1
|
Lai S, Tang D, Feng J. Mitochondrial targeted therapies in MAFLD. Biochem Biophys Res Commun 2025; 753:151498. [PMID: 39986088 DOI: 10.1016/j.bbrc.2025.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a clinical-pathological syndrome primarily characterized by excessive accumulation of fat in hepatocytes, independent of alcohol consumption and other well-established hepatotoxic agents. Mitochondrial dysfunction is widely acknowledged as a pivotal factor in the pathogenesis of various diseases, including cardiovascular diseases, cancer, neurodegenerative disorders, and metabolic diseases such as obesity and obesity-associated MAFLD. Mitochondria are dynamic cellular organelles capable of modifying their functions and structures to accommodate the metabolic demands of cells. In the context of MAFLD, the excess production of reactive oxygen species induces oxidative stress, leading to mitochondrial dysfunction, which subsequently promotes metabolic disorders, fat accumulation, and the infiltration of inflammatory cells in liver and adipose tissue. This review aims to systematically analyze the role of mitochondria-targeted therapies in MAFLD, evaluate current therapeutic strategies, and explore future directions in this rapidly evolving field. We specifically focus on the molecular mechanisms underlying mitochondrial dysfunction, emerging therapeutic approaches, and their clinical implications. This is of significant importance for the development of new therapeutic approaches for these metabolic disorders.
Collapse
Affiliation(s)
- Sien Lai
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Dongsheng Tang
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Juan Feng
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| |
Collapse
|
2
|
Huang W, Zhang H, Wang L, Zhang F, Ma M, Chen D, Wan X, Zhang Y, Cao C. Ulinastatin attenuates renal ischemia-reperfusion injury by inhibiting NLRP3 inflammasome-triggered pyroptosis. Int Immunopharmacol 2024; 143:113306. [PMID: 39405939 DOI: 10.1016/j.intimp.2024.113306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024]
Abstract
Systemic inflammation is involved in developing acute kidney injury (AKI) after cardiac surgery with cardiopulmonary bypass (CPB). Ulinastatin, a urinary trypsin inhibitor (UTI), has various anti-inflammatory effects. Our previous data displayed that UTI administration during CPB played a protective role in reducing the risk of AKI after cardiac surgery; however, its role in AKI pathogenesis remains unknown. In this study, UTI effectively decreased the expression levels of inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and interleukin (IL)-18, in patients with CPB. Moreover, the proportion of patients with postoperative AKI decreased significantly. Experimental AKI was induced by 35 min of ischemia, followed by 48 h of reperfusion.The results showed that the preoperative administration of UTI reduced inflammatory cell infiltration and decreased the levels of pro-inflammatory cytokines, including IL-6, IL-18, and TNFα. Meanwhile, UTI inhibited apoptosis, reduced mitochondrial reactive oxygen species production. We further revealed that UTI could inhibit NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation by increasing the expression of nuclear factor-κB (IκB) kinase-alpha (IKKα) interacting with apoptosis-associated speck-like protein containing CARD (ASC) to alleviate kidney damage. These findings provide evidence of the renoprotective role of UTI in cardiac surgery-associated (CSA)-AKI, which is associated with the inhibition of NLRP3 inflammasome activation by upregulating IKKα.
Collapse
Affiliation(s)
- Wenjuan Huang
- Division of Nephrology, Department of Medicine, Sir Run Run Hospital,Nanjing Medical University, Nanjing, China; Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Hao Zhang
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Lei Wang
- Division of Cardiovascular Surgery, Department of Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Feng Zhang
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Mengqing Ma
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Dawei Chen
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xin Wan
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Yang Zhang
- Division of Nephrology, Department of Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Changchun Cao
- Division of Nephrology, Department of Medicine, Sir Run Run Hospital,Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Lian CY, Li HJ, Xia WH, Li Y, Zhou XL, Yang DB, Wan XM, Wang L. Insufficient FUNDC1-dependent mitophagy due to early environmental cadmium exposure triggers mitochondrial redox imbalance to aggravate diet-induced lipotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124724. [PMID: 39142430 DOI: 10.1016/j.envpol.2024.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Cadmium (Cd) is a toxic contaminant widely spread in natural and industrial environments. Adolescent exposure to Cd increases risk for obesity-related morbidity in young adults including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). Despite this recognition, the direct impact of adolescent Cd exposure on the progression of MASLD later in life, and the mechanisms underlying these effects, remain unclear. Here, adolescent rats received control diet or diets containing 2 mg Cd2+/kg feed for 4 weeks, and then HFD containing 15% lard or control diet in young adult rats was selected for 6 weeks to clarify this issue. Data firstly showed that HFD-fed rats in young adulthood due to adolescent Cd exposure exhibited more severe MASLD, evidenced by increased liver damage, disordered serum and hepatic lipid levels, and activated NLRP3 inflammasome. Hepatic transcriptome analysis revealed the potential effects of mitochondrial dysfunction in aggravated MASLD due to Cd exposure. Verification data further confirmed that mitochondrial structure and function were targeted and disrupted during this process, shown by broken mitochondrial ridges, decreased mitochondrial membrane potential, imbalanced mitochondrial dynamic, insufficient ATP concentration, and enhanced mitochondrial ROS generation. However, mitophagy is inactively involved in clearance of damaged mitochondria induced by early Cd in HFD condition due to inhibited mitophagy receptor FUNDC1. In contrast, FUNDC1-dependent mitophagy activation prevents lipotoxicity aggravated by early Cd via suppressing mitochondrial ROS generation. Collectively, our data show that insufficient FUNDC1-dependent mitophagy can drive the transition from HFD-induced MASLD to MASH, and accordingly, these findings will provide a better understanding of potential mechanism of diet-induced metabolic diseases in the context of early environmental Cd exposure.
