1
|
Wang M, Wan M, Liu M, Zhou W, Zhang X, Liu W, Liu Y, Jiang S, Shang E, Duan J. Integrated network pharmacology and metabolomics analysis to reveal the potential mechanism of Ershen Wan in ameliorating ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119690. [PMID: 40158827 DOI: 10.1016/j.jep.2025.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ershen Wan (ESW), a classic traditional Chinese medicine (TCM) prescription composed of Psoralea corylifolia Linn. and Myristica fragrans Houtt., has been applied to treat gastrointestinal disorders in clinical practices for thousands of years. However, its potential molecular mechanism in alleviating ulcerative colitis (UC) remains to be elusive. AIM OF THE STUDY The purpose of the study is to explore the underlying mechanism of ESW in treating UC. MATERIALS AND METHODS The protective effect of ESW on dextran sodium sulfate (DSS)-induced UC mice was assessed by body weight, disease activity index (DAI), colon length, colon tissue pathology, and colonic inflammatory factors. Furthermore, network pharmacology was applied to dissect the possible targets and biological pathways regulated by ESW. The plasma and fecal metabolomics were comprehensively analyzed by UPLC-Q-TOF/MS. Subsequently, an efficient and feasible approach integrating network pharmacology, metabolomics, and molecular docking was used to explore the key targets obtained from the metabolite-reaction-enzyme-gene network. And the effect of ESW on the MAPK signaling mediated intestinal epithelial cell apoptosis was further investigated by in vitro and in vivo experiments. RESULTS ESW could notably alleviate colon injury and inflammation of UC mice. Network pharmacology suggested that the bioactive components of ESW could mainly modulate signaling pathways associated with inflammation and metabolism. Consistently, plasma and fecal metabolomics further indicated that ESW could regulate the metabolic pathways of arachidonic acid, linoleic acid, sphingolipid, tryptophan, and glycerophospholipid. And the combined analysis of network pharmacology and metabolomics revealed that 14 pivotal targets were modulated by ESW, including PTGS1, PTGS2, CYP1A1, FADS1, CBR1, ALOX5, EPHX1, EPHX2, HPGD, PLA2G1B, PLA2G7, MGLL, ACHE, and SPHK1. Additionally, molecular docking suggested that bioactive components of ESW could bind well to these potential targets. And in vitro and in vivo experiments further verified that ESW could markedly ameliorate pathological symptoms of UC mice through inhibiting MAPK signaling mediated colonic epithelial cell apoptosis. CONCLUSION Collectively, these findings indicated that ESW could effectively alleviate the pathological symptoms of UC mice, mainly involving in the modulation of lipid and amino acid metabolism pathways, and the suppression of MAPK signaling-mediated apoptosis. In this study, the potential mechanism of ESW for the treatment of UC was first clarified, which provided a solid scientific foundation for its clinical application. Notably, the proposed strategy facilitated a comprehensive prediction and validation of the efficacy and molecular mechanism of TCMs, and also provided a novel approach for revealing the intricate biological pathogenesis of diseases.
Collapse
Affiliation(s)
- Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Meiyu Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Meijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Wenwen Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Xiaoxiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Weijie Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Ying Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
2
|
Cui X, Zhang S, He L, Duan H, Xie Y, Pei X, Yan Y, Du C. In Vitro Biotransformation of Ziziphi Spinosae Semen Saponins by Gut Microbiota from Healthy and Insomniac Groups. Int J Mol Sci 2025; 26:4011. [PMID: 40362251 PMCID: PMC12072027 DOI: 10.3390/ijms26094011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/29/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Ziziphi Spinosae Semen saponins (ZSSS) show sedative-hypnotic activity but have very low bioavailability, potentially due to their conversion into bioactive metabolites by gut microbiota. In this study, the biotransformation of ZSSS by gut microbiota from healthy humans and patients with insomnia in vitro was analyzed. A total of 21 prototype compounds and 49 metabolites were identified using UHPLC-Q-Orbitrap-MS. Deglycosylation, deoxygenation, dehydration, and deacylation were detected in both healthy individuals and insomniacs. However, oxidation and hydrogenation were uniquely observed in insomniacs. ZSSS can enhance beneficial bacteria, such as Veillonella, Dialister, and Bacteroides. ZSSS can promote the synthesis of short-chain fatty acids (SCFAs), especially acetic acid, propionic acid, and butyric acid. Furthermore, it was found that the sedative-hypnotic activity of ZSSS was enhanced after biotransformation, as determined by a sodium pentobarbital-induced sleeping test (SPST), open-field behavior test (OFBT), and molecular docking experiment (MDE). These results collectively offer valuable insight into the mechanism of action of ZSSS.
