1
|
Ren D, Li Y, Zhang G, Li T, Liu Z. Lipid metabolic profiling and diagnostic model development for hyperlipidemic acute pancreatitis. Front Physiol 2024; 15:1457349. [PMID: 39512473 PMCID: PMC11540618 DOI: 10.3389/fphys.2024.1457349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Hyperlipidemic acute pancreatitis (HLAP) is a form of pancreatitis induced by hyperlipidemia, posing significant diagnostic challenges due to its complex lipid metabolism disturbances. Methods This study compared the serum lipid profiles of HLAP patients with those of a healthy cohort using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to identify distinct lipid metabolites. Logistic regression and LASSO regression were used to develop a diagnostic model based on the lipid molecules identified. Results A total of 393 distinct lipid metabolites were detected, impacting critical pathways such as fatty acid, sphingolipid, and glycerophospholipid metabolism. Five specific lipid molecules were selected to construct a diagnostic model, which achieved an area under the curve (AUC) of 1 in the receiver operating characteristic (ROC) analysis, indicating outstanding diagnostic accuracy. Discussion These findings highlight the importance of lipid metabolism disturbances in HLAP. The identified lipid molecules could serve as valuable biomarkers for HLAP diagnosis, offering potential for more accurate and early detection.
Collapse
Affiliation(s)
- Dongmei Ren
- Department of Hepatobiliary Surgery II, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Li
- Department of Hepatobiliary Surgery II, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Guangnian Zhang
- Department of Hepatobiliary Surgery II, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tiantian Li
- Department of Hepatobiliary Surgery II, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhenglong Liu
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Fernández-Gallego N, Castillo-González R, Moreno-Serna L, García-Cívico AJ, Sánchez-Martínez E, López-Sanz C, Fontes AL, Pimentel LL, Gradillas A, Obeso D, Neuhaus R, Ramírez-Huesca M, Ruiz-Fernández I, Nuñez-Borque E, Carrasco YR, Ibáñez B, Martín P, Blanco C, Barbas C, Barber D, Rodríguez-Alcalá LM, Villaseñor A, Esteban V, Sánchez-Madrid F, Jiménez-Saiz R. Allergic inflammation triggers dyslipidemia via IgG signalling. Allergy 2024; 79:2680-2699. [PMID: 38864116 DOI: 10.1111/all.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Allergic diseases begin early in life and are often chronic, thus creating an inflammatory environment that may precede or exacerbate other pathologies. In this regard, allergy has been associated to metabolic disorders and with a higher risk of cardiovascular disease, but the underlying mechanisms remain incompletely understood. METHODS We used a murine model of allergy and atherosclerosis, different diets and sensitization methods, and cell-depleting strategies to ascertain the contribution of acute and late phase inflammation to dyslipidemia. Untargeted lipidomic analyses were applied to define the lipid fingerprint of allergic inflammation at different phases of allergic pathology. Expression of genes related to lipid metabolism was assessed in liver and adipose tissue at different times post-allergen challenge. Also, changes in serum triglycerides (TGs) were evaluated in a group of 59 patients ≥14 days after the onset of an allergic reaction. RESULTS We found that allergic inflammation induces a unique lipid signature that is characterized by increased serum TGs and changes in the expression of genes related to lipid metabolism in liver and adipose tissue. Alterations in blood TGs following an allergic reaction are independent of T-cell-driven late phase inflammation. On the contrary, the IgG-mediated alternative pathway of anaphylaxis is sufficient to induce a TG increase and a unique lipid profile. Lastly, we demonstrated an increase in serum TGs in 59 patients after undergoing an allergic reaction. CONCLUSION Overall, this study reveals that IgG-mediated allergic inflammation regulates lipid metabolism.