Collapse
Affiliation(s)
- Cai-Yu Lian
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Hui-Jia Li
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Wei-Hao Xia
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Yue Li
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, China
| | - Du-Bao Yang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, China
| | - Lin Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China.
| |
Collapse
|
4
|
Grayson C, Chalifoux O, Russo MDST, Avizonis DZ, Sterman S, Faerman B, Koufos O, Agellon LB, Mailloux RJ. Ablating the glutaredoxin-2 (Glrx2) gene protects male mice against non-alcoholic fatty liver disease (NAFLD) by limiting oxidative distress. Free Radic Biol Med 2024; 224:660-677. [PMID: 39278573 DOI: 10.1016/j.freeradbiomed.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
In the present study, we investigated the consequences of deleting the glutaredoxin-2 gene (Glrx2-/-) on the development of non-alcoholic fatty liver disease (NAFLD) in male and female C57BL6N mice fed a control (CD) or high-fat diet (HFD). We report that the HFD induced a significant increase in body mass in the wild-type (Wt) and Glrx2-/- male, but not female, mice, which was associated with the hypertrophying of the abdominal fat. Interestingly, while the Wt male mice fed the HFD developed NAFLD, the deletion of the Glrx2 gene mitigated vesicle formation, intrahepatic lipid accumulation, and fibrosis in the males. The protective effect associated with ablating the Glrx2 gene in male mice was due to enhancement of mitochondrial redox buffering capacity. Specifically, liver mitochondria from male Glrx2-/- fed a CD or HFD produced significantly less hydrogen peroxide (mtH2O2), had lower malondialdehyde levels, greater activities for glutathione peroxidase and thioredoxin reductase, and less protein glutathione mixed disulfides (PSSG) when compared to the Wt male mice fed the HFD. These effects correlated with the S-glutathionylation of α-ketoglutarate dehydrogenase (KGDH), a potent mtH2O2 source and key redox sensor in hepatic mitochondria. In comparison to the male mice, both Wt and Glrx2-/- female mice displayed almost complete resistance to HFD-induced body mass increases and the development of NAFLD, which was attributed to the superior redox buffering capacity of the liver mitochondria. Together, our findings show that modulation of mitochondrial S-glutathionylation signaling through Glrx2 augments resistance of male mice towards the development of NAFLD through preservation of mitochondrial redox buffering capacity. Additionally, our findings demonstrate the sex dimorphisms associated with the manifestation of NAFLD is related to the superior redox buffering capacity and modulation of the S-glutathionylome in hepatic mitochondria from female mice.
Collapse
Affiliation(s)
- Cathryn Grayson
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Olivia Chalifoux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Mariana De Sa Tavares Russo
- Goodman Cancer Institute, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada; Department of Medicine, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada
| | - Daina Zofija Avizonis
- Goodman Cancer Institute, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada; Department of Medicine, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada
| | - Samantha Sterman
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Ben Faerman
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Olivia Koufos
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Luis B Agellon
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada.
| |
Collapse
|
5
|
Radosavljevic T, Brankovic M, Samardzic J, Djuretić J, Vukicevic D, Vucevic D, Jakovljevic V. Altered Mitochondrial Function in MASLD: Key Features and Promising Therapeutic Approaches. Antioxidants (Basel) 2024; 13:906. [PMID: 39199152 PMCID: PMC11351122 DOI: 10.3390/antiox13080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), encompasses a range of liver conditions from steatosis to nonalcoholic steatohepatitis (NASH). Its prevalence, especially among patients with metabolic syndrome, highlights its growing global impact. The pathogenesis of MASLD involves metabolic dysregulation, inflammation, oxidative stress, genetic factors and, notably, mitochondrial dysfunction. Recent studies underscore the critical role of mitochondrial dysfunction in MASLD's progression. Therapeutically, enhancing mitochondrial function has gained interest, along with lifestyle changes and pharmacological interventions targeting mitochondrial processes. The FDA's approval of resmetirom for metabolic-associated steatohepatitis (MASH) with fibrosis marks a significant step. While resmetirom represents progress, further research is essential to understand MASLD-related mitochondrial dysfunction fully. Innovative strategies like gene editing and small-molecule modulators, alongside lifestyle interventions, can potentially improve MASLD treatment. Drug repurposing and new targets will advance MASLD therapy, addressing its increasing global burden. Therefore, this review aims to provide a better understanding of the role of mitochondrial dysfunction in MASLD and identify more effective preventive and treatment strategies.
Collapse
Affiliation(s)
- Tatjana Radosavljevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Brankovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dusan Vukicevic
- Uniklinik Mannheim, Theodor-Kutyer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Danijela Vucevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia
| |
Collapse
|
6
|
Wang J, Jiang Y, Jin L, Qian C, Zuo W, Lin J, Xie L, Jin B, Zhao Y, Huang L, Wang Y. Alantolactone attenuates high-fat diet-induced inflammation and oxidative stress in non-alcoholic fatty liver disease. Nutr Diabetes 2024; 14:41. [PMID: 38858382 PMCID: PMC11164993 DOI: 10.1038/s41387-024-00300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic disease with an increasing incidence, which can further develop into liver fibrosis and hepatocellular carcinoma at the end stage. Alantolactone (Ala), a sesquiterpene lactone isolated from Asteraceae, has shown anti-inflammatory effects in different models. However, the therapeutic effect of Ala on NAFLD is not clear. METHODS C57BL/6 mice were fed a high-fat diet (HFD) to induce NAFLD. After 16 weeks, Ala was administered by gavage to observe its effect on NAFLD. RNA sequencing of liver tissues was performed to investigate the mechanism. In vitro, mouse cell line AML-12 was pretreated with Ala to resist palmitic acid (PA)-induced inflammation, oxidative stress and fibrosis. RESULTS Ala significantly inhibited inflammation, fibrosis and oxidative stress in HFD-induced mice, as well as PA-induced AML-12 cells. Mechanistic studies showed that the effect of Ala was related to the induction of Nrf2 and the inhibition of NF-κB. Taken together, these findings suggested that Ala exerted a liver protective effect on NAFLD by blocking inflammation and oxidative stress. CONCLUSIONS The study found that Ala exerted a liver protective effect on NAFLD by blocking inflammation and oxidative stress, suggesting that Ala is an effective therapy for NAFLD.
