1
|
Tian L, Zhao S, Ding F, Zhang R. Allicin induced vasorelaxation via endothelium-dependent and endothelium-independent mechanisms. Food Funct 2025. [PMID: 40420838 DOI: 10.1039/d4fo06048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Allicin is an active component of garlic that exerts protective effects against cardiovascular diseases. Vascular contraction and relaxation are the essential capacities of the vascular system to maintain its normal function. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main types of cells that control vascular function. This study was aimed at assessing the effects of allicin on vascular function and exploring its potential regulatory mechanisms. Mass spectrometry analysis was used to identify potential downstream targets of allicin in the artery. A primary culture of mouse VSMCs and ECs was established via enzymatic digestion of the aorta. Small interfering RNA (siRNA) was used to knock down the expression of the target gene, and a vector was used to upregulate specific protein expressions. Protein levels were determined using western blotting. Our results showed that allicin treatment increased both endothelium-dependent and endothelium-independent relaxation in aortic rings. Based on mass spectrometry analysis, we proposed that ATP-binding cassette transporter G1 (ABCG1), ryanodine receptor 2 (RyR2), and peroxisome proliferator-activated receptor γ (PPAR γ) might be the downstream targets of allicin. In ECs, Allicin increased ABCG1 expression and nitric oxide (NO) production, ABCG1 siRNA decreased allicin-induced NO production. RyR2 expression and Ca2+ spark were inhibited by allicin in VSMCs; RyR2 overexpression partly reversed the allicin-induced Ca2+ spark decrease in VSMCs. PPAR γ siRNA significantly inhibited the effects of allicin in ECs and VSMCs. These results indicated that allicin treatment exerted vasorelaxation effects by increasing ABCG1 expression and NO production in ECs and reducing RyR2 expression and Ca2+ spark in VSMCs. The PPAR γ signaling pathway was confirmed to mediate these processes.
Collapse
Affiliation(s)
- Lei Tian
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Su Zhao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Liu W, Xu S, Wang J, Li X, Liu R, Zhao L, Li Y, Shi R, Zhang J. Allicin ameliorates acute myocardial infarction in rats by modulating calcium homeostasis in cardiomyocytes through the induction of hydrogen sulfide production. Front Pharmacol 2025; 16:1557685. [PMID: 40206075 PMCID: PMC11979285 DOI: 10.3389/fphar.2025.1557685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a common cardiovascular disease with high morbidity and mortality rates. Allicin, the primary active component of traditional Chinese herbs garlic, has multiple cardiovascular effects. However, the protective effect of allicin on AMI is rare. This study aimed to identify the pathways through which allicin stimulates hydrogen sulfide (H2S) production to regulate calcium ion (Ca2+) homeostasis in cardiomyocytes, thereby contributing to AMI protection. METHODS In this study, we established an AMI rat model by ligating the left anterior descending branch of the coronary artery to assess the therapeutic effect of allicin. We also investigated its influence on cardiomyocyte Ca2+ homeostasis. To determine the role of H2S production in the effects of allicin, we identified the H2S synthase in healthy rat myocardial tissue and serum and then applied H2S synthase inhibitors to block H2S production. RESULTS The results indicate that allicin significantly enhanced cardiac function, raised H2S levels in myocardial tissue and serum, reduced necrosis tissue size, decreased myocardial enzyme levels, and improved myocardial pathological changes. Surprisingly, allicin also notably increased H2S synthase levels. These findings suggest that allicin shields AMI rats by stimulating H2S production, acting both as a direct H2S donor and indirectly boosting H2S synthase expression. Furthermore, allicin enhanced Ca2+ homeostasis in cardiomyocytes by improving cardiomyocyte contraction kinetics and regulating the function and expression of key proteins related to Ca2+ transport in cardiomyocytes. The effect of allicin on Ca2+ homeostasis was partially decreased but not entirely abolished when H2S production was inhibited using H2S synthase inhibitors PAG and AOAA. This suggests that while the impact of allicin is strongly associated with H2S, additional independent mechanisms are also involved. CONCLUSION Our study presents novel evidence demonstrating that allicin modulates Ca2+ homeostasis in cardiomyocytes by stimulating H2S production, thereby conferring protection against AMI. Furthermore, the protective effects of allicin are partly mediated by, but not solely reliant on, the generation of H2S. These findings not only provide mechanistic insights into the anti-AMI effects of allicin but also underscore its therapeutic promise.
