanding of contributing factors. Since balanced immune responses are essential for a successful pregnancy. Disruptions in immune responses may be the cause of unfavorable pregnancy outcomes like RSA. Of Note, Following RSA, immunopathological assessment of the placental implantation site markedly showed decidual inflammation, leading to hypothesize that RSA is a pregnancy disorder with an inflammatory etiology. Thus, an in-depth knowledge of how immune cells contribute to inflammation, may lead to the discovery of the novel therapeutic approaches for the prevention and/or treatment of RSA. Numerous studies have investigated the relationships between RSA and different immune cells, including B cells, T cells, decidual dendritic cells, and macrophages. Macrophages are present at the fetomaternal interface throughout pregnancy, and they are beneficial to the processes of embryonic development, placental formation, embryo implantation, and delivery. Macrophages classified as typically activated (M1, with the inflammatory role), or alternatively activated (M2, characterized by the anti-inflammatory role). Plants have a rich supply of strong bioactive components that can polarize macrophages toward an M1 pro-inflammatory state or an M2 anti-inflammatory phenotype. This review focuses on the potential role of derived plant-natural components in influencing macrophage polarization resulting in the management treatment of RSA.
Collapse
Affiliation(s)
- Tianqi Qiao
- Graduate School, Hebei North University
- Department of Reproductive Medicine, Handan Central Hospital
| | - Ningning Liu
- Department of gynecology, Handan Maternal and Child Health Hospital
| | - Yijian Cui
- Graduate School, Shenyang Medical College
- Department of Clinical Laboratory, Handan Central Hospital
| | - Yanxia Gao
- Department of Clinical Laboratory, Handan Maternal and Child Health Hospital
| | - Jing Lu
- Department of Reproductive Medicine, Handan Central Hospital
| |
Collapse
|
2
|
Yu Liu X, Ying Mao H, Hong S, Jin CH, Jiang HL, Guan Piao M. Dual-targeting galactose-functionalized hyaluronic acid modified lipid nanoparticles delivering silybin for alleviating alcoholic liver injury. Int J Pharm 2024; 666:124662. [PMID: 39241932 DOI: 10.1016/j.ijpharm.2024.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Alcoholic liver injury stands as a predominant pathogenic contributor to the global burden of liver diseases, with alcohol consumption serving as a significant determinant of worldwide morbidity and mortality. Given that liver-targeted therapy for mitigating alcoholic liver injury remains to be a major clinical challenge due to the poor specificity and instability associated with single targeting modification in actively targeted nanomedicine systems, bifunctional targeting modification may serve as a more promising strategy. Here, galactose-functionalized hyaluronic acid (Gal-HA) coated cationic solid lipid nanoparticles carrying silybin (Gal-HA/SIL-SLNPs) featuring dual-targeting hyaluronic acid (HA) and galactose (Gal) moieties, enabled specific liver surface targeting of asialoglycoprotein receptor (ASGPR) and cluster of differentiation 44 (CD44) proteins to enhance silybin uptake, while simultaneously ameliorating the deficiencies of positively charged lipid nanoparticles as drug carriers and preserving their stability in the bloodstream. Based on the findings, Gal-HA/SIL-SLNPs with excellent biocompatibility demonstrated improved cellular internalization and liver distribution, while also displaying ideal curative properties in a mouse model of alcohol-induced liver injury without causing damage to other organs. This work suggests that Gal-HA/SIL-SLNPs with dual modification may represent an encouraging approach for developing more effective liver targeted nano-drug delivery systems to achieve accurate medication for alcoholic liver injury.