Collapse
Affiliation(s)
- Jiong Wang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yucheng Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenchen Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wei Zuo
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China
| | - Jianjun Lin
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China
| | - Longteng Xie
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China
| | - Bo Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanni Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijiang Huang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China.
| | - Yi Wang
- Joint Research Center on Medicine, the Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang, China.
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wang J, Jin B, Chen Y, Chen Y, Zuo W, Huang L, Lin J, Jiang Y, Xie L, Lian X, Wang Y. Costunolide attenuates high-fat diet-induced inflammation and oxidative stress in non-alcoholic fatty liver disease. Drug Dev Res 2024; 85:e22150. [PMID: 38349256 DOI: 10.1002/ddr.22150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease that can further evolve towards liver fibrosis and hepatocellular carcinoma in the end stage. Costunolide (Cos) is a natural sesquiterpene lactone that exhibits both anti-inflammatory and antioxidant properties. However, the therapeutic effect of Cos on NAFLD is not clear. In this study, we explored the potential protective effect and mechanism of Cos on NAFLD. C57BL/6 mice were fed with high-fat diet (HFD) to induce NAFLD. Cos was administered by gavage to observe the effect of Cos on NAFLD. We demonstrated that oral administration of Cos reduced HFD-induced hepatic fibrosis and the release of inflammatory cytokines, limiting the generation of reactive oxygen species. In vitro experiments revealed that pretreatment with Cos significantly decreased PA-induced production of inflammatory cytokines and fibrosis in AML-12 cells. Mechanism study showed that the effect of Cos was correlated to the induction of Nrf-2 and inhibition of NF-κB pathways. Collectively, these findings indicated that Cos exerts hepatoprotective effect against NAFLD through blocking inflammation and oxidative stress. Our study suggested that Cos might be an effective pharmacotherapy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiong Wang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Bo Jin
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yanghao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Wei Zuo
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Lijiang Huang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Jianjun Lin
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yongsheng Jiang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Longteng Xie
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Xiang Lian
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yi Wang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Hwang SY, Lee D, Lee G, Ahn J, Lee YG, Koo HS, Kang YJ. Endometrial organoids: a reservoir of functional mitochondria for uterine repair. Theranostics 2024; 14:954-972. [PMID: 38250040 PMCID: PMC10797286 DOI: 10.7150/thno.90538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2023] [Indexed: 01/23/2024] Open
Abstract
Background: Asherman's syndrome (AS) is a dreadful gynecological disorder of the uterus characterized by intrauterine adhesion with severe fibrotic lesions, resulting in a damaged basalis layer with infertility. Despite extensive research on overcoming AS, evidence-based effective and reproducible treatments to improve the structural and functional morphology of the AS endometrium have not been established. Methods: Endometrial organoids generated from human or mouse endometrial tissues were transplanted into the uterine cavity of a murine model of AS to evaluate their transplantable feasibility to improve the AS uterine environment. The successful engraftment of organoid was confirmed by detection of human mitochondria and cytosol (for human endometrial organoid) or enhanced green fluorescent protein signals (for mouse endometrial organoid) in the recipient endometrium. The therapeutic effects mediated by organoid transplantation were examined by the measurements of fibrotic lesions, endometrial receptivity and angiogenesis, and fertility assessment by recording the number of implantation sites and weighing the fetuses and placenta. To explore the cellular and molecular mechanisms underlying the recovery of AS endometrium, we evaluated the status of mitochondrial movement and biogenetics in organoid transplanted endometrium. Results: Successfully engrafted endometrial organoids with similar morphological and molecular features to the parental tissues dramatically repaired the AS-induced damaged endometrium, significantly reducing fibrotic lesions and increasing fertility outcomes in mice. Moreover, dysfunctional mitochondria in damaged tissues, which we propose might be a key cellular feature of the AS endometrium, was fully recovered by functional mitochondria transferred from engrafted endometrial organoids. Endometrial organoid-originating mitochondria restored excessive collagen accumulation in fibrotic lesions and shifted uterine metabolic environment to levels observed in the normal endometrium. Conclusions: Our findings suggest that endometrial organoid-originating mitochondria might be key players to mediate uterine repair resulting in fertility enhancement by recovering abrogated metabolic circumstance of the endometrium with AS. Further studies addressing the clinical applicability of endometrial organoids may aid in identifying new therapeutic strategies for infertility in patients with AS.
