1
|
Sun L, He M, Liu D, Shan M, Chen L, Yang M, Dai X, Yao J, Li T, Zhang Y, Zhang Y, Xiang L, Chen A, Hao Y, He F, Xiong H, Lian J. Deacetylation of ANXA2 by SIRT2 desensitizes hepatocellular carcinoma cells to donafenib via promoting protective autophagy. Cell Death Differ 2025:10.1038/s41418-025-01499-3. [PMID: 40319178 DOI: 10.1038/s41418-025-01499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 05/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal forms of cancer globally. HCC cells frequently undergo macroautophagy, also known as autophagy, which can lead to tumor progression and chemotherapy resistance. Annexin A2 (ANXA2) has been identified as a potential therapeutic target in HCC and is involved in the regulation of autophagic process. Here, we for the first time showed that ANXA2 deacetylation plays a crucial role in donafenib-induced autophagy. Mechanistically, donafenib increased SIRT2 activity via triggering both SIRT2 dephosphorylation and deacetylation by respectively downregulating cyclin E/CDK and p300. Moreover, elevation of SIRT2 activity by donafenib caused ANXA2 deacetylation at K81/K206 sites, leading to a reduction of the binding between ANXA2 and mTOR, which resulted in a decrease of mTOR phosphorylation and activity, and ultimately promoted protective autophagy and donafenib insensitivity in HCC cells. Additionally, ANXA2 deacetylation at K81/K206 sites was positively correlated with poor prognosis in HCC patients. Meanwhile, we found that selective inhibition of SIRT2 increased the sensitivity of donafenib in HCC cells by strengthening ANXA2 acetylation. In summary, this study reveals that donafenib induces protective autophagy and decreases its sensitivity in HCC cells through enhancing SIRT2-mediated ANXA2 deacetylation, which suggest that targeting ANXA2 acetylation/deacetylation may be a promising strategy for improving the sensitivity of donafenib in HCC treatment.
Collapse
Affiliation(s)
- Liangbo Sun
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Meng He
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Dong Liu
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Meihua Shan
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Lingxi Chen
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Mingzhen Yang
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Xufang Dai
- Department of Educational College, Chongqing Normal University, Chongqing, 400047, China
| | - Jie Yao
- Institute of Digital Medicine, Biomedical Engineering College, Army Medical University, Chongqing, 400038, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yang Zhang
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Li Xiang
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - An Chen
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China
| | - Yingxue Hao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jiqin Lian
- Department of Clinical Biochemisty, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Hu Y, Li J, Chen H, Shi Y, Ma X, Wang Y, Li X, Zhong Q, Wang Y, Jiang D, Zhuang S, Liu N. Autophagy Related 5 Promotes Mitochondrial Fission and Inflammation via HSP90-HIF-1α-Mediated Glycolysis in Kidney Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414673. [PMID: 40047327 PMCID: PMC12061336 DOI: 10.1002/advs.202414673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/14/2025] [Indexed: 05/10/2025]
Abstract
Although significant progress in identifying molecular mediators of fibrosis is made, there is still controversy regarding the role and mechanism of autophagy in kidney fibrosis. Here, this study finds that autophagy related 5 (ATG5) is obviously increased in uric acid (UA), aristolochic acid (AA) and transforming growth factor-β1 (TGF-β1)-induced HK-2 cells, as well as in kidneys from patients with chronic kidney disease (CKD) and mice with hyperuricemic nephropathy (HN), aristolochic acid nephropathy (AAN) and unilateral renal ischemia-reperfusion injury (uIRI). Conditional deletion of ATG5 in HN, AAN and uIRI murine models significantly alleviated aberrant glycolysis, attenuated pathological lesions, and improved kidney function. Mechanistically, ATG5 mediates the binding between heat shock protein 90 (HSP90) and hypoxia-inducible factor 1alpha (HIF-1α), thereby enhancing the stability of HIF-1α and further promoting the overactivation of glycolysis. Subsequently, the aberrant glycolysis facilitated the occurrence of mitochondrial fission and inflammatory response, thus leading to kidney fibrosis. Taken together, the study provides solid evidence supporting that persistent activation of ATG5 in kidney tubules promotes kidney fibrosis. The profibrotic function of ATG5 is related to the regulation on HSP90-HIF-1α-mediated glycolysis, resulting in mitochondrial fission and renal inflammation. Thus, ATG5 may be a novel therapeutic target for kidney fibrosis.