Collapse
Affiliation(s)
- Xiaofang Cui
- School of Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan 030619, China; (X.C.); (S.Z.); (L.H.); (H.D.); (Y.X.); (X.P.)
| | - Shengmei Zhang
- School of Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan 030619, China; (X.C.); (S.Z.); (L.H.); (H.D.); (Y.X.); (X.P.)
| | - Ling He
- School of Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan 030619, China; (X.C.); (S.Z.); (L.H.); (H.D.); (Y.X.); (X.P.)
| | - Huizhu Duan
- School of Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan 030619, China; (X.C.); (S.Z.); (L.H.); (H.D.); (Y.X.); (X.P.)
| | - Yujun Xie
- School of Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan 030619, China; (X.C.); (S.Z.); (L.H.); (H.D.); (Y.X.); (X.P.)
| | - Xiangping Pei
- School of Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan 030619, China; (X.C.); (S.Z.); (L.H.); (H.D.); (Y.X.); (X.P.)
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Chenhui Du
- School of Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan 030619, China; (X.C.); (S.Z.); (L.H.); (H.D.); (Y.X.); (X.P.)
| |
Collapse
|
3
|
Tian X, Zhang S, Gu L, Tian W, Liu L, Li Q, Jiang T. Dynamic Metabolite Profile Changes in Semen Ziziphi Spinosae During Ripening. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10024. [PMID: 40105258 DOI: 10.1002/rcm.10024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
RATIONALE In traditional Chinese medicine, Semen Ziziphi Spinosae (SZS) is employed for alleviating conditions such as neurasthenia, sleep disorders, and anxiety. Its therapeutic effects are attributed to an abundance of biologically active compounds. The main objective of this study was the comparative profiling of SZS from different harvest times using a widely targeted metabolomics approach. METHODS First, UPLC-Q Trap-MS/MS was used for identification of metabolic profile. Then, multivariate statistical analysis and KEGG enrichment analysis were performed to screen out the differential metabolites and related metabolic pathways among different growth stages. RESULTS In total, 466 metabolites were identified at three different growth and development stages (T1, T2, and T3) of SZS using UPLC-Q Trap-MS/MS, including 83 flavonoids, 80 phenolic acids, 67 amino acids and derivatives, 56 lipids, 39 nucleotides and derivatives, 38 organic acids, 1 quinone, 6 lignans and coumarins, 53 other metabolites, 10 tannins, 20 alkaloids, and 13 terpenoids. The result of clustering and PCA analyses showed that there was a great difference in metabolites between SZS at three growth stages. Differential metabolites in three comparison groups (T1 vs. T2, T2 vs. T3, and T1 vs. T3) were 195, 104, and 96, respectively. There were 29 common differential metabolites among the three different growth stages of SZS. The contents of important active ingredients (flavonoids and terpenoids) gradually increased during the T1, T2, and T3 stages, indicating that SZS harvested during T3 period was suitable for medicinal use. All the differential metabolites screened were enriched in 11 metabolic pathways, including glycerolipid metabolism, glycerophospholipid metabolism, phenylalanine metabolism, and phenylpropanoid biosynthesis pathway. CONCLUSIONS This study provides a more comprehensive understanding of the dynamic changes in the metabolic profile of SZS, laying a foundation for subsequent development and utilization.
Collapse
Affiliation(s)
- Xi Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Sujun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Liqiang Gu
- Department of Life Sciences, Tangshan Normal University, Tangshan Key Laboratory of Cruciferous Vegetables Genetics and Breeding, Tangshan, Hebei, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Lingdi Liu
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Qiang Li
- Department of Life Sciences, Tangshan Normal University, Tangshan Key Laboratory of Cruciferous Vegetables Genetics and Breeding, Tangshan, Hebei, China
| | - Tao Jiang
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Wei W, Wang D, Li H, Tian H, Wang Z, Feng S. Total Alkaloid Extract of Nelumbinis Plumula Promoted Sleep in PCPA-Induced Insomnia Rats by Affecting Neurotransmitters and Their Receptor Activities. Int J Mol Sci 2025; 26:3684. [PMID: 40332158 PMCID: PMC12027186 DOI: 10.3390/ijms26083684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Insomnia seriously affects people's health and daily life. There is a growing interest in sleep-promoting agents from natural sources. Nelumbinis Plumula (NP), a traditional Chinese medicine with dual food-medicine homology, has the effects of clearing the heart and calming the mind, showing promising efficacy in treating insomnia. In this study, the effects of NP extract, total alkaloid extract of NP, and crude polysaccharide of NP were measured in para-chlorophenylalanine-induced insomnia rats combined with the pentobarbital sodium experiment. The results indicated both total alkaloid extract and NP total extract could improve insomnia in rats, with the total alkaloid extract demonstrating a stronger effect than NP total extract. Total alkaloid extract significantly prolonged sleep duration and shortened sleep latency. Therefore, total alkaloids in NP appeared to be the main pharmacological substances that exerted sedative effect. Simultaneously, total alkaloid extract could increase the GABA level and reduce the DA level as well as affect the activities of GABRA1, DRD2, 5-HT1A, and AChE proteins. This study can lay an experimental foundation for the further development and application of NP as a remedy for treating insomnia.
Collapse
Affiliation(s)
- Wenjun Wei
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; (D.W.); (H.T.); (Z.W.)
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of China, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450046, China
| | - Dongge Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; (D.W.); (H.T.); (Z.W.)
| | - Hangying Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China;
| | - Hongyu Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; (D.W.); (H.T.); (Z.W.)
| | - Zhilei Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; (D.W.); (H.T.); (Z.W.)
| | - Suxiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; (D.W.); (H.T.); (Z.W.)