Collapse
Affiliation(s)
- Weiyu Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medic, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaojun Xu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medic, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Wang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medic, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinxia Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Ruiting Liu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Garlic Medicinal Research, Urumqi, China
| | - Le Zhao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medic, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yikui Li
- Health Prevention Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongmei Shi
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Garlic Medicinal Research, Urumqi, China
| | - Jinyan Zhang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medic, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Xu M, Liu X, Hu D, Li Z, Lu L. CSE/H 2S Signaling Pathways in Enhancing Muscle Function and Insulin Sensitivity During Exercise. Int J Mol Sci 2025; 26:1741. [PMID: 40004204 PMCID: PMC11855384 DOI: 10.3390/ijms26041741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Exercise plays a crucial role in maintaining metabolic health, enhancing muscle function, and improving insulin sensitivity, thereby preventing metabolic diseases such as type 2 diabetes. Emerging evidence highlights the significance of the cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) signaling pathway as a pivotal regulator in the molecular and physiological adaptations induced by exercise. This review comprehensively examines the biosynthesis and metabolism of H2S, its distribution in different muscle tissues, and the mechanisms by which CSE/H2S influences muscle contraction, repair, and protein synthesis. Additionally, it explores how CSE/H2S modulates insulin signaling pathways, glucose uptake, and lipid metabolism, thereby enhancing insulin sensitivity. The potential of H2S donors as exercise supplements is also discussed, highlighting their ability to improve exercise performance and metabolic health. Current research advancements, including the application of multi-omics approaches, are reviewed to provide a deeper understanding of the complex molecular networks involved. Furthermore, the challenges and future directions in CSE/H2S research are addressed, emphasizing the need for further mechanistic studies and clinical applications. This review underscores the therapeutic potential of targeting the CSE/H2S pathway to optimize the benefits of exercise and improve metabolic health.
Collapse
Affiliation(s)
- Miaomiao Xu
- School of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (M.X.); (D.H.)
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoguang Liu
- College of Sports and Health, Guangzhou Sport University, Guangzhou 510500, China;
| | - Danting Hu
- School of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (M.X.); (D.H.)
| | - Zhaowei Li
- School of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (M.X.); (D.H.)
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
4
|
Gao Y, Qin G, Liang S, Yin J, Wang B, Jiang H, Liu M, Luo F, Li X. Metagenomic Sequencing Combined with Metabolomics to Explore Gut Microbiota and Metabolic Changes in Mice with Acute Myocardial Infarction and the Potential Mechanism of Allicin. Drug Des Devel Ther 2025; 19:771-791. [PMID: 39925879 PMCID: PMC11806679 DOI: 10.2147/dddt.s504884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Background Acute myocardial infarction (AMI) is a significant contributor to global morbidity and mortality. Allicin exhibits promising therapeutic potential in AMI as a primary bioactive component derived from garlic; however, its underlying mechanisms remain incompletely elucidated. Methods Our study induced AMI in mice by ligating the left coronary artery, and administered allicin orally for 28 days. The cardioprotective effects of allicin treatment were comprehensively assessed using echocardiography, histopathological examinations, intestinal barrier function, and serum inflammatory factors. The potential mechanisms of allicin were elucidated through analysis of metagenomics and serum metabolomics. Network pharmacology (NP) was used to further investigate and validate the possible molecular mechanisms of allicin. Results Our findings revealed allicin's capacity to ameliorate cardiac impairments, improve intestinal barrier integrity, and reduce serum IL-18 and IL-1β levels after AMI. Further analysis demonstrated that the administration of allicin has the potential to ameliorate intestinal flora disorder following AMI by modulating the abundance of beneficial bacteria, such as g_Lactobacillus, g_Prevotella, g_Alistipes, and g_Limosilactobacillus, while reducing the abundance of harmful bacteria g_Parasutterella. Additionally, it exhibits the ability to enhance myocardial energy metabolism flexibility through modulating metabolites and key enzymes associated with the fatty acid metabolic pathway. Mechanistically, NP and in vivo experiments indicated that allicin might suppress pyroptosis and reduce inflammatory response via blocked activation of the NF-κB-mediated NLRP3/Caspase-1/GSDMD pathway. Moreover, Spearman correlation analysis suggested a significant association between the allicin-induced alterations in microbiota and metabolites with cardiac function and inflammatory cytokines. Conclusion Our study demonstrated that allicin alleviated myocardial injury and reduced inflammatory response by inhibiting the NF-κB-mediated NLRP3/Caspase-1/GSDMD pathway while remodeling microbiota disturbance, improving serum metabolic disorder, and enhancing the intestinal barrier. These research findings offer a novel perspective on the potential therapeutic value of allicin as an adjunctive dietary supplement to conventional treatments for AMI.
