1
|
Samrit T, Changklungmao N, Sangpairoj K, Buddawong A, Kueakhai P, Chuanboon K, Sobhon P, Pranweerapaiboon K. Ethanolic extract of Parkia speciosa pods exhibits antioxidant and anti-inflammatory properties in lipopolysaccharide-induced murine macrophages by inhibiting the p38 MAPK pathway. Heliyon 2024; 10:e39641. [PMID: 39506962 PMCID: PMC11538774 DOI: 10.1016/j.heliyon.2024.e39641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
Background Parkia speciosa (PS) is commonly used in Southeast Asian cuisine and traditional medicine to treat diabetes, hypertension, dermatitis, and kidney diseases. PS has emerged as a subject of interest because of its potential antioxidation and anti-inflammatory properties. However, despite its historically long and wide usage, a comprehensive investigation of these properties in PS pods (PSp) have not been conducted. Aims of this study This study aimed to identify the phytochemical compounds in the ethanolic extract of PSp collected from Southern Thailand and assess whether PSp exhibit antioxidant properties and mitigate inflammation in a lipopolysaccharide (LPS)-induced RAW264.7 model. Materials and methods The ethanolic extract of PSp was comprehensively analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC/MS) to identify its phytochemical constituents. To assess the antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS) assays were performed, and cytotoxicity was evaluated using the MTT assay. The effect of PSp on reactive nitrogen and oxygen species (RNS and ROS) was determined using a nitric oxide (NO) assay, and its effect on pro-inflammatory cytokines was assessed using enzyme-linked immunosorbent assay (ELISA) and real-time quatitvative polymerase chain reaction (qPCR). Morphological changes following treatment were observed using a microscope. Western blot analysis was performed to quantify MAPK pathway expression. Results PSp contain polyphenols, phytosterols, triterpenes, oxaloacetic acid, and unsaturated fatty acids. PSp demonstrated high antioxidant potential in scavenging free radicals and exhibited no cytotoxic effects on macrophages. Moreover, PSp effectively reduced NO release and inhibited pro-inflammatory cytokines such as IL1-β, TNF-α, and IL-6. PSp treatment induced notable morphological changes in macrophages, characterized by an increase in cell size and the presence of intracellular vacuoles. In addition, Western blot analysis showed the selective suppressive effect of PSp on the p38-MAPK pathway. Conclusion PSp possess strong antioxidant and anti-inflammatory properties, making it a potential therapeutic agent for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Tepparit Samrit
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Narin Changklungmao
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Kant Sangpairoj
- Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani, 12120, Thailand
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Aticha Buddawong
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Pornanan Kueakhai
- Food Bioactive Compounds Research Unit, Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Kititpong Chuanboon
- Mahidol University-Frontier Research Facility, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kanta Pranweerapaiboon
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| |
Collapse
|
2
|
Liu Y, Luo J, Peng L, Zhang Q, Rong X, Luo Y, Li J. Flavonoids: Potential therapeutic agents for cardiovascular disease. Heliyon 2024; 10:e32563. [PMID: 38975137 PMCID: PMC11225753 DOI: 10.1016/j.heliyon.2024.e32563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Flavonoids are found in the roots, stems, leaves, and fruits of many plant taxa. They are related to plant growth and development, pigment formation, and protection against environmental stress. Flavonoids function as antioxidants and exert anti-inflammatory effects in the cardiovascular system by modulating classical inflammatory response pathways, such as the TLR4-NF-ĸB, PI3K-AKT, and Nrf2/HO-1 signalling pathways. There is increasing evidence for the therapeutic effects of flavonoids on hypertension, atherosclerosis, and other diseases. The potential clinical value of flavonoids for diseases of the cardiovascular system has been widely explored. For example, studies have evaluated the roles of flavonoids in the regulation of blood pressure via endothelium-dependent and non-endothelium-dependent pathways and in the regulation of myocardial systolic and diastolic functions by influencing calcium homeostasis and smooth muscle-related protein expression. Flavonoids also have hypoglycaemic, hypolipidemic, anti-platelet, autophagy, and antibacterial effects. In this paper, the role and mechanism of flavonoids in cardiovascular diseases were reviewed in order to provide reference for the clinical application of flavonoids in the future.