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of China, Zhengzhou 450046, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Zhengzhou 450046, China
| |
Collapse
|
5
|
Wei S, Chen R, Liu X, Ma H, Peng Y, Wu X, An Y, Wang X, Luo P. Aromatherapy was used to explore the sedative and hypnotic effects of Moringa seed essential oil on insomnia rats. Food Sci Nutr 2024; 12:10463-10476. [PMID: 39723058 PMCID: PMC11666963 DOI: 10.1002/fsn3.4484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 12/28/2024] Open
Abstract
Moringa is a type of plant that is used both for medicinal and food. Moringa seed (MS) are rich in volatile oil and have initially been employed to treat diseases of the nervous system. Insomnia, a prevalent neurological disorder, has led to this study's aim: to extract the essential oil from MS and analyze its potential to improve sleep. This study utilized petroleum ether for the thermal extraction of the essential oil from MS, which was then subjected to compositional analysis using Gas Chromatograph Mass Spectrometer (GC-MS). P-chlorophenyl alanine (PCPA) was used to induce an insomnia model in Sprague-Dawley (SD) rats. Following the successful establishment of the model, the MS essential oil was administered at concentrations of 10%, 5%, and 2.5% to investigate its sedative and hypnotic effects. The efficacy of the MS essential oil was assessed by observing the general condition of rats in each group, conducting an open field test, a pentobarbital sodium righting test, and measuring the serum 5-HT (5-hydroxytryptamine) levels and hypothalamic GABA (γ-aminobutyric acid) content. GC-MS analysis of the MS essential oil revealed a rich composition, including oleic acid, palmitoleic acid, stigmasterol, and γ-stigmasterol, among other substances. Through the assessment of the rats' general condition, behavioral tests, and blood biochemical assays, it was inferred that MS essential oil aromatherapy can reduce the rat's locomotor activity, increase their interest in activity and exploration, enhance the serum 5-HT levels, and elevate hypothalamic GABA content. Consequently, it can be concluded that MS essential oil has a sedative and hypnotic effect.
Collapse
Affiliation(s)
- Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Ruijie Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Haoran Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Yang Peng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Xiefei Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Yong An
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Xinru Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| |
Collapse
|
6
|
Ma J, Huang S, Shi L, Shen Y, Gao S, Wu Z. Research progress on the effect of medicine and food homology resources for sleep improvement. Heliyon 2024; 10:e40067. [PMID: 39583811 PMCID: PMC11584607 DOI: 10.1016/j.heliyon.2024.e40067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Insomnia can have a negative impact on people's life or even cause mental or physical diseases. In China, the usage of medicine food homology herbal resources to treat insomnia has a long history. This review, which is based on the theory of traditional Chinese medicine (TCM), summarizes the research progress of medicine and food homology (MFH) resources in treating insomnia. Through literature search from the last 8 years, we compared the understanding of insomnia between TCM and modern pharmacology, found 21 kinds of MFH plants and 15 kinds of prescriptions containing MFH plants that have the effect of improving sleep and summarized the mechanism of their treatment of insomnia. Our study will provide theoretical support for the development and utilization of MFH plant resources with sleep-enhancing properties and provide positive insights and direction references for more effective treatment of insomnia disease.
Collapse
Affiliation(s)
- Jingxuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Shan Huang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Shiyu Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| |
Collapse
|
7
|
Zhu C, Zhang Z, Wang S, Sun Z. Study on the mechanism of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen in sedation and tranquillising mind. Mol Divers 2024; 28:3279-3294. [PMID: 37917323 DOI: 10.1007/s11030-023-10756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
This study analysed the pharmacological mechanism of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen in sedation and tranquillising mind using network pharmacology methods. The findings of this study aimed to serve as a reference for the development of novel drugs and the clinical expansion and application of traditional Chinese medicine formulas. The chemical constituents and therapeutic targets of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen were acquired from TCMSP, HERB, and ETCM databases. Active components were identified using ADME criteria, while the primary targets associated with sedation and mental tranquillity were obtained from GENECARDS, OMIM, and DRUGBANK databases. A protein-protein interaction (PPI) network analysis was conducted using the STRING platform to investigate potential functional protein modules by the network. The METASCAPE platform was employed for the study of the "component-target" and its associated biological processes and pathways. Subsequently, the "component-target" network was constructed using Cytoscape 3.9.1 software. Finally, the validation of molecular docking was conducted through AUTODOCK. The findings revealed that Quercetin, Atropine, Dauricine, (S)-Coclaurine, and other active ingredients were identified as the core constituents of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen. Additionally, PTGS2, PTGS1, MAOB, GABRA1, SLC6A2, ADRB2, CHRM1, HTR2A, and other targets were identified as the core targets. The results of the molecular docking analysis demonstrated that Quercetin, Atropine, Dauricine, and (S)-Coclaurine exhibited binding solid affinity towards PTGS2 and PTGS1. The predominant biological pathways associated with sedation and tranquilisation primarily involved Neuroactive ligand-receptor interaction and activation of receptors involved in chemical carcinogenesis. This study provided initial findings on the multi-component, multi-target, and multi-pathway mechanism underlying the sedative and tranquillising effects of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen. These findings had the potential to serve as a foundation for the future development and utilisation of Gastrodiae Rhizoma, Lycii Fructus, and Ziziphi Spinosae Semen.