Collapse
Affiliation(s)
- Yijie Gao
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Gaofeng Qin
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Shandong, People’s Republic of China
| | - Shichao Liang
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiajie Yin
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Baofu Wang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Hong Jiang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Mengru Liu
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Fangyuan Luo
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xianlun Li
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Moro LG, Guarnier LP, Azevedo MF, Fracasso JAR, Lucio MA, de Castro MV, Dias ML, Lívero FADR, Ribeiro-Paes JT. A Brief History of Cell Culture: From Harrison to Organs-on-a-Chip. Cells 2024; 13:2068. [PMID: 39768159 PMCID: PMC11674496 DOI: 10.3390/cells13242068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 01/11/2025] Open
Abstract
This comprehensive overview of the historical milestones in cell culture underscores key breakthroughs that have shaped the field over time. It begins with Wilhelm Roux's seminal experiments in the 1880s, followed by the pioneering efforts of Ross Granville Harrison, who initiated groundbreaking experiments that fundamentally shaped the landscape of cell culture in the early 20th century. Carrel's influential contributions, notably the immortalization of chicken heart cells, have marked a significant advancement in cell culture techniques. Subsequently, Johannes Holtfreter, Aron Moscona, and Joseph Leighton introduced methodological innovations in three-dimensional (3D) cell culture, initiated by Alexis Carrel, laying the groundwork for future consolidation and expansion of the use of 3D cell culture in different areas of biomedical sciences. The advent of induced pluripotent stem cells by Takahashi and Yamanaka in 2006 was revolutionary, enabling the reprogramming of differentiated cells into a pluripotent state. Since then, recent innovations have included spheroids, organoids, and organ-on-a-chip technologies, aiming to mimic the structure and function of tissues and organs in vitro, pushing the boundaries of biological modeling and disease understanding. In this review, we overview the history of cell culture shedding light on the main discoveries, pitfalls and hurdles that were overcome during the transition from 2D to 3D cell culture techniques. Finally, we discussed the future directions for cell culture research that may accelerate the development of more effective and personalized treatments.
Collapse
Affiliation(s)
- Lincoln Gozzi Moro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Lucas Pires Guarnier
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
| | | | | | - Marco Aurélio Lucio
- Graduate Program in Environment and Regional Development, University of Western São Paulo, Presidente Prudente 19050-920, Brazil;
| | - Mateus Vidigal de Castro
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo—USP, São Paulo 01246-904, Brazil; (L.G.M.); (M.V.d.C.)
| | - Marlon Lemos Dias
- Precision Medicine Research Center, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro—UFRJ, Rio de Janeiro 21941-630, Brazil;
| | | | - João Tadeu Ribeiro-Paes
- Department of Genetic, Ribeirão Preto Medical School, University of São Paulo—USP, Ribeirão Preto 14040-904, Brazil;
- Laboratory of Genetics and Cell Therapy (GenTe Cel), Department of Biotechnology, São Paulo State University—UNESP, Assis 19806-900, Brazil
| |
Collapse
|
6
|
Gao Y, Wang B, Qin G, Liang S, Yin J, Jiang H, Liu M, Li X. Therapeutic potentials of allicin in cardiovascular disease: advances and future directions. Chin Med 2024; 19:93. [PMID: 38956680 PMCID: PMC11218272 DOI: 10.1186/s13020-024-00936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/24/2024] [Indexed: 07/04/2024] Open
Abstract
Cardiovascular disease (CVD) remains the predominant cause of mortality and disability worldwide. Against this backdrop, finding effective drugs for the pharmacological treatment of CVD has become one of the most urgent and challenging issues in medical research. Garlic (Allium sativum L.) is one of the oldest plants and is world-renowned for its dietary and medicinal values. Allicin (diallyl thiosulfinate) is one of the primary natural active ingredients in garlic, which has been proven to have powerful cardioprotective effects and mediate various pathological processes related to CVD, such as inflammatory factor secretion, myocardial cell apoptosis, oxidative stress, and more. Therefore, allicin holds a promising application prospect in the treatment of CVD. This review summarized the biological functions of allicin and its potential mechanisms in CVD, including antioxidation, anti-inflammation, and anti-apoptosis effects. Reckoning with these, we delved into recent studies on allicin's cardioprotective effects concerning various CVDs, such as atherosclerosis, hypertension, myocardial infarction, arrhythmia, cardiac hypertrophy, heart failure, and cardiotoxicity. Further, considering the tremendous advancement in nanomedicine, nanotechnology-based drug delivery systems show promise in addressing limitations of allicin's clinical applications, including improving its solubility, stability, and bioavailability. Through this review, we hope to provide a reference for further research on allicin in cardioprotection and drug development.