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Ophthalmology and Ear, Nose and Throat (ENT), Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía Moreno-Serna
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Antonio J García-Cívico
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Elisa Sánchez-Martínez
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Luiza Fontes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Lígia L Pimentel
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - René Neuhaus
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | | | - Emilio Nuñez-Borque
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Luis M Rodríguez-Alcalá
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), Schroeder Allergy and Immunology Research Institute (SAIRI), McMaster University, Hamilton, Ontario, Canada
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| |
Collapse
|
3
|
Luo M, Guo L, Wu C, Hao M, Gu J, Li X, Wang Q. Effects of dietary copper intake on blood lipids in women of childbearing age and the potential role of gut microbiota. Front Nutr 2024; 11:1368730. [PMID: 38505268 PMCID: PMC10948407 DOI: 10.3389/fnut.2024.1368730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Background Copper (Cu) is a vital trace element involved in numerous physiological processes, including glycolysis and lipid metabolism. Imbalances in Cu homeostasis can contribute to various diseases. However, current research on the impact of Cu on lipid metabolism has yielded inconsistent findings. Moreover, studies investigating the effects of dietary Cu intake on blood lipids among women of childbearing age are rare. Understanding of this relationship could enhance lipid management, given that most women obtain Cu through their diet. Additionally, the gut microbiota may play a role in this process. This study aims to investigate the effects of dietary Cu intake on blood lipids in women of childbearing age and to analyze the role of gut microbiota in this process. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) to conduct a preliminary analysis of the correlation between dietary Cu levels and blood lipid indicators in women of childbearing age. Subsequently, an on-site research was conducted to further investigate this relationship, followed by animal experiments to verify the effect of different Cu doses on blood lipid levels. Multiple linear regression models, ANOVA, XGBOOST were employed to analyze the impact of Cu on blood lipids and the role of intestinal microbiota in this process. Results In the population study, the NHANES results were consistent with on-site findings. The TG, and TC levels in women with childbearing were increased with higher dietary Cu intake. Animal experiments have shown that as Cu intake increases, TC levels increase. Furthermore, when the Cu intake reached 8 mg/day (the recommended dietary Cu intake limit of China, RDI), the TG levels in the research animals decrease, alongside a reduction in the abundance of Weissella cibaria (probiotics related to lipid metabolism), and the levels of LPS and IL-6 increase. Conclusion The blood lipid levels of women of childbearing age increase with higher dietary Cu intake. RDI of 8 mg/day for women of childbearing age in China may need to be appropriately reduced. Regulating the gut microbiota, especially by increasing the abundance of Weissella cibaria may be an effective intervention for blood lipids.
Collapse
Affiliation(s)
- Mingming Luo
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Linmei Guo
- Department of Health Statistics, School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Chunmei Wu
- Department of Health Statistics, School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ming Hao
- Department of Health Statistics, School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Junwang Gu
- Department of Health Statistics, School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xuhuan Li
- The Fourth Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Wang
- Department of Health Statistics, School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Mazi TA, Shibata NM, Sarode GV, Medici V. Hepatic oxylipin profiles in mouse models of Wilson disease: New insights into early hepatic manifestations. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159446. [PMID: 38072238 PMCID: PMC11224028 DOI: 10.1016/j.bbalip.2023.159446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Hepatic inflammation is commonly identified in Wilson disease (WD), a genetic disease of hepatic and brain copper accumulation. Copper accumulation is associated with increased oxidative stress and reactive oxygen species generation which may result in non-enzymatic oxidation of membrane-bound polyunsaturated fatty acids (PUFA). PUFA can be oxidized enzymatically via lipoxygenases (LOX), cyclooxygenases (COX), and cytochrome P450 monooxygenases (CYP). Products of PUFA oxidation are collectively known as oxylipins (OXL) and are bioactive lipids that modulate hepatic inflammation. We examined hepatic OXL profiles at early stages of WD in two mouse models, the toxic milk mouse from The Jackson Laboratory (tx-j) and the Atp7b knockout on a C57Bl/6 background (Atp7b-/-B6). Targeted lipidomic analysis performed by ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry showed that in both tx-j and Atp7b-/-B6 mice, hepatic OXL profiles were altered with higher thromboxane and prostaglandins levels. The levels of oxidative stress marker, 9-HETE were increased more markedly in tx-j mice. However, both genotypes showed upregulated transcript levels of many genes related to oxidative stress and inflammation. Both genotypes showed higher prostaglandins, thromboxin along with higher PUFA-derived alcohols, diols, and ketones with altered epoxides; the expression of Alox5 was upregulated and many CYP-related genes were dysregulated. Pathway analyses show dysregulation in arachidonic acid and linoleic acid metabolism characterizes mice with WD. Our findings indicate alterations in hepatic PUFA metabolism in early-stage WD and suggest the upregulation of both, non-enzymatic ROS-dependent and enzymatic PUFA oxidation, which could have implications for hepatic manifestations in WD and represent potential targets for future therapies.