Collapse
Affiliation(s)
- Chenghao Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhengru Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shangtao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
8
|
Zhao FY, Xu P, Kennedy GA, Zheng Z, Zhang WJ, Zhu JY, Ho YS, Yue LP, Fu QQ, Conduit R. Commercial Chinese polyherbal preparation Zao Ren An Shen prescription for primary insomnia: a systematic review with meta-analysis and trial sequential analysis. Front Pharmacol 2024; 15:1376637. [PMID: 38957383 PMCID: PMC11218554 DOI: 10.3389/fphar.2024.1376637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Natural products are widely used for primary insomnia (PI). This systematic review with trial sequential analysis (TSA) aimed to summarize evidence pertaining to the effectiveness and safety of Zao Ren An Shen (ZRAS) prescription, a commercial Chinese polyherbal preparation, for treating PI. Methods: Controlled clinical trials appraising ZRAS compared to controls or as an add-on treatment were systematically searched across seven databases until January 2024. Cochrane ROB 2.0 and ROBINS-I tools were adopted to determine risk of bias. Quality of evidence was assessed using the GRADE framework. Results: We analyzed 22 studies, involving 2,142 participants. The effect of ZRAS in reducing Pittsburgh Sleep Quality Index scores was found to be comparable to benzodiazepines [MD = 0.39, 95%CI (-0.12, 0.91), p = 0.13] and superior to Z-drugs [MD = -1.31, 95%CI (-2.37, -0.24), p = 0.02]. The addition of ZRAS to hypnotics more significantly reduced polysomnographically-recorded sleep onset latency [MD = -4.44 min, 95%CI (-7.98, -0.91), p = 0.01] and number of awakenings [MD = -0.89 times, 95%CI (-1.67, -0.10), p = 0.03], and increased total sleep time [MD = 40.72 min, 95%CI (25.14, 56.30), p < 0.01], with fewer adverse events than hypnotics alone. TSA validated the robustness of these quantitative synthesis results. However, the quality of evidence ranged from very low to low. The limited data available for follow-up did not support meta-synthesis. Conclusion: While ZRAS prescription shows promising effectiveness in treating PI, the overall quality of evidence is limited. Rigorously-designed randomized control trials are warranted to confirm the short-term efficacy of ZRAS and explore its medium-to-long-term efficacy. Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=471497), identifier (CRD42023471497).
Collapse
Affiliation(s)
- Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peijie Xu
- School of Computing Technologies, RMIT University, Melbourne, VIC, Australia
| | - Gerard A. Kennedy
- Institute of Health and Wellbeing, Federation University, Ballarat, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia
| | - Zhen Zheng
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Wen-Jing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Yi Zhu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, China
| | - Li-Ping Yue
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Qiang-Qiang Fu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Zhang Z, Li J, Li F, Wang T, Luo X, Li B, You Y, Wu C, Liu X. Jujubae Fructus extract prolongs lifespan and improves stress tolerance in Caenorhabditis elegans dependent on DAF-16/SOD-3. Sci Rep 2024; 14:13713. [PMID: 38877105 PMCID: PMC11178930 DOI: 10.1038/s41598-024-64045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Jujubae Fructus, the fruit of Ziziphus jujuba Mill has been used as one of the medicine food homology species for thousands of years in China. Studies have shown that the active ingredients of Jujubae Fructus have a variety of biological effects, but its role in the aging process still lacks knowledge. Here, we investigated the effect of Jujubae Fructus extract (JE) on Caenorhabditis elegans lifespan and its potential mechanism. The lifespan of C. elegans treated with JE was signifificantly increased in a dose-dependent manner. In addition, JE treatment prolonged the reproductive period and increased normal activity during aging in C. elegans. Similarly, JE supplementation also enhanced the resistance to heat and oxidative stress in C. elegans. Furthermore, the mutant worms' lifespan assays demonstrated that JE requires daf-16 to prolong lifespan. DAF-16::GFP analysis of TJ356 showed that JE treatment translocates DAF-16::GFP to nucleus in transgenic worms. By analyzing the downstream of daf-16, we identify that JE may regulate sod3 downstream of daf-16. Mutant worms' lifespan and transgenic reporter gene expression assays revealed that increasing SOD-3 expression was critical for extending longevity in C. elegans with JE therapy. Collectively, these data indicate that JE may have an important role in C. elegans longevity that is dependent on DAF-16 and SOD-3.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang City, Henan Province, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiajia Li
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China
| | - Feng Li
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang City, Henan Province, China
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China
| | - Tao Wang
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China
| | - Xiaoyan Luo
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang City, Henan Province, China
| | - Bing Li
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Changjing Wu
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China.
| | - Xiaomeng Liu
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang City, Henan Province, China.