Collapse
Affiliation(s)
- Yijie Gao
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Baofu Wang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Gaofeng Qin
- Binzhou Medical University Hospital, Shandong, China
| | | | - Jiajie Yin
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Hong Jiang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Mengru Liu
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Xianlun Li
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
7
|
Li K, Uyanga VA, Wang X, Jiao H, Zhao J, Zhou Y, Li H, Lin H. Allicin Promotes Glucose Uptake by Activating AMPK through CSE/H 2S-Induced S-Sulfhydration in a Muscle-Fiber Dependent Way in Broiler Chickens. Mol Nutr Food Res 2024; 68:e2300622. [PMID: 38339885 DOI: 10.1002/mnfr.202300622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 02/12/2024]
Abstract
SCOPE Allicin, a product of enzymatic reaction when garlic is injured, plays an important role in maintaining glucose homeostasis in mammals. However, the effect of allicin on glucose homeostasis in the state of insulin resistance remains to be elucidated. This study investigates the effect of allicin on glucose metabolism using different muscle fibers in a chicken model. METHODS AND RESULTS Day-old male Arbor Acres broilers are randomly divided into three groups and fed a basal diet supplemented with 0, 150, or 300 mg kg-1 allicin for 42 days. Results show that allicin improves the zootechnical performance of broilers at the finishing stage. The glucose loading test (2 g kg-1 body mass) indicates the regulatory role of allicin on glucose homeostasis. In vitro results demonstrate allicin increases glutathione (GSH) level and the expression of cystathionine γ lyase (CSE), leading to endogenous hydrogen sulfide (H2S) production in M. pectoralis major (PM) muscle-derived myotubes. Allicin stimulates adenosine monophosphate-activated protein kinase (AMPK) S-sulfhydration and AMPK phosphorylation to promote glucose uptake, which is suppressed in the presence of d,l-propargylglycine (PAG, a CSE inhibitor). CONCLUSION This study demonstrates that allicin induces AMPK S-sulfhydration and AMPK phosphorylation to promote glucose uptake via the CSE/H2S system in a muscle fiber-dependent manner.