Collapse
Affiliation(s)
- Sun-Young Hwang
- Department of Biomedical Science, School of Life Science, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Danbi Lee
- Department of Biomedical Science, School of Life Science, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Gaeun Lee
- Department of Biomedical Science, School of Life Science, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Jungho Ahn
- Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Yu-Gyeong Lee
- Department of Biomedical Science, School of Life Science, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Hwa Seon Koo
- CHA Fertility Center Bundang; 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Youn-Jung Kang
- Department of Biomedical Science, School of Life Science, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
- Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
9
|
Shin S, Kim J, Lee JY, Kim J, Oh CM. Mitochondrial Quality Control: Its Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J Obes Metab Syndr 2023; 32:289-302. [PMID: 38049180 PMCID: PMC10786205 DOI: 10.7570/jomes23054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/06/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is characterized by hepatic steatosis and metabolic dysfunction and is often associated with obesity and insulin resistance. Recent research indicates a rapid escalation in MASLD cases, with projections suggesting a doubling in the United States by 2030. This review focuses on the central role of mitochondria in the pathogenesis of MASLD and explores potential therapeutic interventions. Mitochondria are dynamic organelles that orchestrate hepatic energy production and metabolism and are critically involved in MASLD. Dysfunctional mitochondria contribute to lipid accumulation, inflammation, and liver fibrosis. Genetic associations further underscore the relationship between mitochondrial dynamics and MASLD susceptibility. Although U.S. Food and Drug Administration-approved treatments for MASLD remain elusive, ongoing clinical trials have highlighted promising strategies that target mitochondrial dysfunction, including vitamin E, metformin, and glucagon-like peptide-1 receptor agonists. In preclinical studies, novel therapeutics, including nicotinamide adenine dinucleotide+ precursors, urolithin A, spermidine, and mitoquinone, have shown beneficial effects, such as improving mitochondrial quality control, reducing oxidative stress, and ameliorating hepatic steatosis and inflammation. In conclusion, mitochondrial dysfunction is central to MASLD pathogenesis. The innovative mitochondria-targeted approaches discussed in this review offer a promising avenue for reducing the burden of MASLD and improving global quality of life.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaeyoung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ju Yeon Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
10
|
Hwang G, Seo H, Park JC. Copine7 deficiency leads to hepatic fat accumulation via mitochondrial dysfunction. Heliyon 2023; 9:e21676. [PMID: 37954344 PMCID: PMC10637907 DOI: 10.1016/j.heliyon.2023.e21676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Objective Mitochondrial dysfunction affects hepatic lipid homeostasis and promotes ROS generation. Copine7 (CPNE7) belongs to the ubiquitous copine family of calcium-dependent phospholipid binding proteins. CPNE7 has a high calcium ion binding affinity and the capacity to scavenge reactive oxygen species (ROS). A recent study reported that abnormalities in fatty acid and lipid metabolism were linked to the gene variant of CPNE7. Therefore, the purpose of this study is to examine the role of Cpne7 in hepatic lipid metabolism based on mitochondrial function. Methods Lipid metabolism, mitochondrial function, and ROS production were investigated in high-fat diet (HFD)-fed Cpne7-/- mice and H2O2-damaged HepG2 hepatocytes following CPNE7 silencing or overexpression. Results Cpne7 deficiency promoted severe hepatic steatosis in the HFD-induced NAFLD model. More importantly, mitochondrial dysfunction was observed along with an imbalance of mitochondrial dynamics in the livers of HFD-fed Cpne7-/-mice, resulting in high ROS levels. Similarly, CPNE7-silenced HepG2 hepatocytes showed high ROS levels, mitochondrial dysfunction, and increased lipid contents. On the contrary, CPNE7-overexpressed HepG2 cells showed low ROS levels, enhanced mitochondrial function and decreased lipid contents under H2O2-induced oxidative stress. Conclusions In the liver, Cpne7 deficiency causes excessive ROS formation and mitochondrial dysfunction, which aggravates lipid metabolism abnormalities. These findings provide evidence that Cpne7 deficiency contributes to the pathogenesis of NAFLD, suggesting Cpne7 as a novel therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Geumbit Hwang
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Regenerative Dental Medicine R & D Center, HysensBio, Co., Ltd., 10 Dwitgol-ro, Gwacheon-si, Gyeonggi-do, Republic of Korea
| | - Hyejin Seo
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Regenerative Dental Medicine R & D Center, HysensBio, Co., Ltd., 10 Dwitgol-ro, Gwacheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Ren Z, Xiao G, Chen Y, Wang L, Xiang X, Yang Y, Wen S, Xie Z, Luo W, Li G, Zheng W, Qian X, Hai R, Yang L, Zhu Y, Cai M, Ye Y, Shi G, Chen Y. SBC (Sanhuang Xiexin Tang combined with Baihu Tang plus Cangzhu) alleviates NAFLD by enhancing mitochondrial biogenesis and ameliorating inflammation in obese patients and mice. Chin J Nat Med 2023; 21:830-841. [PMID: 38035938 DOI: 10.1016/s1875-5364(23)60469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 12/02/2023]
Abstract
In the context of non-alcoholic fatty liver disease (NAFLD), characterized by dysregulated lipid metabolism in hepatocytes, the quest for safe and effective therapeutics targeting lipid metabolism has gained paramount importance. Sanhuang Xiexin Tang (SXT) and Baihu Tang (BHT) have emerged as prominent candidates for treating metabolic disorders. SXT combined with BHT plus Cangzhu (SBC) has been used clinically for Weihuochisheng obese patients. This retrospective analysis focused on assessing the anti-obesity effects of SBC in Weihuochisheng obese patients. We observed significant reductions in body weight and hepatic lipid content among obese patients following SBC treatment. To gain further insights, we investigated the effects and underlying mechanisms of SBC in HFD-fed mice. The results demonstrated that SBC treatment mitigated body weight gain and hepatic lipid accumulation in HFD-fed mice. Pharmacological network analysis suggested that SBC may affect lipid metabolism, mitochondria, inflammation, and apoptosis-a hypothesis supported by the hepatic transcriptomic analysis in HFD-fed mice treated with SBC. Notably, SBC treatment was associated with enhanced hepatic mitochondrial biogenesis and the inhibition of the c-Jun N-terminal kinase (JNK)/nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK)/NF-κB pathways. In conclusion, SBC treatment alleviates NAFLD in both obese patients and mouse models by improving lipid metabolism, potentially through enhancing mitochondrial biogenesis. These effects, in turn, ameliorate inflammation in hepatocytes.