- Institute of Translational Medicine, Zhoukou Normal University, No.6, Middle Wenchang Avenue, Chuanhui District, Zhoukou, China.
| |
Collapse
|
10
|
Hao KX, Shen CY, Jiang JG. Sedative and hypnotic effects of Polygala tenuifolia willd. saponins on insomnia mice and their targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117618. [PMID: 38141791 DOI: 10.1016/j.jep.2023.117618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia Willd. has been widely used in the treatment of cancer, forgetfulness, depression and other diseases. AIM OF REVIEW The purpose of this study was to investigate the sleep-enhancing effect and mechanism of P. tenuifolia saponins (PTS). MATERIALS AND METHODS The total saponin (YZ-I) and purified saponin (YZ-II) fractions were extracted and ICR mice model of insomnia was established by p-chlorophenylalanine (PCPA) induction to observe anxiety and depression behaviors. Effects of YZ-I and YZ-II on the levels of neurotransmitters, hormones, and inflammation cytokines were detected by ELISA, RT-qPCR and western blotting. RESULTS The results showed that YZ-I and YZ-II reduced the immobility time of mice and prolonged the sleep time of mice and significantly increased the concentrations of 5-HT, NE, PGD2, IL-1β and TNF-α. YZ-I and YZ-II regulated GABAARα2, GABAARα3, GAD65/67, 5-HT1A and 5-HT2A, while regulated the levels of inflammatory cytokines such as DPR, PGD2, iNOS and TNF-α to exert sedative and hypnotic effects. CONCLUSION PTS are mainly achieved sedative and hypnotic effects by altering serotonergic, GABAergic and immune systems, but the effects and mechanisms of action of YZ-I were different from YZ-II.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China; Southern Medical University, School of Traditional Chinese Medicine, Guangzhou 510515, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
11
|
Sun M, Li M, Cui X, Yan L, Pei Y, Wang C, Guan C, Zhang X. Terpenoids derived from Semen Ziziphi Spinosae oil enhance sleep by modulating neurotransmitter signaling in mice. Heliyon 2024; 10:e26979. [PMID: 38463787 PMCID: PMC10923681 DOI: 10.1016/j.heliyon.2024.e26979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Semen Ziziphi Spinosae oil (SZSO) is a natural vegetable oil extracted from Semen Ziziphi Spinosae, a traditional Chinese medicine renowned for its sleep-promoting properties, while the mechanisms are still unclear. Our findings revealed that the terpenoids present in SZSO (T-SZSO) were identified as the active components responsible for promoting sleep. Network pharmacological analysis suggested that T-SZSO targeted different sleep-aid pathways to varying degrees and exhibited potential for preventing central nervous system diseases. Notably, lupeol and betulinicaldehyde exhibited more pronounced effects. Additionally, T-SZSO significantly elevated serotonin levels, enhanced gamma-aminobutyric acid (GABA) synthesis, promoted GABA A receptor expression, and decreased glutamate and norepinephrine expression levels. Moreover, T-SZSO was found to downregulate IL-1β expression while upregulating superoxide dismutase and inducible nitric oxide synthase levels. In conclusion, this study presents the first investigation into the pharmacological basis of SZSO in promoting sleep and highlights the potential of nature food in improving suboptimal health conditions.
Collapse
Affiliation(s)
- Mingzhe Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Health Foods R&D Office of Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang 050035, China
| | - Mengnan Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang 050035, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang 050035, China
| | - Xinwen Cui
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lin Yan
- Health Foods R&D Office of Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang 050035, China
| | - Yiqiao Pei
- College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chao Wang
- Health Foods R&D Office of Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang 050035, China
| | - Chunbo Guan
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiuqing Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
12
|
Bai F, Wang J, Xia N, Sun Y, Xie Y, Zhao C, Sun J, Zhang X. UPLC-Q-TOF-MS/MS Combined with Network Pharmacology, Molecular Docking, and Animal Verification Reveals the Mechanism of Insomnia Treatment by Shen Qi Wu Wei Zi Capsules. Comb Chem High Throughput Screen 2024; 27:2433-2445. [PMID: 38151834 DOI: 10.2174/0113862073275553231202153259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Shen Qi Wu Wei Zi capsules (SQWWZ) are often used to treat insomnia; however, the potential therapeutic mechanism is still unclear. OBJECTIVE This study aimed to investigate the mechanism underlying the therapeutic effects of the Shen Qi Wu Wei Zi capsules on insomnia. METHODS The components of SQWWZ were identified using the UPLC-Q-TOF-MS/MS technique in conjunction with relevant literature. Insomnia-related targets were searched in the Gene- Cards and DisGeNET databases, and the intersection targets were obtained using a Venn diagram. A component-target-insomnia network diagram was constructed using Cytoscape 3.7.2 software. Core targets underwent GO and KEGG enrichment analyses. Molecular docking techniques were employed to verify the key proteins involved in the pathway and their corresponding compounds. Insomnia was induced in SD rats through the intraperitoneal injection of pchlorophenylalanine (DL-4-chlorophenylalanine, PCPA). The rats were treated orally with SQWWZ, and the serum levels of 5-HT and GABA in each group were determined using ELISA. Histological analysis of hippocampal tissue sections from the rats was performed using HE staining. RESULTS Using UPLC-Q-TOF-MS/MS and reviewing relevant literature, we identified 49 components of SQWWZ. Additionally, we obtained 1,043 drug targets and 367 insomnia-related targets. Among these, 82 targets were found to be common to both drug and insomnia targets. Following drug administration, rats in the treatment group exhibited a significant increase in the serum levels of 5-HT and GABA. Moreover, histological analysis using HE staining revealed neatly arranged hippocampal neuronal cells in the treated rats. CONCLUSION The active components of SQWWZ had good inhibition of insomnia. This study provides a reference and guidance for the in-depth study of SQWWZ for the treatment of insomnia.