Collapse
Affiliation(s)
- Yingxue Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Rong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiafu Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, China
| |
Collapse
|
3
|
Lee YC, Jou YC, Chou WC, Tsai KL, Shen CH, Lee SD. Ellagic acid protects against angiotensin II-induced hypertrophic responses through ROS-mediated MAPK pathway in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3253-3263. [PMID: 38356441 DOI: 10.1002/tox.24170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
The early myocardial response of hypertension is an elevation of angiotensin-II (Ang-II) concentration, leading to heart failure and cardiac hypertrophy. This hypertrophic event of the heart is mediated by the interaction of Ang type 1 receptors (AT-R1), thereby modulating NADPH oxidase activity in cardiomyocytes, which alters redox status in cardiomyocytes. Ellagic acid (EA) has anti-inflammatory and anti-oxidative capacities. Thus, EA has potential preventive effects on cardiovascular diseases and diabetes. In the last decades, because the protective effect of EA on Ang-II-induced hypertrophic responses is unclear, this study aims to investigate the protective effect of EA in cardiomyocytes. H9c2 cells were treated to Ang-II 1 μM for 24 h to induce cellular damage. We found that EA protected against Ang-II-increased cell surface area and pro-hypertrophic gene expression in H9c2. EA reduced Ang-II-caused AT-R1 upregulation, thereby inhibiting oxidative stress NADPH oxidase activation. EA mitigated Ang-II-enhanced p38 and extracellular-signal-regulated kinase (ERK) phosphorylation. Moreover, EA treatment under Ang-II stimulation also reversed NF-κB activity and iNOS expression. This study shows that EA protects against Ang-II-induced myocardial hypertrophy and attenuates oxidative stress through reactive oxygen species-mediated mitogen-activated protein kinase signaling pathways in H9c2 cells. Thus, EA may be an effective compound for preventing Ang-II-induced myocardial hypertrophy.
Collapse
Affiliation(s)
- Ya-Che Lee
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, St. Martin De Porres Hospital, Chia-Yi City, Taiwan
- Department of Health and Nutrition Biotechnology, College of Medical and Health Science, Asia University, Taichung City, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Allied Health Science, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Min Hsiung, Chia-Yi, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung City, Taiwan
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Kamisah Y, Che Hassan HH. Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review. Pharmaceuticals (Basel) 2024; 17:464. [PMID: 38675424 PMCID: PMC11054808 DOI: 10.3390/ph17040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Endothelial dysfunction is a hallmark of cardiovascular diseases, contributing to impaired vasodilation, altered hemodynamics, and atherosclerosis progression. Trimetazidine, traditionally used for angina pectoris, exhibits diverse therapeutic effects on endothelial dysfunction. This review aims to elucidate the mechanisms underlying trimetazidine's actions and its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders. Trimetazidine enhances vasodilation and hemodynamic function by modulating endothelial nitric oxide synthase activity, nitric oxide production, and endothelin-1. It also ameliorates metabolic parameters, including reducing blood glucose, mitigating oxidative stress, and dampening inflammation. Additionally, trimetazidine exerts antiatherosclerotic effects by inhibiting plaque formation and promoting its stability. Moreover, it regulates apoptosis and angiogenesis, fostering endothelial cell survival and neovascularization. Understanding trimetazidine's multifaceted mechanisms underscores its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders, warranting further investigation for clinical translation.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Hamat H. Che Hassan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Chang CC, Cheng HC, Chou WC, Huang YT, Hsieh PL, Chu PM, Lee SD. Sesamin suppresses angiotensin-II-enhanced oxidative stress and hypertrophic markers in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2165-2172. [PMID: 37357850 DOI: 10.1002/tox.23853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/27/2023]