Collapse
Affiliation(s)
- Zhitao Ren
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Gemin Xiao
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yixin Chen
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Linli Wang
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiaoxin Xiang
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Yi Yang
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Siying Wen
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Wenhui Luo
- Guangdong e-fong Pharmaceutical Co., Ltd., Foshan 528000, China
| | - Guowei Li
- Guangdong e-fong Pharmaceutical Co., Ltd., Foshan 528000, China
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Rihan Hai
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Liansheng Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yanhua Zhu
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Mengyin Cai
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Yinong Ye
- Foshan Fourth People's Hospital, Foshan 528000, China.
| | - Guojun Shi
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China.
| | - Yanming Chen
- Department of Endocrinology & Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China; Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
12
|
Elbadawy M, Tanabe K, Yamamoto H, Ishihara Y, Mochizuki M, Abugomaa A, Yamawaki H, Kaneda M, Usui T, Sasaki K. Evaluation of the efficacy of mitochondrial fission inhibitor (Mdivi-1) using non-alcoholic steatohepatitis (NASH) liver organoids. Front Pharmacol 2023; 14:1243258. [PMID: 37900170 PMCID: PMC10600465 DOI: 10.3389/fphar.2023.1243258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is known to progress to cirrhosis and hepatocellular carcinoma in some patients. Although NASH is associated with abnormal mitochondrial function related to lipid metabolism, mechanisms for the development and effective treatments are still unclear. Therefore, new approaches to elucidate the pathophysiology are needed. In the previous study, we generated liver organoids from different stages of NASH model mice that could recapitulate the part of NASH pathology. In the present study, we investigated the relationship between mitochondrial function and NASH disease by comparing NASH liver organoids (NLO) and control liver organoids (CLO). Compared with CLO, mitochondrial and organoid morphology was abnormal in NLO, with increased expression of mitochondrial mitogen protein, DRP1, and mitochondria-derived reactive oxygen species (ROS) production. Treatment of NLO with a DPR1 inhibitor, Mdivi-1 resulted in the improvement of morphology and the decreased expression of fibrosis-related markers, Col1a1 and Acta2. In addition, treatment of NASH model mice with Mdivi-1 showed a decrease in fatty liver. Mdivi-1 treatment also prevented fibrosis and ROS production in the liver. These results indicate that NLO undergoes enhanced metabolism and abnormal mitochondrial morphology compared with CLO. It was also suggested that Mdivi-1 may be useful as a therapeutic agent to ameliorate NASH pathology.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kiwamu Tanabe
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Maria Mochizuki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
13
|
Zhang T, Nie Y, Wang J. The emerging significance of mitochondrial targeted strategies in NAFLD treatment. Life Sci 2023; 329:121943. [PMID: 37454757 DOI: 10.1016/j.lfs.2023.121943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, ranging from liver steatosis to nonalcoholic steatohepatitis, which ultimately progresses to fibrosis, cirrhosis, and hepatocellular carcinoma. Individuals with NAFLD have a higher risk of developing cardiovascular and extrahepatic cancers. Despite the great progress being made in understanding the pathogenesis and the introduction of new pharmacological targets for NAFLD, no drug or intervention has been accepted for its management. Recent evidence suggests that NAFLD may be a mitochondrial disease, as mitochondrial dysfunction is involved in the pathological processes that lead to NAFLD. In this review, we describe the recent advances in our understanding of the mechanisms associated with mitochondrial dysfunction in NAFLD progression. Moreover, we discuss recent advances in the efficacy of mitochondria-targeted compounds (e.g., Mito-Q, MitoVit-E, MitoTEMPO, SS-31, mitochondrial uncouplers, and mitochondrial pyruvate carrier inhibitors) for treating NAFLD. Furthermore, we present some medications currently being tested in clinical trials for NAFLD treatment, such as exercise, mesenchymal stem cells, bile acids and their analogs, and antidiabetic drugs, with a focus on their efficacy in improving mitochondrial function. Based on this evidence, further investigations into the development of mitochondria-based agents may provide new and promising alternatives for NAFLD management.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Zhang L, Wang S, Li Y, Liu B, Duan Z, Liu F, Ren Q. Tartary buckwheat root polysaccharides ameliorate non-alcoholic fatty liver disease via the IL6-SOCS3-SREBP1c pathway. Food Chem Toxicol 2023; 179:113997. [PMID: 37604299 DOI: 10.1016/j.fct.2023.113997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Our previous study demonstrated that Tartary buckwheat root polysaccharides (TBRP) could reduce insulin resistance in diabetes mellitus by inhibiting SOCS3-stimulated IRS1 protein degradation. However, whether TBRP has the efficiency to treat non-alcoholic fatty liver disease (NAFLD) is still undetermined. This investigation aimed to examine the effects of TBRP on a high-fat diet (HFD)-triggered NAFLD, and elucidate the underlying molecular mechanisms. Briefly, TBRP toxicity in hepatoma (BEL7404) and pancreatic cancer (BxPC3) cells and zebrafish embryos developmental models, were evaluated in-vitro and in-vivo, respectively. TBRP inhibited cellular lipid accumulation by suppressing fat synthesis, furthermore, it improved body weight gain, liver weight, liver-to-body weight ratio, serum lipids triglyceride, total cholesterol, ALT, LDL-C, HDL-C, and AST levels in the NAFLD mice model. Additionally, TBRP treatment also lowered the nitric oxide content. The qPCR assay revealed that mRNA expression of TNF, IL1β, and IL6 was also markedly reduced in TBRP-treated NAFLD mice. The expression of SOCS3, SREBP1c, and STAT3 was elucidated by western blot analysis, which indicated that TBRP markedly decreased the gene expression for de novo fat synthesis by the SOCS3-SREBP1c pathway. These findings reveal that TBRP ameliorates NAFLD via the IL6-SOCS3-SREBP1c signaling pathway and therefore, may represent a promising approach for NAFLD treatment.