Collapse
Affiliation(s)
- Fengyun Bai
- Shaanxi Dongtai Pharmaceutical Company, XianYang, 712031, Shaanxi, China
| | - Jie Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Ning Xia
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Ying Sun
- Shaanxi Dongtai Pharmaceutical Company, XianYang, 712031, Shaanxi, China
| | - Yundong Xie
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Chongbo Zhao
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| |
Collapse
|
13
|
Zhao X, Hou T, Zhou H, Liu Z, Liu Y, Wang C, Guo Z, Yu D, Xu Q, Wang J, Liang X. Multi-effective components and their target mechanism of Ziziphi Spinosae Semen in the treatment of insomnia. Fitoterapia 2023; 171:105712. [PMID: 37884227 DOI: 10.1016/j.fitote.2023.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Insomnia is a common and refractory disease. Since more than 2000 years ago, people have been using Ziziphi Spinosae Semen (ZSS). However, there are lack of molecular mechanisms of sleep promotion effects of ZSS. The purpose of this study is to clarify the active ingredients in ZSS that are used to treat insomnia. Using a method called cellular label-free integrative pharmacology (CLIP), we established five insomnia-related target models, including serotonin (5HT2A and 5HT1A), melatonin (MT1), dopamine (D2) and epinephrine (β2) receptors. The one-dimensional (1D) fractions of ZSS extract were prepared on a RZC18 column and assayed on five models. Subsequently, the active fraction was further analyzed, fractionated and quantified using a two-dimensional (2D) liquid phase method coupled with a charged aerosol detector (CAD), This CAD-coupled 2D-LC method requires micro-fractions from the 1D separation and thus it greatly saves sample amounts and corresponding preparation time, and quickly conduct activity screening. The composition of the active 2D fractions was then determined using three-dimensional (3D) HPLC-MS, and molecular docking was separately carried out for the described compounds on the targets for activity prediction. Seven compounds were predicted to be active on 5HT2A, and two compounds on D2. We experimentally verified the prediction and found that vitexin exhibited D2 agonistic activity, and nuciferine exhibited 5HT2A antagonistic activity. This study revealed the effective components and their targets of ZSS in the treatment of insomnia, also highlighted the potential of the CLIP technique and bioactivity guided multi-dimensional HPLC-MS in molecular mechanism elucidation for traditional Chinese medicines.
Collapse
Affiliation(s)
- Xinwei Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ziling Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dongping Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| |
Collapse
|
14
|
Ren A, Wu T, Wang Y, Fan Q, Yang Z, Zhang S, Cao Y, Cui G. Integrating animal experiments, mass spectrometry and network-based approach to reveal the sleep-improving effects of Ziziphi Spinosae Semen and γ-aminobutyric acid mixture. Chin Med 2023; 18:99. [PMID: 37573423 PMCID: PMC10422734 DOI: 10.1186/s13020-023-00814-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Ziziphi Spinosae Semen (ZSS) is a plant widely used as medicine and food in Asian countries due to its numerous health benefits. γ-aminobutyric acid (GABA), a non-proteinaceous amino acid, is one of the major inhibitory neurotransmitters with a relaxant function. In this study, a system pharmacology approach was employed to assess the effects of a mixture composed of ZSS and GABA (ZSSG) on sleep improvement. METHODS Mice were divided into five groups (n = 10) and received either no treatment, sodium pentobarbital, or sodium barbital with diazepam or ZSSG. The effects of ZSSG on sleep quality were evaluated in mice, and differential metabolites associated with sleep were identified among the control, ZSS, GABA, and ZSSG groups. Additionally, network-based ingredient-insomnia proximity analysis was applied to explore the major ingredients. RESULTS ZSSG significantly improved sleep quality by decreasing sleep latency and prolonging sleep duration in sodium pentobarbital-induced sleeping mouse model (P < 0.05). ZSSG significantly enhanced the brain content of GABA in mice. Furthermore, ZSSG also significantly decreased sleep latency-induced by sodium barbital in mice (P < 0.05). Metabolic analysis revealed significant differences in 10 metabolites between ZSSG group and the groups administering ZSS or GABA. Lastly, using the network-based ingredient screening model, we discovered potential four active ingredients and three pairwise ingredient combinations with synergistic effect on insomnia from ZSSG among 85 ingredients identified by UPLC-Q/TOF-MS. Also, we have constructed an online computation platform. CONCLUSION Our data demonstrated that ZSSG improved the sleeping quality of mice and helped to balance metabolic disorders-associated with sleep disorders. Moreover, based on the network-based prediction method, the four potential active ingredients in ZSSG could serve as quality markers-associated with insomnia. The network-based framework may open up a new avenue for the discovery of active ingredients of herbal medicine for treating complex chronic diseases or symptoms, such as insomnia.