Collapse
Affiliation(s)
- Yan Hu
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Jinqing Li
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Hui Chen
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yingfeng Shi
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xiaoyan Ma
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yi Wang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Xialin Li
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Qin Zhong
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Yishu Wang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Daofang Jiang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Shougang Zhuang
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
- Department of MedicineRhode Island Hospital and Alpert Medical SchoolBrown UniversityProvidenceRI02902USA
| | - Na Liu
- Department of NephrologyShanghai East HospitalTongji University School of MedicineShanghai200120China
| |
Collapse
|
3
|
Rahdan F, Abedi F, Dianat-Moghadam H, Sani MZ, Taghizadeh M, Alizadeh E. Autophagy-based therapy for hepatocellular carcinoma: from standard treatments to combination therapy, oncolytic virotherapy, and targeted nanomedicines. Clin Exp Med 2024; 25:13. [PMID: 39621122 PMCID: PMC11611955 DOI: 10.1007/s10238-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Human hepatocellular carcinoma (HCC) has been identified as a significant cause of mortality worldwide. In recent years, extensive research has been conducted to understand the underlying mechanisms of autophagy in the pathogenesis of the disease, with the aim of developing novel therapeutic agents. Targeting autophagy with conventional therapies in invasive HCC has opened up new opportunities for treatment. However, the emergence of resistance and the immunosuppressive tumor environment highlight the need for combination therapy or specific targeting, as well as an efficient drug delivery system to ensure targeted tumor areas receive sufficient doses without affecting normal cells or tissues. In this review, we discuss the findings of several studies that have explored autophagy as a potential therapeutic approach in HCC. We also outline the potential and limitations of standard therapies for autophagy modulation in HCC treatment. Additionally, we discuss how different combination therapies, nano-targeted strategies, and oncolytic virotherapy could enhance autophagy-based HCC treatment in future research.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Ju SH, Song M, Lim JY, Kang YE, Yi HS, Shong M. Metabolic Reprogramming in Thyroid Cancer. Endocrinol Metab (Seoul) 2024; 39:425-444. [PMID: 38853437 PMCID: PMC11220218 DOI: 10.3803/enm.2023.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 06/11/2024] Open
Abstract
Thyroid cancer is a common endocrine malignancy with increasing incidence globally. Although most cases can be treated effectively, some cases are more aggressive and have a higher risk of mortality. Inhibiting RET and BRAF kinases has emerged as a potential therapeutic strategy for the treatment of thyroid cancer, particularly in cases of advanced or aggressive disease. However, the development of resistance mechanisms may limit the efficacy of these kinase inhibitors. Therefore, developing precise strategies to target thyroid cancer cell metabolism and overcome resistance is a critical area of research for advancing thyroid cancer treatment. In the field of cancer therapeutics, researchers have explored combinatorial strategies involving dual metabolic inhibition and metabolic inhibitors in combination with targeted therapy, chemotherapy, and immunotherapy to overcome the challenge of metabolic plasticity. This review highlights the need for new therapeutic approaches for thyroid cancer and discusses promising metabolic inhibitors targeting thyroid cancer. It also discusses the challenges posed by metabolic plasticity in the development of effective strategies for targeting cancer cell metabolism and explores the potential advantages of combined metabolic targeting.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minchul Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Joung Youl Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
5
|
Xu Y, Zhu C, Zhu C, Peng L, Ji D, Wu Q, Bai P, Bai Z, Da M. SQSTM1/p62 promotes the progression of gastric cancer through epithelial-mesenchymal transition. Heliyon 2024; 10:e24409. [PMID: 38322900 PMCID: PMC10844054 DOI: 10.1016/j.heliyon.2024.e24409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Background SQSTM1/p62 is an autophagy-related receptor protein that participates in regulating tumorigenesis and multiple signaling pathways. Gastric cancer (GC) is a common tumor in the digestive tract and continues to pose a significant threat to human health. Therefore, this study aims to investigate the impact of p62 on gastric cancer. Methods Immunohistochemistry and Western blotting were employed to assess the expression level of the p62 protein in gastric cancer tissues and its correlation with prognosis. Subsequently, in vitro cell experiments were conducted to determine the role of p62 in gastric cancer cell proliferation, migration, and metastasis. Result The expression of p62 in gastric cancer tissues was significantly higher than in normal tissues. The expression of p62 was positively correlated with poor prognosis in gastric cancer patients. In vitro cell experiments indicated that p62 promotes gastric cancer cell proliferation and migration. Mechanistically, elevated p62 expression induced epithelial-mesenchymal transition (EMT), leading to upregulation of E-cadherin and downregulation of N-cadherin and vimentin. Conclusion This study provides novel and robust evidence for the mechanism by which elevated p62 expression promotes the progression of gastric cancer. It offers promising therapeutic targets for anti-tumor treatment strategies in gastric cancer patients.