Abstract
Myocardial hypertrophy plays a crucial role in cardiovascular disease (CVD) development. Myocardial hypertrophy is an adaptive response by myocardial cells to stress after cardiac injury to maintain cardiac output and function. Angiotensin II (Ang-II) regulates CVD through the renin-angiotensin-aldosterone system, and its signaling in cardiac myocytes leads to excessive reactive oxygen species (ROS) production, oxidative stress, and inflammation. Sesamin (SA), a natural compound in sesame seeds, has anti-inflammatory and anti-apoptotic effects. This study investigated whether SA could attenuate hypertrophic damage and oxidative injuries in H9c2 cells under Ang-II stimulation. We found that SA decreased the cell surface area. Furthermore, Ang-II treatment reduced Ang-II-increased ANP, BNP, and β-MHC expression. Ang-II enhanced NADPH oxidase activity, ROS formation, and decreased Superoxide Dismutase (SOD) activity. SA treatment reduces Ang-II-caused oxidative injuries. We also found that SA mitigates Ang-II-induced apoptosis and pro-inflammatory responses. In conclusion, SA could attenuate Ang-II-induced cardiac hypertrophic injuries by inhibiting oxidative stress, apoptosis, and inflammation in H9c2 cells. Therefore, SA might be a potential supplement for CVD management.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Department of Radiation Therapy and Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Hui-Ching Cheng
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Wan-Ching Chou
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Huang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
- Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
6
|
Ye J, Yan S, Liu R, Weng L, Jia B, Jia S, Xiong Y, Zhou Y, Leng M, Zhao J, Yang F, Zheng M. CMTM3 deficiency induces cardiac hypertrophy by regulating MAPK/ERK signaling. Biochem Biophys Res Commun 2023; 667:162-169. [PMID: 37229825 DOI: 10.1016/j.bbrc.2023.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Cardiac hypertrophy is the heart's compensatory response stimulated by various pathophysiological factors. However, prolonged cardiac hypertrophy poses a significant risk of progression to heart failure, lethal arrhythmias, and even sudden cardiac death. For this reason, it is crucial to effectively prevent the occurrence and development of cardiac hypertrophy. CMTM is a superfamily of human chemotaxis, which is involved in immune response and tumorigenesis. CMTM3 expressed widely in tissues, including the heart, but its cardiac function remains unclear. This research aims to explore the effect and mechanism of CMTM3 in the development of cardiac hypertrophy. METHODS AND RESULTS We generated a Cmtm3 knockout mouse model (Cmtm3-/-) as the loss-of-function approach. CMTM3 deficiency induced cardiac hypertrophy and further exacerbated hypertrophy and cardiac dysfunction stimulated by Angiotensin Ⅱ infusion. In Ang Ⅱ-infusion stimulated hypertrophic hearts and phenylephrine-induced hypertrophic neonatal cardiomyocytes, CMTM3 expression significantly increased. However, adenovirus-mediated overexpression of CMTM3 inhibited the hypertrophy of rat neonatal cardiomyocytes induced by PE stimulation. In terms of mechanism, RNA-seq data revealed that Cmtm3 knockout-induced cardiac hypertrophy was related to MAPK/ERK activation. In vitro, CMTM3 overexpression significantly inhibited the increased phosphorylation of p38 and ERK induced by PE stimulation. CONCLUSIONS CMTM3 deficiency induces cardiac hypertrophy and aggravates hypertrophy and impaired cardiac function stimulated by angiotensin Ⅱ infusion. The expression of CMTM3 increases during cardiac hypertrophy, and the increased CMTM3 can inhibit further hypertrophy of cardiomyocytes by inhibiting MAPK signaling. Thus, CMTM3 plays a negative regulatory effect in the occurrence and development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Jingjing Ye
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, PR China