Collapse
Affiliation(s)
- Airong Ren
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Tingbiao Wu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Yarong Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Qing Fan
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Zhenhao Yang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Shixun Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Yongjun Cao
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
15
|
Wang H, Gu Y, Khalid R, Chen X, Han T. Herbal medicines for insomnia through regulating 5-hydroxytryptamine receptors: a systematic review. Chin J Nat Med 2023; 21:483-498. [PMID: 37517817 DOI: 10.1016/s1875-5364(23)60405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 08/01/2023]
Abstract
Insomnia is a common sleep disorder without effective therapy and can affect a person's life. The mechanism of the disease is not completely understood. Hence, there is a need to understand the targets related to insomnia, in order to develop innovative therapies and new compounds. Recently, increasing interest has been focused on complementary and alternative medicines for treating or preventing insomnia. Research into their molecular components has revealed that their sedative and sleep-promoting properties rely on the interactions with various neurotransmitter systems in the brain. In this review, the role of 5-hydroxytryptamine (5-HT) in insomnia development is summarized, while a systematic analysis of studies is conducted to assess the mechanisms of herbal medicines on different 5-HT receptors subtypes, in order to provide reference for subsequent research.
Collapse
Affiliation(s)
- Haoran Wang
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201999, China
| | - Rahman Khalid
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, England
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Ting Han
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
16
|
Du J, Zhang F, Chen M, Xiao Y, Zhang L, Dong L, Dong D, Wu B. Jujuboside A ameliorates cognitive deficiency in delirium through promoting hippocampal E4BP4 in mice. J Pharm Pharmacol 2023:rgad057. [PMID: 37330271 DOI: 10.1093/jpp/rgad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Delirium (acute brain syndrome) is a common and serious neuropsychiatric disorder characterized by an acute decline in cognitive function. However, there is no effective treatment clinically. Here we investigated the potential effect of jujuboside A (JuA, a natural triterpenoid saponin) on cognitive impairment in delirium. METHODS Delirium models of mice were established by injecting lipopolysaccharide (LPS) plus midazolam and implementing a jet lag protocol. Novel object recognition test and Y maze test were used to evaluate the effects of JuA on delirium-associated cognitive impairment. The mRNA and protein levels of relevant clock factors and inflammatory factors were measured by qPCR and Western blotting. Hippocampal Iba1+ intensity was determined by immunofluorescence staining. KEY FINDINGS JuA ameliorated delirium (particularly delirium-associated cognitive impairment) in mice, which was proved by the behavioural tests, including a preference for new objects, an increase of spontaneous alternation and improvement of locomotor activity. Furthermore, JuA inhibited the expression of ERK1/2, p-p65, TNFα and IL-1β in hippocampus, and repressed microglial activation in delirious mice. This was attributed to the increased expression of E4BP4 (a negative regulator of ERK1/2 cascade and microglial activation). Moreover, loss of E4bp4 in mice abrogated the effects of JuA on delirium as well as on ERK1/2 cascade and microglial activation in the hippocampus of delirious mice. Additionally, JuA treatment increased the expression of E4BP4 and decreased the expression of p-p65, TNFα and IL-1β in LPS-stimulated BV2 cells, supporting a protective effect of JuA on delirium. CONCLUSIONS JuA protects against delirium-associated cognitive impairment through promoting hippocampal E4BP4 in mice. Our findings are of great significance to the drug development of JuA against delirium and related disorders.