Collapse
Affiliation(s)
- Tagreed A Mazi
- Department of Community Health Sciences-Clinical Nutrition, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia.
| | - Noreene M Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA
| | - Gaurav V Sarode
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA.
| |
Collapse
|
5
|
Zhang L, Zhu L, Ci C, Ai W, Wang Y, Wang X. A case of Wilson's disease combined with intracranial lipoma and dysplasia of the corpus callosum with review of the literature. BMC Neurol 2024; 24:44. [PMID: 38273263 PMCID: PMC10809563 DOI: 10.1186/s12883-024-03541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Wilson's disease (WD) is an inherited disorder of copper metabolism. Agenesis of the corpus callosum is the complete or partial absence of the major united fiber bundles connecting the cerebral hemispheres. Intracranial lipoma is an adipose tissue tumor resulting from an abnormal embryonic development of the central nervous system. The simultaneous occurrence of these three disorders is rare and has not been reported. This report focuses on the pathogenesis and association between the three disorders and highlights the importance of recognizing and effectively managing their coexistence. CASE PRESENTATION The purpose of this study was to present a patient with coexisting WD, intracranial lipoma, and corpus callosum dysplasia. We reviewed a female patient hospitalized in 2023 with clinical manifestations of elevated aminotransferases and decreased ceruloplasmin, as well as genetic testing for an initial diagnosis of Wilson's disease. Subsequently, a cranial MRI showed corpus callosum dysplasia with short T1 signal changes in the cerebral falx, leading to a final diagnosis of Wilson's disease combined with intracranial lipoma and corpus callosum dysplasia. The patient's WD is currently stable after treatment with sodium dimercaptosulfonamide (DMPS) and penicillamine, and the patient's abnormal copper metabolism may promote the growth of intracranial lipoma. CONCLUSION The pathogenesis of WD combined with intracranial lipoma and corpus callosum dysplasia is complex and clinically rare. The growth of intracranial lipomas may be associated with abnormal copper metabolism in WD. Abnormal copper metabolism affects lipid metabolism and triggers inflammatory responses. Therefore, early diagnosis and treatment are beneficial for improvement. Each new case of this rare co-morbidity is important as it allows for a better assessment and understanding of these cases' more characteristic clinical manifestations, which can help estimate the course of the disease and possible therapeutic options.
Collapse
Affiliation(s)
- Liangjie Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
- Department of Neurology, Affiliated Hospital of Neurology Research Institute, Anhui University of Traditional Chinese Medicine, Hefei, 230061, China
| | - Ling Zhu
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
- Department of Neurology, Affiliated Hospital of Neurology Research Institute, Anhui University of Traditional Chinese Medicine, Hefei, 230061, China
| | - Chunling Ci
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
- Department of Neurology, Affiliated Hospital of Neurology Research Institute, Anhui University of Traditional Chinese Medicine, Hefei, 230061, China
| | - Wenlong Ai
- Department of Neurology, Affiliated Hospital of Neurology Research Institute, Anhui University of Traditional Chinese Medicine, Hefei, 230061, China
| | - Yu Wang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine Shanghai, Shanghai, 201203, China
| | - Xun Wang
- Department of Neurology, Affiliated Hospital of Neurology Research Institute, Anhui University of Traditional Chinese Medicine, Hefei, 230061, China.
| |
Collapse
|
6
|
Sarode GV, Mazi TA, Neier K, Shibata NM, Jospin G, Harder NH, Caceres A, Heffern MC, Sharma AK, More SK, Dave M, Schroeder SM, Wang L, LaSalle JM, Lutsenko S, Medici V. The role of intestine in metabolic dysregulation in murine Wilson disease. Hepatol Commun 2023; 7:e0247. [PMID: 37695076 PMCID: PMC10497250 DOI: 10.1097/hc9.0000000000000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND The clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, but little is known about other tissue involvement regarding metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B affects metabolic dysregulation in WD. We tested this hypothesis by evaluating the gut microbiota and lipidome in 2 mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in the intestine. METHODS Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice (Atp7bΔIEC) were generated and characterized using targeted lipidome analysis following a high-fat diet challenge. RESULTS Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated triglyceride and diglyceride, phospholipid, and sphingolipid metabolism in WD models. However, Atp7bΔIEC mice did not show gut microbiome differences compared to wild type. When challenged with a high-fat diet, Atp7bΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. CONCLUSIONS Gut microbiome and lipidome underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge but not the microbiome profile, at least at early stages. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence the phenotype and the lipidome profile.