Collapse
Affiliation(s)
- Yan Xu
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou,730000, China
| | - Ciba Zhu
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou,730000, China
| | - Chenglou Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Lingzhi Peng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Dandan Ji
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou,730000, China
| | - Qiong Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Pengwei Bai
- Clinical Medical College of Ningxia Medical University, 750000, Yinchuan, China
| | - Zhaozhao Bai
- Clinical Medical College of Ningxia Medical University, 750000, Yinchuan, China
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000, China
| |
Collapse
|
6
|
Fujisawa K, Matsumoto T, Yamamoto N, Yamasaki T, Takami T. Metabolic Analysis of DFO-Resistant Huh7 Cells and Identification of Targets for Combination Therapy. Metabolites 2023; 13:1073. [PMID: 37887398 PMCID: PMC10609263 DOI: 10.3390/metabo13101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most refractory cancers with a high rate of recurrence. Iron is an essential trace element, and iron chelation has garnered attention as a novel therapeutic strategy for cancer. Since intracellular metabolism is significantly altered by inhibiting various proteins by iron chelation, we investigated combination anticancer therapy targeting metabolic changes that are forcibly modified by iron chelator administration. The deferoxamine (DFO)-resistant cell lines were established by gradually increasing the DFO concentration. Metabolomic analysis was conducted to evaluate the metabolic alterations induced by DFO administration, aiming to elucidate the resistance mechanism in DFO-resistant strains and identify potential novel therapeutic targets. Metabolom analysis of the DFO-resistant Huh7 cells revealed enhanced glycolysis and salvage cycle, alternations in glutamine metabolism, and accumulation of dipeptides. Huh7 cultured in the absence of glutamine showed enhanced sensitivity to DFO, and glutaminase inhibitor (CB839) showed a synergistic effect with DFO. Furthermore, the effect of DFO was enhanced by an autophagy inhibitor (chloroquine) in vitro. DFO-induced metabolic changes are specific targets for the development of efficient anticancer combinatorial therapies using DFO. These findings will be useful for the development of new cancer therapeutics in refractory liver cancer.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
- Amaguchi University Health Administration Center, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan;
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
| |
Collapse
|
7
|
Liu B, Zhang J, Meng X, Xie SM, Liu F, Chen H, Yao D, Li M, Guo M, Shen H, Zhang X, Xing L. HDAC6-G3BP2 promotes lysosomal-TSC2 and suppresses mTORC1 under ETV4 targeting-induced low-lactate stress in non-small cell lung cancer. Oncogene 2023; 42:1181-1195. [PMID: 36823378 DOI: 10.1038/s41388-023-02641-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
TSC-mTORC1 inhibition-mediated translational reprogramming is a major adaptation mechanism upon many stresses, such as low-oxygen, -ATP, and -amino acids. But how cancer cells hijack the adaptive pathway to survive under low-lactate stress when targeting glycolysis-related signaling remains uncertain. ETV4 is an oncogenic transcription factor frequently dysregulated in human cancer. We previously found that ETV4 is associated with tumor progression and poor prognosis in non-small cell lung cancer (NSCLC). In this study, we report that ETV4 controls HK1 expression and glycolysis-lactate production to activate mTORC1 by relieving TSC2 repression of Rheb in NSCLC cells. Targeting ETV4-induced low-lactate stress is an important input for TSC2 to inhibit mTORC1 and global protein synthesis, while the core stress granule components G3BP2 and HDAC6 are selectively translated. Mechanistically, G3BP2 recruits lysosomal-TSC2 to suppress mTORC1. HDAC6 deacetylates TSC2 to sustain protein stability and associates with G3BP2 to facilitate more recruiting of TSC2 to inactivate mTORC1. In addition, the microtubule retrograde transport activity of HDAC6 drives the aggregate-like perinuclear-mTOR distribution paralleled by lower mTORC1 activity under stress. Thus, HDAC6-G3BP2 is the key complex that promotes lysosomal-TSC2 and suppresses mTORC1 when targeting ETV4, which might represent a critical adaptive mechanism for cell survival under low-lactate challenges.