Collapse
Affiliation(s)
- Litao Zhang
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Shuo Wang
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Yimin Li
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Boyu Liu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Zeyu Duan
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, 276826, China.
| |
Collapse
|
15
|
Fang X, Song J, Zhou K, Zi X, Sun B, Bao H, Li L. Molecular Mechanism Pathways of Natural Compounds for the Treatment of Non-Alcoholic Fatty Liver Disease. Molecules 2023; 28:5645. [PMID: 37570615 PMCID: PMC10419790 DOI: 10.3390/molecules28155645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and its incidence continues to increase each year. Yet, there is still no definitive drug that can stop its development. This review focuses mainly on lipotoxicity, oxidative stress, inflammation, and intestinal flora dysbiosis to understand NAFLD's pathogenesis. In this review, we used NCBI's PubMed database for retrieval, integrating in vivo and in vitro experiments to reveal the therapeutic effects of natural compounds on NAFLD. We also reviewed the mechanisms by which the results of these experiments suggest that these compounds can protect the liver from damage by modulating inflammation, reducing oxidative stress, decreasing insulin resistance and lipid accumulation in the liver, and interacting with the intestinal microflora. The natural compounds discussed in these papers target a variety of pathways, such as the AMPK pathway and the TGF-β pathway, and have significant therapeutic effects. This review aims to provide new possible therapeutic lead compounds and references for the development of novel medications and the clinical treatment of NAFLD. It offers fresh perspectives on the development of natural compounds in preventing and treating NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lijing Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.F.)
| |
Collapse
|
16
|
Houshmand M, Zeinali V, Hosseini A, Seifi A, Danaei B, Kamfar S. Investigation of FGF21 mRNA levels and relative mitochondrial DNA copy number levels and their relation in nonalcoholic fatty liver disease: a case-control study. Front Mol Biosci 2023; 10:1203019. [PMID: 37347041 PMCID: PMC10279952 DOI: 10.3389/fmolb.2023.1203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Although the exact mechanisms of nonalcoholic fatty liver disease (NAFLD) are not fully understood, numerous pieces of evidence show that the variations in mitochondrial DNA (mtDNA) level and hepatic Fibroblast growth factor 21 (FGF21) expression may be related to NAFLD susceptibility. Objectives: The main objective of this study was to determine relative levels of mtDNA copy number and hepatic FGF21 expression in a cohort of Iranian NAFLD patients and evaluate the possible relationship. Methods: This study included 27 NAFLD patients (10 with nonalcoholic fatty liver (NAFL) and 17 with non-alcoholic steatohepatitis (NASH)) and ten healthy subjects. Total RNA and genomic DNA were extracted from liver tissue samples, and then mtDNA copy number and FGF21 expression levels were assessed by quantitative real-time PCR. Results: The relative level of hepatic mtDNA copy number was 3.9-fold higher in patients than in controls (p < 0.0001). NAFLD patients showed a 2.9-fold increase in hepatic FGF21 expression compared to controls (p < 0.013). Results showed that hepatic FGF21 expression was positively correlated with BMI, serum ALT, and AST levels (p < 0.05). The level of mitochondrial copy number and hepatic FGF21 expression was not significantly associated with stages of change in hepatic steatosis. Finally, there was a significant correlation between FGF21 expression and mitochondrial copy number in NAFLD patients (p = 0.027). Conclusion: Our findings suggest a considerable rise of hepatic FGF21 mRNA levels and mtDNA-CN and show a positive correlation between them in the liver tissue of NAFLD patients.
Collapse
Affiliation(s)
- Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Vahide Zeinali
- Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hosseini
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Seifi
- Pediatric Nephrology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bardia Danaei
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Kamfar
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Li D, Tian L, Nan P, Zhang J, Zheng Y, Jia X, Gong Y, Wu Z. CerS6 triggered by high glucose activating the TLR4/IKKβ pathway regulates ferroptosis of LO2 cells through mitochondrial oxidative stress. Mol Cell Endocrinol 2023; 572:111969. [PMID: 37230220 DOI: 10.1016/j.mce.2023.111969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Lipid metabolism disorders and mitochondrial dysfunction contribute to the progression of diabetes and chronic liver disease (CLD). Ferroptosis, as a form of cell death centered on reactive oxygen species (ROS) accumulation and lipid peroxidation, is closely related to mitochondrial dysfunction. However, whether there exists mechanistic links between these processes remains unknown. Here, to explore the molecular mechanism of diabetes complicated with CLD, we showed that high glucose could restrain the activity of antioxidant enzymes, promote mitochondrial ROS (mtROS) production, and induce a state of oxidative stress in the mitochondria of human normal liver (LO2) cells. We demonstrated that high glucose induced ferroptosis and promoted the development of CLD, which was reversed by the ferroptosis inhibitor Ferrostatin-1 (Fer-1). In addition, the mitochondria-targeting antioxidant Mito-TEMPO was used to intervene LO2 cells in high-glucose culture, and ferroptosis was found to be inhibited, whereas markers of liver injury and fibrosis improved. Furthermore, high glucose could promote ceramide synthetase 6 (CerS6) synthesis through the TLR4/IKKβ pathway. The knockout of CerS6 in LO2 cells showed that mitochondrial oxidative stress was attenuated, ferroptosis was inhibited, and markers of liver injury and fibrosis were ameliorated. In contrast, the overexpression of CerS6 in LO2 cells showed the opposite changes and these changes were inhibited by Mito-TEMPO. In short, we positioned the study of lipid metabolism to a specific enzyme CerS6, with a high degree of specificity. Our findings revealed the mechanism by which the mitochondria act as a bridge linking CerS6 and ferroptosis, confirming that under high glucose conditions, CerS6 promotes ferroptosis through mitochondrial oxidative stress, eventually leading to CLD.