Collapse
Affiliation(s)
- Jianhao Du
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Fugui Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yifei Xiao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Linlin Dong
- HeBei Geo-environment Monitoring Institute, Shijiazhuang, HeBei, China
| | - Dong Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Tian JF, Zhang S, Huo ZP, Wang YH, Luo XJ, Li RM, He Y. Structure revision of the aporphine zizyphusine alkaloid from Semen Ziziphi Spinosae. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:268-272. [PMID: 36415967 DOI: 10.1002/mrc.5325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Jie-Feng Tian
- TCM Research Center, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Shuang Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhi-Peng Huo
- TCM Research Center, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Ya-Hu Wang
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Xue-Jun Luo
- TCM Research Center, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Rui-Ming Li
- TCM Research Center, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Yi He
- TCM Research Center, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| |
Collapse
|
18
|
Jin B, Bai W, Zhao J, Qin X, Guo H, Li Y, Hao J, Chen S, Yang Z, Bai H, Zhao Z, Jia Q, Dong C, Huang Z, Kong D, Zhang W. Jujuboside B inhibits febrile seizure by modulating AMPA receptor activity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116048. [PMID: 36549370 DOI: 10.1016/j.jep.2022.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Febrile seizure is a common neurologic disorder with limited treatment occurring in infants and children under the age of five. Jujuboside B (JuB) is a main bioactive saponin component isolated from the Chinese anti-insomnia herbal medicine Ziziphi Spinosae Semen (ZSS), seed of Ziziphus jujuba Mill, which has been proved to exhibit neuroprotective effects recently. AIM OF THE STUDY In this study, we aimed at elucidating the effect of JuB on suppressing febrile seizure and the potential mechanisms. METHODS Electroencephalogram (EEG) recording was used to monitor the severity of febrile seizures. The JuB in the brain was identified by mass spectrometry. Neuronal excitability was investigated using patch clamp. RESULTS JuB (30 mg/kg) significantly prolonged seizure latency and reduced the severity in hyperthermia-induced seizures model mice. Hippocampal neuronal excitability was significantly decreased by JuB. And JuB significantly reduced the excitatory synaptic transmission mediated by α-amino-3-hydroxy-5-methyl-4-iso-xazolepropionic acid receptor (AMPAR), including evoked excitatory postsynaptic currents (eEPSCs), and miniature EPSCs (mEPSCs) in hippocampal neurons. Furthermore, JuB also significantly inhibited recombinant GluA1 and GluA2 mediated AMPA current in HEK293 cell and decreased the upregulation of [Ca2+]i induced by AMPA in primary cultured cortex neurons. CONCLUSIONS JuB suppressed the excitability of hippocampal neurons by inhibiting the activity of AMPAR and reducing the intracellular free calcium, thereby relieving febrile seizures.
Collapse
Affiliation(s)
- Baohua Jin
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Wanjun Bai
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China; Department of Pharmacology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Jiaojiao Zhao
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Xia Qin
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Han Guo
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Yahui Li
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Jie Hao
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Siruan Chen
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Qingzhong Jia
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Changzheng Dong
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei, 050017, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dezhi Kong
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| | - Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
19
|
Su Y, Bai Q, Tao H, Xu B. Prospects for the application of traditional Chinese medicine network pharmacology in food science research. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 36882903 DOI: 10.1002/jsfa.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
There has always been a particular difficulty with in-depth research on the mechanisms of food nutrition and bioactivity. The main function of food is to meet the nutritional needs of the human body, rather than to exert a therapeutic effect. Its relatively modest biological activity makes it difficult to study from the perspective of general pharmacological models. With the popularity of functional foods and the concept of dietary therapy, and the development of information and multi-omics technology in food research, research into these mechanisms is moving towards a more microscopic future. Network pharmacology has accumulated nearly 20 years of research experience in traditional Chinese medicine (TCM), and there has been no shortage of work from this perspective on the medicinal functions of food. Given the similarity between the concept of 'multi-component-multi-target' properties of food and TCM, we think that network pharmacology is applicable to the study of the complex mechanisms of food. Here we review the development of network pharmacology, summarize its application to 'medicine and food homology', and propose a methodology based on food characteristics for the first time, demonstrating its feasibility for food research. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qiong Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Li W, Cheng Y, Zhang Y, Qian Y, Wu M, Huang W, Yang N, Liu Y. Shumian Capsule Improves the Sleep Disorder and Mental Symptoms Through Melatonin Receptors in Sleep-Deprived Mice. Front Pharmacol 2022; 13:925828. [PMID: 35873551 PMCID: PMC9304889 DOI: 10.3389/fphar.2022.925828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Healthy sleep is vital to maintaining the body's homeostasis. With the development of modern society, sleep disorder has gradually become one of the most epidemic health problems worldwide. Shumian capsule (SMC), a kind of traditional Chinese medicine (TCM) commonly used for insomnia, exhibits antidepressant and sedative effects in clinical practice. However, the underlying mechanisms have not been fully clarified. With the aid of a network pharmacology approach and function enrichment analysis, we identified the involvement of melatonin receptors in the antidepressant and sedative effects of SMC. In sleep-deprived mice, SMC treatment significantly alleviated insomnia and relevant mental alterations by improving both sleep latency and sleep duration. However, ramelteon, a selective melatonin receptor agonist that has been approved for the treatment of insomnia, only improved sleep latency. Additionally, SMC exhibited comparable effects on mental alterations with ramelteon as determined by an open-field test (OFT) and forced swimming test (FST). Mechanistically, we revealed that the melatonin receptor MT1 and MT2 signaling pathways involved the therapeutic effects of SMC. In addition to the single effect of traditional melatonin receptor agonists on treating sleep onset insomnia, SMC had therapeutic potential for various sleep disorders, such as sleep onset insomnia and sleep maintenance insomnia. Convergingly, our findings provide theoretical support for the clinical application of SMC.
Collapse
Affiliation(s)
- Wenhua Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yinlong Cheng
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Medical College, Tibet University, Lhasa, China
| | - Yazhi Qian
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Mo Wu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- *Correspondence: Nan Yang, ; Yanyong Liu,
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Medical College, Tibet University, Lhasa, China
- *Correspondence: Nan Yang, ; Yanyong Liu,
| |
Collapse
|