Collapse
Affiliation(s)
- Bei Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Jiaxi Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xue Meng
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Shelly M Xie
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Fang Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Heli Chen
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Demin Yao
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Minglei Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Minghui Guo
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Haitao Shen
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xianghong Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.,Department of Pathology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lingxiao Xing
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China. .,Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
8
|
Jo H, Shim K, Jeoung D. Targeting HDAC6 to Overcome Autophagy-Promoted Anti-Cancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23179592. [PMID: 36076996 PMCID: PMC9455701 DOI: 10.3390/ijms23179592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) regulate gene expression through the epigenetic modification of chromatin structure. HDAC6, unlike many other HDACs, is present in the cytoplasm. Its deacetylates non-histone proteins and plays diverse roles in cancer cell initiation, proliferation, autophagy, and anti-cancer drug resistance. The development of HDAC6-specific inhibitors has been relatively successful. Mechanisms of HDAC6-promoted anti-cancer drug resistance, cancer cell proliferation, and autophagy are discussed. The relationship between autophagy and anti-cancer drug resistance is discussed. The effects of combination therapy, which includes HDAC6 inhibitors, on the sensitivity of cancer cells to chemotherapeutics and immune checkpoint blockade are presented. A summary of clinical trials involving HDAC6-specific inhibitors is also presented. This review presents HDAC6 as a valuable target for developing anti-cancer drugs.
Collapse
|
9
|
Du F, Sun H, Sun F, Yang S, Tan H, Li X, Chai Y, Jiang Q, Han D. Knockdown of TANK-Binding Kinase 1 Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Molecular-Targeted Drugs. Front Pharmacol 2022; 13:924523. [PMID: 35747750 PMCID: PMC9209752 DOI: 10.3389/fphar.2022.924523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
The protein kinase, TANK-binding kinase 1 (TBK1), not only regulates various biological processes but also functions as an important regulator of human oncogenesis. However, the detailed function and molecular mechanisms of TBK1 in hepatocellular carcinoma (HCC), especially the resistance of HCC cells to molecular-targeted drugs, are almost unknown. In the present work, the role of TBK1 in regulating the sensitivity of HCC cells to molecular-targeted drugs was measured by multiple assays. The high expression of TBK1 was identified in HCC clinical specimens compared with paired non-tumor tissues. The high level of TBK1 in advanced HCC was associated with a poor prognosis in patients with advanced HCC who received the molecular-targeted drug, sorafenib, compared to patients with advanced HCC patients and a low level of TBK1. Overexpression of TBK1 in HCC cells induced their resistance to molecular-targeted drugs, whereas knockdown of TBK1 enhanced the cells’ sensitivity to molecular-targeted dugs. Regarding the mechanism, although overexpression of TBK1 enhanced expression levels of drug-resistance and pro-survival-/anti-apoptosis-related factors, knockdown of TBK1 repressed the expression of these factors in HCC cells. Therefore, TBK1 is a promising therapeutic target for HCC treatment and knockdown of TBK1 enhanced sensitivity of HCC cells to molecular-targeted drugs.
Collapse
Affiliation(s)
- Fengxia Du
- Department of Pharmacy, Medical Support Center of PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Fang Sun
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Shiwei Yang
- Organ Transplant Center and Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Haidong Tan
- Organ Transplant Center and Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Yantao Chai
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Institute of Infectious Diseases, Beijing, China
- *Correspondence: Dongdong Han, ; Qiyu Jiang,
| | - Dongdong Han
- Organ Transplant Center and Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Dongdong Han, ; Qiyu Jiang,
| |
Collapse
|