Collapse
Affiliation(s)
- Dan Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ling Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ping Nan
- Department of Obster & Gynecol, Shengli Oilfield Central Hospital, 31 Jinan Road, Dongying, 257000, Shandong, China
| | - Jun Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinxin Jia
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yihui Gong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
18
|
Clemente-Suárez VJ, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Mitochondrial Transfer as a Novel Therapeutic Approach in Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24108848. [PMID: 37240194 DOI: 10.3390/ijms24108848] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of numerous diseases, including neurodegenerative disorders, metabolic disorders, and cancer. Mitochondrial transfer, the transfer of mitochondria from one cell to another, has recently emerged as a potential therapeutic approach for restoring mitochondrial function in diseased cells. In this review, we summarize the current understanding of mitochondrial transfer, including its mechanisms, potential therapeutic applications, and impact on cell death pathways. We also discuss the future directions and challenges in the field of mitochondrial transfer as a novel therapeutic approach in disease diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
19
|
Akbari H, Taghizadeh-Hesary F. COVID-19 induced liver injury from a new perspective: Mitochondria. Mitochondrion 2023; 70:103-110. [PMID: 37054906 PMCID: PMC10088285 DOI: 10.1016/j.mito.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Liver damage is a common sequela of COVID-19 (coronavirus disease 2019), worsening the clinical outcomes. However, the underlying mechanism of COVID-induced liver injury (CiLI) is still not determined. Given the crucial role of mitochondria in hepatocyte metabolism and the emerging evidence denoting SARS-CoV-2 can damage human cell mitochondria, in this mini-review, we hypothesized that CiLI happens following hepatocytes' mitochondrial dysfunction. To this end, we evaluated the histologic, pathophysiologic, transcriptomic, and clinical features of CiLI from the mitochondria' eye view. Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), the causative agent of COVID-19, can damage hepatocytes through direct cytopathic effects or indirectly after the profound inflammatory response. Upon entering the hepatocytes, the RNA and RNA transcripts of SARS-CoV-2 engages the mitochondria. This interaction can disrupt the mitochondrial electron transport chain. In other words, SARS-CoV-2 hijacks the hepatocytes' mitochondria to support its replication. In addition, this process can lead to an improper immune response against SARS-CoV-2. Besides, this review outlines how mitochondrial dysfunction can serve as a prelude to the COVID-associated cytokine storm. Thereafter, we indicate how the nexus between COVID-19 and mitochondria can fill the gap linking CiLI and its risk factors, including old age, male sex, and comorbidities. In conclusion, this concept stresses the importance of mitochondrial metabolism in hepatocyte damage in the context of COVID-19. It notes that boosting mitochondria biogenesis can possibly serve as a prophylactic and therapeutic approach for CiLI. Further studies can reveal this notion.
Collapse
Affiliation(s)
- Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Traditional Medicine School, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Machado IF, Palmeira CM, Rolo AP. Preservation of Mitochondrial Health in Liver Ischemia/Reperfusion Injury. Biomedicines 2023; 11:948. [PMID: 36979927 PMCID: PMC10046671 DOI: 10.3390/biomedicines11030948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Liver ischemia-reperfusion injury (LIRI) is a major cause of the development of complications in different clinical settings such as liver resection and liver transplantation. Damage arising from LIRI is a major risk factor for early graft rejection and is associated with higher morbidity and mortality after surgery. Although the mechanisms leading to the injury of parenchymal and non-parenchymal liver cells are not yet fully understood, mitochondrial dysfunction is recognized as a hallmark of LIRI that exacerbates cellular injury. Mitochondria play a major role in glucose metabolism, energy production, reactive oxygen species (ROS) signaling, calcium homeostasis and cell death. The diverse roles of mitochondria make it essential to preserve mitochondrial health in order to maintain cellular activity and liver integrity during liver ischemia/reperfusion (I/R). A growing body of studies suggest that protecting mitochondria by regulating mitochondrial biogenesis, fission/fusion and mitophagy during liver I/R ameliorates LIRI. Targeting mitochondria in conditions that exacerbate mitochondrial dysfunction, such as steatosis and aging, has been successful in decreasing their susceptibility to LIRI. Studying mitochondrial dysfunction will help understand the underlying mechanisms of cellular damage during LIRI which is important for the development of new therapeutic strategies aimed at improving patient outcomes. In this review, we highlight the progress made in recent years regarding the role of mitochondria in liver I/R and discuss the impact of liver conditions on LIRI.