Collapse
Affiliation(s)
- Gaurav V. Sarode
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | - Tagreed A. Mazi
- Department of Community Health Sciences - Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Kari Neier
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Genome Center, MIND Institute, Davis, California, USA
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | | | - Nathaniel H.O. Harder
- Department of Chemistry, University of California Davis Genome Center, Davis, California, USA
| | - Amanda Caceres
- Department of Chemistry, University of California Davis Genome Center, Davis, California, USA
| | - Marie C. Heffern
- Department of Chemistry, University of California Davis Genome Center, Davis, California, USA
| | - Ashok K. Sharma
- Department of Gastroenterology, Inflammatory Bowel & Immunology Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Shyam K. More
- Cedars Sinai Medical Center, F. Widjaja Foundation Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maneesh Dave
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | - Shannon M. Schroeder
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| | - Li Wang
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Genome Center, MIND Institute, Davis, California, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis, Sacramento, California, USA
| |
Collapse
|
7
|
Sutunkova MP, Ryabova YV, Minigalieva IA, Bushueva TV, Sakhautdinova RR, Bereza IA, Shaikhova DR, Amromina AM, Chemezov AI, Shelomencev IG, Amromin LA, Valamina IE, Toropova LV. Features of the response to subchronic low-dose exposure to copper oxide nanoparticles in rats. Sci Rep 2023; 13:11890. [PMID: 37482581 PMCID: PMC10363540 DOI: 10.1038/s41598-023-38976-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Copper is an essential trace element for human health and, at the same time, a major industrial metal widely used both in its elemental form and in compounds. We conducted a dose-dependent assessment of the response of outbred albino male rats to subchronic low-dose exposure to copper oxide nanoparticles administered intraperitoneally at cumulative doses of 18 and 36 mg/kg during 6 weeks to exposure groups 1 and 2, respectively. We observed disorders at different levels of organization of the body in the exposed animals, from molecular to organismal. The observed decrease in the activity of succinate dehydrogenase in nucleated blood cells gave evidence of impaired bioenergetics processes. In view of the results of the metabolomics analysis, we assume mitochondrial damage and contribution of apoptotic processes to the pathology induced by copper poisoning. We also assume neurodegenerative effects based on the assessed morphological parameters of the nervous system, results of behavioral tests, and a decreased level of expression of genes encoding NMDA receptor subunits in the hippocampus. The hepatotoxic effect noted by a number of metabolomics-based, biochemical, and cytological indicators was manifested by the impaired protein-synthesizing function of the liver and enhanced degenerative processes in its cells. We also observed a nephrotoxic effect of nanosized copper oxide with a predominant lesion of proximal kidney tubules. At the same time, both doses tested demonstrated such positive health effects as a statistically significant decrease in the activity of alkaline phosphatase and the nucleated blood cell DNA fragmentation factor. Judging by the changes observed, the cumulative dose of copper oxide nanoparticles of 18 mg/kg body weight administered intraperitoneally approximates the threshold one for rats. The established markers of health impairments may serve as a starting point in the development of techniques of early diagnosis of copper poisoning.
Collapse
Affiliation(s)
- Marina P Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Yuliya V Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, 51 Lenin Avenue, Yekaterinburg, Russian Federation, 620000
| | - Ilzira A Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Ural Federal University, 51 Lenin Avenue, Yekaterinburg, Russian Federation, 620000
| | - Tatiana V Bushueva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Renata R Sakhautdinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Ivan A Bereza
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Daria R Shaikhova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Anna M Amromina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Aleksei I Chemezov
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Ivan G Shelomencev
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Lev A Amromin
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, Yekaterinburg, Russian Federation, 620014
| | - Irene E Valamina
- Ural State Medical University, 2 Repin Street, Yekaterinburg, Russian Federation, 620014
| | - Liubov V Toropova
- Laboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media, Ural Federal University, 51 Lenin Ave, Yekaterinburg, Russian Federation, 620000.