Collapse
Affiliation(s)
- Kelin Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Victoria A Uyanga
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271000, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271000, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| |
Collapse
|
8
|
Deng Y, Ho CT, Lan Y, Xiao J, Lu M. Bioavailability, Health Benefits, and Delivery Systems of Allicin: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19207-19220. [PMID: 37943254 DOI: 10.1021/acs.jafc.3c05602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Garlic has been used worldwide as a spice due to its pungent taste and flavor-enhancing properties. As a main biologically active component of the freshly crushed garlic extracts, allicin (diallyl thiosulfinate) is converted from alliin by alliinase upon damaging the garlic clove, which has been reported to have many potent beneficial biological functions. In this work, allicin formation, stability, bioavailability, and metabolism process are examined and summarized. The biological functions of allicin and potential underlying mechanisms are reviewed and discussed, including antioxidation, anti-inflammation, antidiabetic, cardioprotective, antineurodegenerative, antitumor, and antiobesity effects. Novel delivery systems of allicin with enhanced stability, encapsulation efficiency, and bioavailability are also evaluated, such as nanoparticles, gels, liposomes, and micelles. This study could provide a comprehensive understanding of the physiochemical properties and health benefits of allicin, with great potential for further applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Yupei Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| |
Collapse
|
9
|
Majid A, Hassan FO, Hoque MM, Gbadegoye JO, Lebeche D. Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect. J Cardiovasc Dev Dis 2023; 10:313. [PMID: 37504569 PMCID: PMC10380727 DOI: 10.3390/jcdd10070313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiac fibrosis is a pathological condition characterized by excessive deposition of collagen and other extracellular matrix components in the heart. It is recognized as a major contributor to the development and progression of heart failure. Despite significant research efforts in characterizing and identifying key molecular mechanisms associated with myocardial fibrosis, effective treatment for this condition is still out of sight. In this regard, bioactive compounds have emerged as potential therapeutic antifibrotic agents due to their anti-inflammatory and antioxidant properties. These compounds exhibit the ability to modulate fibrogenic processes by inhibiting the production of extracellular matrix proteins involved in fibroblast to myofibroblast differentiation, or by promoting their breakdown. Extensive investigation of these bioactive compounds offers new possibilities for preventing or reducing cardiac fibrosis and its detrimental consequences. This comprehensive review aims to provide a thorough overview of the mechanisms underlying cardiac fibrosis, address the limitations of current treatment strategies, and specifically explore the potential of bioactive compounds as therapeutic interventions for the treatment and/or prevention of cardiac fibrosis.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fasilat Oluwakemi Hassan
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Md Monirul Hoque
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joy Olaoluwa Gbadegoye
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
10
|
Wang A, Li Y, Wang Z, Xin G, You Y, Sun M, Miao L, Li L, Pan Y, Liu J. Proteomic analysis revealed the pharmacological mechanism of Xueshuantong injection in preventing early acute myocardial infarction injury. Front Pharmacol 2022; 13:1010079. [PMID: 36618918 PMCID: PMC9811672 DOI: 10.3389/fphar.2022.1010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Acute myocardial infarction (AMI) is a common and life-threatening cardiovascular disease. However, there is a lack of pathology and drug studies on AMI within 20 min. Xueshuantong injection (XST) is mainly composed of Panax notoginseng saponins, which can dilate blood vessels and improve blood circulation, and is clinically used in the treatment of cardiovascular and cerebrovascular diseases. Purpose: The study aimed to investigate the protective mechanism of Xueshuantong injection against acute myocardial infarction within 20 min in rats by proteomic methods and molecular docking. Method: The male Sprague-Dawley rat acute myocardial infarction model was established by LAD ligation, and Xueshuantong injection (38 mg/kg) was injected into the caudal vein 15 min before surgery. Cardiac function evaluation, morphological observation, label-free quantitative proteomics, Western blotting analysis, molecular docking, and affinity measurement were applied in this study. Results: In a span of 20 min after acute myocardial infarction, the model group showed significant cardiac function impairment. Xueshuantong injection can significantly improve cardiac function and prevent pathological injury of myocardial tissue. A total of 117 vital differentially expressed proteins were identified by proteomic analysis, including 80 differentially expressed proteins (DEPs) in the sham group compared with model rats (Sham: model) and 43 DEPs in model rats compared with the Xueshuantong injection group (Model: XST). The treatment of Xueshuantong injection mainly involves "poly(A) RNA binding" and "cadherin binding involved in cell-cell adhesion." The differentially expressed levels of the pathways related to proteins Echdc2, Gcdh, Dlst, and Nampt, as well as 14-3-3 family proteins Ywhaz and Ywhab, could be quantitatively confirmed by WB. Molecular docking analysis and SPR analysis revealed that Ywhaz has a generally stable binding with five Xueshuantong injection components. Conclusion: Xueshuantong injection (XST) could protect rat myocardial function injury against AMI in 20 min. Echdc2, Ywhaz, Gcdh, Ywhab, Nampt, and Dlst play an essential role in this protective effect. In particular, Ywhaz might be the core target of Xueshuantong injection when treating acute myocardial infarction in the early stage. This study promoted the understanding of the protective mechanism of Xueshuantong injection in 20 min injury of acute myocardial infarction and contributed to the identification of possible targets of Xueshuantong injection.