Collapse
Affiliation(s)
- Xin Yu Liu
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - He Ying Mao
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Shuai Hong
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Cheng-Hua Jin
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Hu-Lin Jiang
- School of Pharmacy, Yanbian University, Yanji 133002, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Guan Piao
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
3
|
Dou JY, Liu SH, Guo J, Wang CY, Dai X, Lian LH, Cui ZY, Nan JX, Wu YL. Dietary supplementation of pterostilbene, a major component in small berries, prevents alcohol-induced liver injury associated with lipid accumulation and inflammation. Food Funct 2024; 15:11206-11219. [PMID: 39449622 DOI: 10.1039/d4fo03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Pterostilbene (PTE), a natural stilbene found in small berries, exhibits multiple pharmacological activities, particularly antioxidant and anti-inflammatory activities. This study explores the dietary supplementation of PTE to ameliorate acute and chronic alcohol-associated liver disease (ALD). C57BL/6 mice were administrated with PTE and subjected to acute or chronic alcohol stimulation. They were intragastrically administered with alcohol (5 g kg-1, 3 times per 24 h) to induce acute alcohol liver injury or fed a Lieber-DeCarli liquid diet containing 5% ethanol for 4 weeks and a single binge to induce chronic alcoholic liver injury. In the acute ethanol model, PTE decreased the serum transaminase and triglyceride (TG) levels and ameliorated lipid droplet accumulation. PTE ameliorated acute ethanol-induced hepatic steatosis by inhibiting the expression of SREBP1 and its target genes and up-regulating PPARα expression. PTE could reverse the inflammatory response by inhibiting NLRP3 activation, inflammatory factor secretion, and macrophage recruitment caused by acute ethanol exposure. PTE could synergistically activate the SIRT1-AMPK and LXR/FXR axis in mice with acute ethanol exposure. In the chronic-binge ethanol feeding model, PTE also decreased serum transaminase and TG levels and ameliorated hepatocellular ballooning, macrovesicular steatosis, lipid accumulation and inflammation. Chronic-binge ethanol feeding could induce extracellular matrix dysfunction with an increase in α-SMA, collagen I and TIMP-1 expression, which was decreased by PTE. PTE increased SIRT1 expression and AMPK phosphorylation and activated the LXRs/FXR axis, which could be reduced by chronic-binge ethanol feeding. PTE could prevent liver injury caused by alcohol regardless of acute or chronic exposure. These results suggest that PTE can be utilized as a dietary health supplement to avoid ALD and promote health and quality of life.
Collapse
Affiliation(s)
- Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Sai-Hu Liu
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Jia Guo
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Chen-Yu Wang
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Xu Dai
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
- Jilin Vocational and Technical College, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
4
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
5
|
Jiang YC, Dou JY, Xuan MY, Gao C, Li ZX, Lian LH, Cui ZY, Nan JX, Wu YL. Raspberry Ketone Attenuates Hepatic Fibrogenesis and Inflammation via Regulating the Crosstalk of FXR and PGC-1α Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15740-15754. [PMID: 38970822 DOI: 10.1021/acs.jafc.4c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Hepatic fibrosis is a compensatory response to chronic liver injury and inflammation, and dietary intervention is recommended as one of the fundamental prevention strategies. Raspberry ketone (RK) is an aromatic compound first isolated from raspberry and widely used to prepare food flavors. The current study investigated the hepatoprotection and potential mechanism of RK against hepatic fibrosis. In vitro, hepatic stellate cell (HSC) activation was stimulated with TGF-β and cultured with RK, farnesoid X receptor (FXR), or peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) agonist or inhibitor, respectively. In vivo, C57BL/6 mice were injected intraperitoneally with thioacetamide (TAA) at 100/200 mg/kg from the first to the fifth week. Mice were intragastrically administrated with RK or Cur once a day from the second to the fifth week. In activated HSCs, RK inhibited extracellular matrix (ECM) accumulation, inflammation, and epithelial-mesenchymal transition (EMT) process. RK both activated FXR/PGC-1α and regulated their crosstalk, which were verified by their inhibitors and agonists. Deficiency of FXR or PGC-1α also attenuated the effect of RK on the reverse of activated HSCs. RK also decreased serum ALT/AST levels, liver histopathological change, ECM accumulation, inflammation, and EMT in mice caused by TAA. Double activation of FXR/PGC-1α might be the key targets for RK against hepatic fibrosis. Above all, these discoveries supported the potential of RK as a novel candidate for the dietary intervention of hepatic fibrosis.