| | - Saifang Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ruxia Liu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300203, PR China
| | - Lin Weng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Bo Jia
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine, Beijing, 100044, PR China
| | - Shi Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yufei Xiong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yiqing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Minghong Leng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Junhui Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Fenghe Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|
7
|
Kamisah Y, Che Hassan HH. Therapeutic Use and Molecular Aspects of Ivabradine in Cardiac Remodeling: A Review. Int J Mol Sci 2023; 24:ijms24032801. [PMID: 36769115 PMCID: PMC9917668 DOI: 10.3390/ijms24032801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cardiac remodeling can cause ventricular dysfunction and progress to heart failure, a cardiovascular disease that claims many lives globally. Ivabradine, a funny channel (If) inhibitor, is used in patients with chronic heart failure as an adjunct to other heart failure medications. This review aims to gather updated information regarding the therapeutic use and mechanism of action of ivabradine in heart failure. The drug reduces elevated resting heart rate, which is linked to increased morbidity and mortality in patients with heart failure. Its use is associated with improved cardiac function, structure, and quality of life in the patients. Ivabradine exerts several pleiotropic effects, including an antiremodeling property, which are independent of its principal heart-rate-reducing effects. Its suppressive effects on cardiac remodeling have been demonstrated in animal models of cardiac remodeling and heart failure. It reduces myocardial fibrosis, apoptosis, inflammation, and oxidative stress as well as increases autophagy in the animals. It also modulates myocardial calcium homeostasis, neurohumoral systems, and energy metabolism. However, its role in improving heart failure remains unclear. Therefore, elucidating its molecular mechanisms is imperative and would aid in the design of future studies.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence:
| | - Hamat H. Che Hassan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
8
|
Mustafa NH, Jalil J, Saleh MSM, Zainalabidin S, Asmadi AY, Kamisah Y. Parkia speciosa Hassk. Empty Pod Extract Prevents Cardiomyocyte Hypertrophy by Inhibiting MAPK and Calcineurin-NFATC3 Signaling Pathways. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010043. [PMID: 36675993 PMCID: PMC9864749 DOI: 10.3390/life13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Cardiac hypertrophy is an early hallmark during the clinical course of heart failure. Therapeutic strategies aiming to alleviate cardiac hypertrophy via the mitogen-activated protein kinase (MAPK)/calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway may help prevent cardiac dysfunction. Previously, empty pod ethanol crude extract of Parkia speciosa Hassk was shown to demonstrate protective effects against cardiomyocyte hypertrophy. Therefore, the current study aimed to investigate the effects of various fractions of the plant ethanol extract on the MAPK/NFAT signaling pathway in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. Simultaneous treatment with ethyl acetate (EA) fraction produced the most potent antihypertrophic effect evidenced by the reduced release of B-type natriuretic peptide (BNP). Subsequently, treatment with the EA fraction (6.25, 12.5, and 25 μg/mL) prevented an Ang II-induced increase in cell surface area, hypertrophic factors (atrial natriuretic peptide and BNP), reactive oxygen species, protein content, and NADPH oxidase 4 expression in the cells. Furthermore, EA treatment attenuated the activation of the MAPK pathway and calcineurin-related pathway (GATA-binding protein 4 and NFATC3), which was similar to the effects of valsartan (positive control). Our findings indicate that the EA fraction prevents Ang II-induced cardiac hypertrophy by regulating the MAPK/calcineurin-NFAT signaling pathway.