- Otto-Schott-Institut Für Materialforschung, Friedrich-Schiller-Universität-Jena, 07743, Jena, Germany.
| |
Collapse
|
8
|
Nehring P, Szeligowska J, Przybyłkowski A. Elastography of the Liver in Wilson's Disease. Diagnostics (Basel) 2023; 13:diagnostics13111898. [PMID: 37296749 DOI: 10.3390/diagnostics13111898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Staging of liver fibrosis is of special significance in Wilson's disease as it determines the patient's prognosis and treatment. Histopathological examination is a standard method for fibrosis assessment; however, non-invasive methods like transient elastography and share wave elastography are believed to be reliable and repetitive and are expected to replace liver biopsy in Wilson's disease. This article presents a short description of available elastography techniques and the results of the most recent studies on elastography of the liver in patients with Wilson's disease.
Collapse
Affiliation(s)
- Piotr Nehring
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Jowita Szeligowska
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| |
Collapse
|
9
|
Lerner R, Baker D, Schwitter C, Neuhaus S, Hauptmann T, Post JM, Kramer S, Bindila L. Four-dimensional trapped ion mobility spectrometry lipidomics for high throughput clinical profiling of human blood samples. Nat Commun 2023; 14:937. [PMID: 36806650 PMCID: PMC9941096 DOI: 10.1038/s41467-023-36520-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Lipidomics encompassing automated lipid extraction, a four-dimensional (4D) feature selection strategy for confident lipid annotation as well as reproducible and cross-validated quantification can expedite clinical profiling. Here, we determine 4D descriptors (mass to charge, retention time, collision cross section, and fragmentation spectra) of 200 lipid standards and 493 lipids from reference plasma via trapped ion mobility mass spectrometry to enable the implementation of stringent criteria for lipid annotation. We use 4D lipidomics to confidently annotate 370 lipids in reference plasma samples and 364 lipids in serum samples, and reproducibly quantify 359 lipids using level-3 internal standards. We show the utility of our 4D lipidomics workflow for high-throughput applications by reliable profiling of intra-individual lipidome phenotypes in plasma, serum, whole blood, venous and finger-prick dried blood spots.
Collapse
Affiliation(s)
- Raissa Lerner
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Dhanwin Baker
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Claudia Schwitter
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Sarah Neuhaus
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Tony Hauptmann
- Data Mining, Institute of Computer Science, Johannes Gutenberg University Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Julia M Post
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany
| | - Stefan Kramer
- Data Mining, Institute of Computer Science, Johannes Gutenberg University Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
10
|
Sarode GV, Mazi TA, Neier K, Shibata NM, Jospin G, Harder NHO, Heffern MC, Sharma AK, More SK, Dave M, Schroeder SM, Wang L, LaSalle JM, Lutsenko S, Medici V. The role of intestine in metabolic dysregulation in murine Wilson disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.524009. [PMID: 36711483 PMCID: PMC9882126 DOI: 10.1101/2023.01.13.524009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background and aims Major clinical manifestations of Wilson disease (WD) are related to copper accumulation in the liver and the brain, and little is known about other tissues involvement in metabolic changes in WD. In vitro studies suggested that the loss of intestinal ATP7B could contribute to metabolic dysregulation in WD. We tested this hypothesis by evaluating gut microbiota and lipidome in two mouse models of WD and by characterizing a new mouse model with a targeted deletion of Atp7b in intestine. Methods Cecal content 16S sequencing and untargeted hepatic and plasma lipidome analyses in the Jackson Laboratory toxic-milk and the Atp7b null global knockout mouse models of WD were profiled and integrated. Intestine-specific Atp7b knockout mice ( Atp7b ΔIEC ) was generated using B6.Cg-Tg(Vil1-cre)997Gum/J mice and Atp7b Lox/Lox mice, and characterized using targeted lipidome analysis following a high-fat diet challenge. Results Gut microbiota diversity was reduced in animal models of WD. Comparative prediction analysis revealed amino acid, carbohydrate, and lipid metabolism functions to be dysregulated in the WD gut microbial metagenome. Liver and plasma lipidomic profiles showed dysregulated tri- and diglyceride, phospholipid, and sphingolipid metabolism in WD models. When challenged with a high-fat diet, Atp7b ΔIEC mice exhibited profound alterations to fatty acid desaturation and sphingolipid metabolism pathways as well as altered APOB48 distribution in intestinal epithelial cells. Conclusion Coordinated changes of gut microbiome and lipidome analyses underlie systemic metabolic manifestations in murine WD. Intestine-specific ATP7B deficiency affected both intestinal and systemic response to a high-fat challenge. WD is a systemic disease in which intestinal-specific ATP7B loss and diet influence phenotypic presentations.
Collapse
|