Collapse
Affiliation(s)
- Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Mei-Yan Xuan
- School of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Chong Gao
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhao-Xu Li
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Jilin Vocational and Technical College, Longjing, Jilin Province 133400, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
6
|
Li L, Kong L, Xu S, Wang C, Gu J, Luo H, Meng Q. FXR overexpression prevents hepatic steatosis through inhibiting AIM2 inflammasome activation in alcoholic liver disease. Hepatol Int 2024; 18:188-205. [PMID: 38183609 DOI: 10.1007/s12072-023-10621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND PURPOSE Alcoholic liver disease (ALD), a metabolic liver disease caused by excessive alcohol consumption, has attracted increasing attention due to its high prevalence and mortality. Up to date, there is no effective and feasible treatment method for ALD. This study was to investigate whether Farnesoid X receptor (FXR, NR1H4) can alleviate ALD and whether this effect is mediated by inhibiting absent in melanoma 2 (AIM2) inflammasome activation. METHODS The difference in FXR expression between normal subjects and ALD patients was analyzed using the Gene Expression Omnibus (GEO) database. Lieber-DeCarli liquid diet with 5% ethanol (v/v) (EtOH) was adopted to establish the mouse ALD model. Liver histopathological changes and the accumulation of lipid droplets were assessed by H&E and Oil Red O staining. Quantitative real-time PCR, Western blotting analysis and immunofluorescence staining were utilized to evaluate the expression levels of related genes and proteins. DCFH-DA staining was adopted to visualize reactive oxidative species (ROS). RESULTS FXR was distinctly downregulated in liver tissues of patients with steatosis compared to normal livers using the GEO database, and in ethanol-induced AML-12 cellular steatosis model. FXR overexpression ameliorated hepatic lipid metabolism disorder and steatosis induced by ethanol by inhibiting the expression of genes involved in lipid synthesis and inducing the expression of genes responsible for lipid metabolism. Besides, FXR overexpression inhibited ethanol-induced AIM2 inflammasome activation and alleviated oxidative stress and ROS production during ethanol-induced hepatic steatosis. However, when FXR was knocked down, the results were completely opposite. CONCLUSIONS FXR attenuated lipid metabolism disorders and lipid degeneration in alcohol-caused liver injury and alleviated oxidative stress and inflammation by inhibiting AIM2 inflammasome activation.
Collapse
Affiliation(s)
- Lin Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Lina Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Shuai Xu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
7
|
Tang S, Wang M, Peng Y, Liang Y, Lei J, Tao Q, Ming T, Shen Y, Zhang C, Guo J, Xu H. Armeniacae semen amarum: a review on its botany, phytochemistry, pharmacology, clinical application, toxicology and pharmacokinetics. Front Pharmacol 2024; 15:1290888. [PMID: 38323080 PMCID: PMC10844384 DOI: 10.3389/fphar.2024.1290888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Armeniacae semen amarum-seeds of Prunus armeniaca L. (Rosaceae) (ASA), also known as Kuxingren in Chinese, is a traditional Chinese herbal drug commonly used for lung disease and intestinal disorders. It has long been used to treat coughs and asthma, as well as to lubricate the colon and reduce constipation. ASA refers to the dried ripe seed of diverse species of Rosaceae and contains a variety of phytochemical components, including glycosides, organic acids, amino acids, flavonoids, terpenes, phytosterols, phenylpropanoids, and other components. Extensive data shows that ASA exhibits various pharmacological activities, such as anticancer activity, anti-oxidation, antimicrobial activity, anti-inflammation, protection of cardiovascular, neural, respiratory and digestive systems, antidiabetic effects, and protection of the liver and kidney, and other activities. In clinical practice, ASA can be used as a single drug or in combination with other traditional Chinese medicines, forming ASA-containing formulas, to treat various afflictions. However, it is important to consider the potential adverse reactions and pharmacokinetic properties of ASA during its clinical use. Overall, with various bioactive components, diversified pharmacological actions and potent efficacies, ASA is a promising drug that merits in-depth study on its functional mechanisms to facilitate its clinical application.