Collapse
Affiliation(s)
- Aoao Wang
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Li
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyan Wang
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaojie Xin
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue You
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingqian Sun
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Miao
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Li
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Lei Li, ; Yinghong Pan, ; Jianxun Liu,
| | - Yinghong Pan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Lei Li, ; Yinghong Pan, ; Jianxun Liu,
| | - Jianxun Liu
- National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Lei Li, ; Yinghong Pan, ; Jianxun Liu,
| |
Collapse
|
11
|
Wang Q, Dai X, MacRae VE, Song P. Editorial: Vascular smooth muscle cell fate and vascular remodeling: Mechanisms, therapeutic targets, and drugs, volume I. Front Pharmacol 2022; 13:989689. [PMID: 36052123 PMCID: PMC9425098 DOI: 10.3389/fphar.2022.989689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Qilong Wang, ; Ping Song,
| | - Xiaoyan Dai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Vicky E. MacRae
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, United Kingdom
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
- *Correspondence: Qilong Wang, ; Ping Song,
| |
Collapse
|
12
|
Cellular Mechanisms Underlying the Cardioprotective Role of Allicin on Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23169082. [PMID: 36012349 PMCID: PMC9409331 DOI: 10.3390/ijms23169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases in which the common denominator is the affection of blood vessels, heart tissue, and heart rhythm. The genesis of CVD is complex and multifactorial; therefore, approaches are often based on multidisciplinary management and more than one drug is used to achieve the optimal control of risk factors (dyslipidemia, hypertension, hypertrophy, oxidative stress, endothelial dysfunction, inflammation). In this context, allicin, a sulfur compound naturally derived from garlic, has shown beneficial effects on several cardiovascular risk factors through the modulation of cellular mechanisms and signaling pathways. Effective pharmacological treatments for CVD or its risk factors have not been developed or are unknown in clinical practice. Thus, this work aimed to review the cellular mechanisms through which allicin exerts its therapeutic effects and to show why it could be a therapeutic option for the prevention or treatment of CVD and its risk factors.
Collapse
|
13
|
Li W, Huang R, Gong X, Zhao Z, Zhang L, Zhou Q, Jiang X, Tie H, Wan J, Wang B. Allicin attenuated hepatic ischemia/reperfusion injury in mice by regulating PPARγ-IRAK-M-TLR4 signal pathway. Food Funct 2022; 13:7361-7376. [PMID: 35730673 DOI: 10.1039/d2fo00751g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Hepatic ischemia/reperfusion (I/R) injury to the liver is a significant cause of morbidity and mortality following liver surgery, trauma, and hemorrhagic shock. It was reported that allicin, a type of garlic compound, had a protective effect against other hepatic diseases. Allicin's ability to protect against liver injury caused by ischemic reperfusion remains unknown. As a result, we conducted this study to determine allicin's effects and mechanism of action in hepatic I/R injury. Method: The liver I/R injury model was established by clamping the blood supply to the left and middle liver lobes. Three days prior to the hepatic I/R injury, different concentrations of allicin were gavaged. Then, hepatic function, histological changes, apoptosis markers, oxidative stress, and inflammatory cytokines were measured, and the molecular mechanisms were evaluated using western blot. Another separation experiment used IRAK-M knockout mice and peroxisome proliferator-activated receptor-gamma (PPARγ) inhibitor to deduce the molecular mechanisms. Results: Pretreatment with allicin prior to hepatic I/R injury reduced liver damage by inhibiting aminotransferase activity and alleviating liver injury. It significantly decreased cell apoptosis, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) production, and hepatic oxidative stress. Furthermore, this study demonstrated that GW9662 (inhibitor of PPARγ) abrogated allicin's positive effect by inhibiting PPARγ expression while suppressing IRAK-M expression. Thus, the depletion of IRAK-M cannot influence the expression of PPARγ. The down-regulation of PPARγ-IRAK-M disabled the protection of allicin in I/R injury. Conclusion: Allicin protects against hepatic I/R injury via dose-dependent regulation of the PPARγ-IRAK-M-TLR4 signaling pathway, and it may be a potential drug in future clinical treatment.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Rui Huang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. .,Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Lidan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Qin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. .,Department of Anesthesiology, Army Medical Center of PLA, Army Medical University, Chongqing 400042, China
| | - Xujie Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China. .,Department of Anesthesiology, Chengdu Fifth People's Hospital, Sichuan 611130, China
| | - Hongtao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|