Collapse
Affiliation(s)
- Nor Hidayah Mustafa
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mohammed S. M. Saleh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Ahmad Yusof Asmadi
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence: or ; Tel.: +603-9145-9575; Fax: +603-9145-9547
| |
Collapse
|
9
|
Mustafa NH, Jalil J, Zainalabidin S, Saleh MS, Asmadi AY, Kamisah Y. Molecular mechanisms of sacubitril/valsartan in cardiac remodeling. Front Pharmacol 2022; 13:892460. [PMID: 36003518 PMCID: PMC9393311 DOI: 10.3389/fphar.2022.892460] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases have become a major clinical burden globally. Heart failure is one of the diseases that commonly emanates from progressive uncontrolled hypertension. This gives rise to the need for a new treatment for the disease. Sacubitril/valsartan is a new drug combination that has been approved for patients with heart failure. This review aims to detail the mechanism of action for sacubitril/valsartan in cardiac remodeling, a cellular and molecular process that occurs during the development of heart failure. Accumulating evidence has unveiled the cardioprotective effects of sacubitril/valsartan on cellular and molecular modulation in cardiac remodeling, with recent large-scale randomized clinical trials confirming its supremacy over other traditional heart failure treatments. However, its molecular mechanism of action in cardiac remodeling remains obscure. Therefore, comprehending the molecular mechanism of action of sacubitril/valsartan could help future research to study the drug's potential therapy to reduce the severity of heart failure.
Collapse
Affiliation(s)
- Nor Hidayah Mustafa
- Centre for Drug and Herbal Research Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Research Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed S.M. Saleh
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Yusof Asmadi
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Phytochemical Contents and Pharmacological Potential of Parkia speciosa Hassk. for Diabetic Vasculopathy: A Review. Antioxidants (Basel) 2022; 11:antiox11020431. [PMID: 35204313 PMCID: PMC8869085 DOI: 10.3390/antiox11020431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia and is considered a major health problem in the world. It is associated with endothelial dysfunction which causes progressive vascular damage. DM is a known risk factor for atherosclerosis and cardiovascular complications such as peripheral artery disease, coronary artery disease, and stroke. Medicinal plants may act as an alternative resource or adjunctive treatment option in the treatment of diabetes and its cardiovascular complications. Parkia speciosa (Fabaceae) is a plant found abundantly in the Southeast Asian region. Its seeds, with or without pods, and roots have long been used as a traditional medicine in this region to treat hypertension and diabetes. Studies have shown its numerous beneficial pharmacological properties. Extracts of P. speciosa, particularly from its seeds and empty pods, show the presence of polyphenols. They also exhibit potent antioxidant, hypoglycemic, anti-inflammatory, and antihypertensive properties. Its hypoglycemic properties are reported to be associated with the presence of β-sitosterol, stigmasterol, and stigmat-4-en-3-one. The current review aimed to provide an overview of the current status of P. speciosa, its pharmacological potential, and its phytochemical content in attenuating diabetic vasculopathy. Glycemic status, oxidative stress, inflammation, and hyperlipidemia are known to play pivotal roles in the initiation and severity of diabetic cardiovascular diseases; thus, targeting these factors might be beneficial for preventing and/or treating diabetic vasculopathy.
Collapse
|
11
|
Peroxiredoxin-5 Knockdown Accelerates Pressure Overload-Induced Cardiac Hypertrophy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5067544. [PMID: 35132351 PMCID: PMC8817848 DOI: 10.1155/2022/5067544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
A recent study showed that peroxiredoxins (Prxs) play an important role in the development of pathological cardiac hypertrophy. However, the involvement of Prx5 in cardiac hypertrophy remains unclear. Therefore, this study is aimed at investigating the role and mechanisms of Prx5 in pathological cardiac hypertrophy and dysfunction. Transverse aortic constriction (TAC) surgery was performed to establish a pressure overload-induced cardiac hypertrophy model. In this study, we found that Prx5 expression was upregulated in hypertrophic hearts and cardiomyocytes. In addition, Prx5 knockdown accelerated pressure overload-induced cardiac hypertrophy and dysfunction in mice by activating oxidative stress and cardiomyocyte apoptosis. Importantly, heart deterioration caused by Prx5 knockdown was related to mitogen-activated protein kinase (MAPK) pathway activation. These findings suggest that Prx5 could be a novel target for treating cardiac hypertrophy and heart failure.
Collapse
|