Collapse
Affiliation(s)
- Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqiao Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Duan C, Liu H, Yang X, Liu J, Deng Y, Wang T, Xing J, Hu Z, Xu H. Sirtuin1 inhibits calcium oxalate crystal-induced kidney injury by regulating TLR4 signaling and macrophage-mediated inflammatory activation. Cell Signal 2023; 112:110887. [PMID: 37717713 DOI: 10.1016/j.cellsig.2023.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Sirtuin1 (Sirt1) activation significantly attenuated calcium oxalate (CaOx) crystal deposition and renal inflammatory injury by regulating renal immune microenvironment. Here, to elucidate the molecular mechanism underlying the therapeutic effects of Sirt1 on macrophage related inflammation and tubular epithelial cells (TECs) necrosis, we constructed a macrophage and CaOx monohydrate (COM)-stimulated tubular cell co-culture system to mimic immune microenvironment in kidney and established a mouse model of CaOx nephrocalcinosis in wild-type and myeloid-specific Sirt1 knockout mice. Target prediction analyses of Gene Expression Omnibus Datasets showed that only miR-34b-5p is regulated by lipopolysaccharides and upregulated by SRT1720 and targets the TLR4 3'-untranslated region. In vitro, SRT1720 suppressed TLR4 expression and M1 macrophage polarization and decreased reactive oxygen species (ROS) production and mitochondrial damage in COM-stimulated TECs by targeting miR-34b-5p. Mechanically, Sirt1 promoted miR-34b-5p expression by suppressing the tri-methylation of H3K27, which directly bound to the miR-34b-5p promoter and abolished the miR-34b-5p transcription. Furthermore, loss of Sirt1 aggravated CaOx nephrocalcinosis-induced inflammatory and oxidative kidney injury, while AgomiR-34b reversed these effects. Therefore, our data suggested that Sirt1 inhibited TLR4 signaling and M1 macrophage polarization and decreased inflammatory and oxidative injury of TECs in vitro and in vivo.
Collapse
Affiliation(s)
- Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 230000 Hefei, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Jianhe Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650000 Kunming, China
| | - Yaoliang Deng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 530000 Nanning, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China.
| | - Hua Xu
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, 430000 Wuhan, China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China; Department of Urology, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China.; Taikang Center for Life and Medical Sciences, Wuhan University, 430000 Wuhan, China.
| |
Collapse
|
9
|
Chen J, Zhang Q, Wang R, Yang Y, Wang Y, Liu X, Zhang X, Qiao X, Zhong G, Wei J, Wang Y, Yang R. Preliminary study on the effective site and mechanism of action of Meconopsis quintuplinervia Regel in alleviating acute alcoholic liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116230. [PMID: 36764563 DOI: 10.1016/j.jep.2023.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Meconopsis quintuplinervia Regel (MQR) belongs to the opium poppy tree plant species, and it has heat purging, detoxification, diuretic, anti-inflammatory, and analgesic effects. AIM OF STUDY MQR has liver-protective properties and can alleviate liver heat. Therefore, this study aimed to observe the effect of MQR extract on acute alcoholic liver injury in mice and explore the mechanism of action of ethyl acetate extract of MQR (MQR-E) on alcohol-induced liver injury in combination with the network pharmacology. MATERIALS AND METHODS To induce acute alcoholic liver injury, 52% of edible wine was administered at 12 mL/kg for 14 days. The pharmacodynamic results were used to screen the active site. MQR-E composition was analyzed based on UPLC-Q-TOF-MS, and relevant MQR-E and alcoholic liver disease (ALD) targets were screened using an online database. Then, Venn analysis of drug and disease-related targets was performed to obtain cross-targets. We investigated the protein-protein interaction network (PPI) of overlapping targets, the core targets were screened using the STRING database, and the DAVID database was chosen for GO and KEGG enrichment analysis of the central targets. RESULTS Each of the four MQR extracts ameliorated alcoholic liver