Collapse
Affiliation(s)
- Ivo F. Machado
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3000 Coimbra, Portugal
| | - Carlos M. Palmeira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| | - Anabela P. Rolo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
21
|
Fang QL, Qiao X, Yin XQ, Zeng YC, Du CH, Xue YM, Zhao XJ, Hu CY, Huang F, Lin YP. Flavonoids from Scutellaria amoena C. H. Wright alleviate mitochondrial dysfunction and regulate oxidative stress via Keap1/Nrf2/HO-1 axis in rats with high-fat diet-induced nonalcoholic steatohepatitis. Biomed Pharmacother 2023; 158:114160. [PMID: 36571996 DOI: 10.1016/j.biopha.2022.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is among the most common liver diseases in the world. Flavonoids from Scutellaria amoena (SAF) are used in the treatment of hepatopathy in China. However, the effect and mechanism against NASH remain unclear. We investigated the alleviating effect of SAF on NASH via regulating mitochondrial dysfunction and oxidative stress. METHODS The effects of SAF on NASH were evaluated using in vitro and in vivo methods. L02 cells were induced by fat emulsion to establish an adipocytes model, followed by treatment with SAF for 24 h. NASH rat models were established by the administration of a high-fat diet for 12 weeks and were administered SAF for six weeks. Changes in body weight, organ indexes, lipid levels, inflammatory cytokines, mitochondrial indicators, and fatty acid metabolism were investigated. RESULTS SAF significantly improved body weight, organ indexes, lipid levels, liver injury, and inflammatory infiltration in NASH rats. SAF notably regulated interleukin-6, tumor necrotic factor-alpha, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), kelch-like ECH-associated protein 1 (Keap1), nuclear factor-erythroid factor 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Additionally, SAF improved mitochondrial dysfunction, increased the levels of GSH, SOD, ATP synthase, complex I and II, and decreased the level of MDA in liver mitochondria. SAF regulated the expression of β-oxidation genes, including peroxisome proliferator-activated receptor -gamma coactivator-1alpha (PGC-1α), carnitine palmitoyltransferase-1 (CPT1) A, CPT1B, medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, very long-chain acyl-CoA dehydrogenase, and PPARα. CONCLUSION SAF can alleviate NASH by regulating mitochondrial function and oxidative stress via the Keap1/Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Qiong-Lian Fang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xue Qiao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xun-Qing Yin
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Yong-Cheng Zeng
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Cheng-Hong Du
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Yong-Mei Xue
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiu-Juan Zhao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Chun-Yan Hu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Feng Huang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yu-Ping Lin
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
22
|
Chen Y, Yang F, Chu Y, Yun Z, Yan Y, Jin J. Mitochondrial transplantation: opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease. Lab Invest 2022; 20:483. [PMID: 36273156 PMCID: PMC9588235 DOI: 10.1186/s12967-022-03693-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
Abstract
Metabolic diseases, including obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD), are rising in both incidence and prevalence and remain a major global health and socioeconomic burden in the twenty-first century. Despite an increasing understanding of these diseases, the lack of effective treatments remains an ongoing challenge. Mitochondria are key players in intracellular energy production, calcium homeostasis, signaling, and apoptosis. Emerging evidence shows that mitochondrial dysfunction participates in the pathogeneses of metabolic diseases. Exogenous supplementation with healthy mitochondria is emerging as a promising therapeutic approach to treating these diseases. This article reviews recent advances in the use of mitochondrial transplantation therapy (MRT) in such treatment.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,School of Medicine, Jiangsu University, ZhenjiangJiangsu Province, 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,School of Medicine, Jiangsu University, ZhenjiangJiangsu Province, 212013, China
| | - Ying Chu
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,Central Laboratory, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China
| | - Zhihua Yun
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China. .,Central Laboratory, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.
| | - Jianhua Jin
- Department of Oncology, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.
| |
Collapse
|
23
|
Wang H, Li Y, Bian Y, Li X, Wang Y, Wu K, Liu C, Liu Y, Wang X. Potential hepatoprotective effects of Cistanche deserticola Y.C. Ma: Integrated phytochemical analysis using UPLC-Q-TOF-MS/MS, target network analysis, and experimental assessment. Front Pharmacol 2022; 13:1018572. [PMID: 36313288 PMCID: PMC9597371 DOI: 10.3389/fphar.2022.1018572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/27/2022] [Indexed: 10/09/2023] Open
Abstract
Cistanche deserticola Y.C. Ma (CD) possesses hepatoprotective activity, while the active ingredients and involved mechanisms have not been fully explored. The objective of this study was to investigate the chemical composition and hepatoprotective mechanisms of CD. We primarily used ultra-performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) to identify the phenylethanoid glycoside (PhG) components of CD. Then, network analysis was used to correlate and predict the pharmacology of the identified active components of PhGs with hepatoprotection. Next, the mechanisms of the core components and targets of action were explored by cellular assays and toll-like receptor 4 (TLR4) target competition assays. Finally, its hepatoprotective effects were further validated in in vivo experiments. The results showed that a total of 34 PhGs were identified based on the UPLC-Q-TOF-MS/MS method. Echinacoside (ECH) was identified as the key ingredient, and TLR4 and nuclear factor-kappa B (NF-κB) were speculated as the core targets of the hepatoprotective effect of CD via network analysis. The cellular assays confirmed that PhGs had significant anti-inflammatory activity. In addition, the real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot indicated that ECH notably reduced the levels of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), as well as the mRNA expression of TLR4, TNF-α, and IL-6, and decreased the high expression of the TLR4 protein, which in turn downregulated the myeloid differentiation factor 88 (MyD88), p-P65 and TNF-α proteins in the inflammatory model. The target competition experiments suggested that ECH and LPS could competitively bind to the TLR4 receptor, thereby reducing the expression of TLR4 downstream proteins. The results of in vivo studies showed that ECH significantly ameliorated LPS-induced hepatic inflammatory infiltration and liver tissue damage and reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice. Moreover, ECH remarkably inhibited the release of inflammatory factors such as TNF-α, IL-6, IL-1β, and MCP-1 in the serum of mice, exerting the hepatoprotective effect by the TLR4/NF-κB signaling pathway. More importantly, ECH could act as a potential inhibitor of TLR4 and deserves further in-depth study. Our results could provide a basis for exploring the hepatoprotective properties of CD.
Collapse
Affiliation(s)
- Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaying Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Li
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yubei Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhong Liu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
24
|
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137280. [PMID: 35806284 PMCID: PMC9267060 DOI: 10.3390/ijms23137280] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: +573-882-7349; Fax: +573-884-4595
| |
Collapse
|