injury to varying degrees; the best results were achieved with MQR-E. MQR-E reduces liver index, serum transaminases, and fat accumulation, and attenuates ethanol-induced histopathological changes. The activities of hepatic superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were increased, the content of malondialdehyde (MDA) was significantly reduced compared to the EtOH group, and MQR-E effectively mitigated the oxidative stress induced by ethanol in the liver. Thirty-six compounds were identified, and flavonoids were the most abundant. PPI network topology analysis was employed to assess 32 core targets: IL-6, TNF, STAT3, PPARA, and other inflammation and lipid metabolism related genes. Pathway analysis of GO and KEGG enrichment showed that the regulation of inflammatory factors and lipid metabolism were primarily involved. CONCLUSION We concluded that MQR-E had protective effects against acute alcohol-induced liver injury in mice, and the mechanism could be linked to the inhibition of lipid peroxidation and oxidative stress. The mechanism by which MQR-E ameliorated ALD primarily involved regulating inflammatory factors and lipid metabolism based on the prediction of the network pharmacology.
Collapse
Affiliation(s)
- Jingcai Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qi Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China; Zunyi Medical University, Guizhou, 563006, China.
| | - Ruhui Wang
- Southwest University, Chongqing, 400715, China.
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China.
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China.
| | - Xiang Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China.
| | - Xiaomei Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China.
| | - Xingfang Qiao
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China.
| | - Guoyue Zhong
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China.
| | - Jiangping Wei
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China.
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China.
| | - Rongping Yang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Gao H, Li Z, Liu Y, Zhao YK, Cheng C, Qiu F, Gao Y, Lu YW, Song XH, Wang JB, Ma ZT. A clinical experience-based Chinese herbal formula improves ethanol-induced drunken behavior and hepatic steatohepatitis in mice models. Chin Med 2023; 18:47. [PMID: 37127639 PMCID: PMC10150545 DOI: 10.1186/s13020-023-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Bao-Gan-Xing-Jiu-Wan (BGXJW) is a clinical experience-based Chinese herbal formula. Its efficacy, pharmacological safety, targeted function, process quality, and other aspects have met the evaluation standards and the latest requirements of preparations. It could prevent and alleviate the symptoms of drunkenness and alcoholic liver injury clinically. The present work aims to elucidate whether BGXJW could protect against drunkenness and alcoholic liver disease in mice and explore the associated mechanism. MATERIAL AND METHODS We used acute-on-chronic (NIAAA) mice model to induce alcoholic steatosis, and alcohol binge-drinking model to reappear the drunk condition. BGXJW at indicated doses were administered by oral gavage respectively to analyze its effects on alcoholic liver injury and the associated molecular mechanisms. RESULTS BGXJW had no cardiac, hepatic, renal, or intestinal toxicity in mice. Alcoholic liver injury and steatosis in the NIAAA mode were effectively prevented by BGXJW treatment. BGXJW increased the expression of alcohol metabolizing enzymes ADH, CYP2E1, and ALDH2 to enhance alcohol metabolism, inhibited steatosis through regulating lipid metabolism, counteracted alcohol-induced upregulation of lipid synthesis related proteins SREBP1, FASN, and SCD1, meanwhile it enhanced fatty acids β-oxidation related proteins PPAR-α and CPT1A. Alcohol taken enhanced pro-inflammatory TNF-α, IL-6 and down-regulated the anti-inflammatory IL-10 expression in the liver, which were also reversed by BGXJW administration. Moreover, BGXJW significantly decreased the blood ethanol concentration and alleviated drunkenness in the alcohol binge-drinking mice model. CONCLUSIONS BGXJW could effectively relieve drunkenness and prevent alcoholic liver disease by regulating lipid metabolism, inflammatory response, and alcohol metabolism.
Collapse
Affiliation(s)
- Han Gao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Department of Hepatology, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China
| | - Zhen Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Henan, 450046, Zhengzhou, China
| | - Yao Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Department of Infectious Disease, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yong-Kang Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Cheng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Department of Pharmacy, Jincheng General Hospital, Jincheng, 048006, Shanxi, China
| | - Feng Qiu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Ya-Wen Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xin-Hua Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jia-Bo Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Zhi-Tao Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
11
|
Yen DTH, Lan HTT, Anh BTM, Van Kiem P, Tai BH, Huyen LT, Yen PH, Nhiem NX, Mai NT. One new furostane saponin from Allium ramosum and lipid accumulation inhibitory activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:510-517. [PMID: 35876609 DOI: 10.1080/10286020.2022.2098728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
A new furostane saponin, ramosaponin (1), and four known furostane saponins, protodioscin (2), dehydrotomatoside (3), (25 R)-26-O-(β-D-glucopyranosyl)-furost-5-ene-3β,22α,26-triol 3-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside (4), and anguivioside A (5) were isolated from the methanol extract of Allium ramosum seeds. Their structures were identified based on spectroscopic evidence and comparison with those reported in the literature. All compounds were evaluated for reduction of lipid accumulation in HepG2 cell line. As a result, compound 1 showed significant lipid accumulation inhibitory activity with an IC50 value of 64.32 ± 3.87 µM.
Collapse
Affiliation(s)
- Duong Thi Hai Yen
- Institute of Structural Research, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Hoang Thi Tuyet Lan
- Faculty of Basic Sciences, University of Transport and Communications, Hanoi 11512, Vietnam
| | - Bui Thi Mai Anh
- Faculty of Basic Sciences, University of Transport and Communications, Hanoi 11512, Vietnam
| | - Phan Van Kiem
- Institute of Structural Research, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Bui Huu Tai
- Institute of Structural Research, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Le Thi Huyen
- Faculty of Chemistry, VNU University of Science, Hanoi 11416, Vietnam
| | - Pham Hai Yen
- Institute of Structural Research, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Structural Research, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Nguyen Thi Mai
- Faculty of Basic Sciences, University of Transport and Communications, Hanoi 11512, Vietnam
| |
Collapse
|
12
|
Yen DTH, Tai BH, Yen PH, Nhiem NX, Cuong NT, Dung NV, Huong PTT, Cuong PV, Kiem PV. Furostane Saponins from the Seeds of Allium ramosum and Their Lipid Accumulation Inhibitory Activity. Chem Biodivers 2022; 19:e202200590. [PMID: 36070411 DOI: 10.1002/cbdv.202200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022]
Abstract
Three new furostane saponins, ramofurosides A-C (1-3), and two known saponins, fistulosaponin B (4) and (25R)-26-O-β-D-glucopyranosyl-1β,3β,26-trihydroxyfurosta-5,20(22)-diene-1-O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside (5) were isolated from the methanol extract of Allium ramosum seeds. Their structures were identified based on spectroscopic evidence and comparison with those reported in the literature. All compounds were evaluated for reduction of lipid accumulation in HepG2 cell lines. As a result, compounds 1 and 3 showed a significant reduction in total lipid content by 27.93±3.05 and 27.54±1.68 %, respectively, at a concentration of 100 μM.
Collapse
Affiliation(s)
- Duong Thi Hai Yen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10072, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10072, Vietnam
| | - Pham Hai Yen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10072, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10072, Vietnam
| | - Nguyen The Cuong
- Institute of Ecology and Biological Resources, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi, 10072, Vietnam
| | - Nguyen Viet Dung
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10072, Vietnam
| | - Phan Thi Thanh Huong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10072, Vietnam
| | - Pham Van Cuong
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10072, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10072, Vietnam
| |
Collapse
|
13
|
Hu M, Chen Y, Deng F, Chang B, Luo J, Dong L, Lu X, Zhang Y, Chen Z, Zhou J. D-Mannose Regulates Hepatocyte Lipid Metabolism via PI3K/Akt/mTOR Signaling Pathway and Ameliorates Hepatic Steatosis in Alcoholic Liver Disease. Front Immunol 2022; 13:877650. [PMID: 35464439 PMCID: PMC9021718 DOI: 10.3389/fimmu.2022.877650] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the protective properties and mechanisms of D-mannose against hepatic steatosis in experimental alcoholic liver disease (ALD). Drinking-water supplementation of D-mannose significantly attenuated hepatic steatosis in a standard mouse ALD model established by chronic-binge ethanol feeding, especially hepatocyte lipid deposition. This function of D-mannose on lipid accumulation in hepatocytes was also confirmed using ethanol-treated primary mouse hepatocytes (PMHs) with a D-mannose supplement. Meanwhile, D-mannose regulated lipid metabolism by rescuing ethanol-mediated reduction of fatty acid oxidation genes (PPARα, ACOX1, CPT1) and elevation of lipogenic genes (SREBP1c, ACC1, FASN). PI3K/Akt/mTOR signaling pathway was involved in this effect of D-mannose on lipid metabolism since PI3K/Akt/mTOR pathway inhibitors or agonists could abolish this effect in PMHs. Overall, our findings suggest that D-mannose exhibits its anti-steatosis effect in ALD by regulating hepatocyte lipid metabolism via PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Mengyao Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lijun Dong
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Jiang YC, Han X, Dou JY, Yuan MH, Zhou MJ, Cui ZY, Lian LH, Nan JX, Zhang X, Wu YL. Protective role of Siberian onions against toxin-induced liver dysfunction: an insight into health-promoting effects. Food Funct 2022; 13:4678-4690. [PMID: 35377371 DOI: 10.1039/d1fo04404d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siberian onions (SOs) are delicious wild vegetables. Their taste is most unique, not only like scallions but also like leeks or garlic. They also have a traditional medicinal value for anti-inflammation, anti-oxidation, and anti-pyretic analgesia, particularly facilitating hepatoprotective effects. The current study investigates the potential mechanism of SOs against toxin-induced liver dysfunction. BALB/c mice were administrated with SO or silymarin by oral gavage for one week, followed by injecting carbon tetrachloride (CCl4) to induce hepatic fibrosis. The effect of SO against hepatic fibrosis was evaluated by examining the liver tissue for serum transaminase, oxidative stress, extracellular matrix, histological alterations, cytokine levels, and apoptosis. In vitro, HSC-T6 cells were cultured with the supernatant from Raw 264.7 cells stimulated with lipopolysaccharides, followed by SO extracts or Niclosamide (Signal Transducer and Activator of Transcription 3 (STAT3) inhibitor) at indicated time periods and doses. SO decreased serum transaminase levels and oxidative stress, and regulated the balance of ECM in CCl4-induced mice, including α-SMA, collagen-I and TIMP-1. SO reduced the release of inflammatory factors and regulated apoptosis-associated proteins, which is related to the inhibition of STAT3 phosphorylation. Moreover, SO reduced the positive expressions of α-SMA and NLRP3 by inhibiting STAT3 phosphorylation in activated HSCs. SO could show health-promoting effects for liver dysfunction by alleviating hepatic fibrogenesis, apoptosis and inflammation in the development of hepatic fibrosis potential depending on the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Xin Han
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. .,Chinese Medicine Processing Centre, College of pharmacy, Zhejiang Chinese Medical University, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ming-Hui Yuan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Mei-Jie Zhou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China. .,Clinical Research Center, Affiliated Hospital of Yanbian University, Yanji, Jilin Province 133002, China
| | - Xian Zhang
- Agricultural College, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|