1
|
Wu Y, Yin M, Xia W, Dou B, Liu X, Sun R. Enhancing NK Cell Antitumor Activity With Natural Compounds: Research Advances and Molecular Mechanisms. Phytother Res 2025; 39:1905-1929. [PMID: 39931789 DOI: 10.1002/ptr.8456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 05/21/2025]
Abstract
In recent years, immunotherapy has become a novel antitumor strategy in addition to traditional surgery, radiotherapy, and chemotherapy and has exhibited promising results in clinical applications. Despite significant breakthroughs in immunotherapy, such as immune checkpoint blockade and CAR-T cell therapy, it remains necessary to develop more efficacious, safer, and cheaper immunotherapeutic drugs due to factors including small reaction populations, acquired resistance, adverse side effects, and high costs. Natural killer (NK) cells are preeminent cytotoxic lymphocytes of the innate immune system that act as the first line of defense against tumors and synergistically enhance the adaptive immune response of T lymphocytes. Therefore, boosting the antitumor function of NK cells is an important direction in the development of immunotherapy. For decades, various immunotherapies such as adoptive cell therapy, antibody drugs, cytokines supplement, and chemical immunomodulators have been developing rapidly to improve the function of NK cells. Compared to biological immunotherapy, immunomodulators derived from natural products have outstanding advantages of low immunogenicity, multi-targeting, and cost-effectiveness. Currently, increasing attention is being focused on discovering NK cell-stimulating agents from natural products, such as polysaccharides, alkaloids, terpenoids, saponins, phenolics, and quinones. This review aims to categorize and summarize the comprehensive research progress on these natural products, discuss their potential molecular mechanisms in regulating NK cells, and explore their clinical applications as standalone treatments or in combination with conventional chemotherapy regimens.
Collapse
Affiliation(s)
- Yu Wu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Mingxiao Yin
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Wenjiao Xia
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, P. R. China
| | - Baokai Dou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Xiaoyu Liu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Ru Sun
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| |
Collapse
|
2
|
Xie M, Qing C, Yi J, Chen Y, Yang Z, Banwell MG, Lan P. Enzymatic synthesis of stachyose-derived fatty acid mono-esters, the evaluation of their surface and interfacial properties and the capacity of certain derived emulsions to deliver resveratrol. Food Chem 2025; 472:142948. [PMID: 39855137 DOI: 10.1016/j.foodchem.2025.142948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
The nutritional characteristics of the tetrasaccharide stachyose prompted its incorporation into biosurfactants through esterification with fatty acid derivatives embodying 12-22 carbon chains. The resulting esters were evaluated for their surface active effects, emulsifying properties and capacities to form emulsions capable of the selective delivery of the anti-oxidant resveratrol. While such studies have revealed that those congeners embodying longer side-chains have higher critical micelle concentrations (CMC) and lower interfacial tensions, their hydrophilic-lipophilic balance (HLB) values fell within a tight range. Those emulsions stabilized by esters with medium and longer side-chains exhibited good stabilities over the pH range 6-10 and up to 95 °C. Assessments of the in vitro digestion of the corresponding emulsions charged with resveratrol revealed the bioavailability of the anti-oxidant reached ca. 80 % and so suggesting that the title stachyose esters are distinctive and promising sugar-based surfactants for the targeted delivery of functional foods.
Collapse
Affiliation(s)
- Mengfei Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chun Qing
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiankang Yi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; Anhui Jinhe Industrial Co., Ltd., Chuzhou 239200, China
| | - Yongle Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; Anhui Jinhe Industrial Co., Ltd., Chuzhou 239200, China
| | - Zhijian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; Anhui Jinhe Industrial Co., Ltd., Chuzhou 239200, China
| | - Martin G Banwell
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; Anhui Jinhe Industrial Co., Ltd., Chuzhou 239200, China.
| | - Ping Lan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; Anhui Jinhe Industrial Co., Ltd., Chuzhou 239200, China.
| |
Collapse
|
3
|
Chi X, Ding J, Zhang Y, Chen Y, Han Y, Lin Y, Jiang J. Berberine protects against dysentery by targeting both Shigella filamentous temperature sensitive protein Z and host pyroptosis: Resolving in vitro-vivo effect discrepancy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156517. [PMID: 39986228 DOI: 10.1016/j.phymed.2025.156517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/29/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Berberine (BBR), an isoquinoline alkaloid, has been applied clinically to treat dysentery caused by Shigella for decades. Nevertheless, the precise mechanisms behind its anti-Shigella effect have not been fully elucidated. PURPOSE This study aims to investigate the mechanism of BBR on antibacterial activity against S. flexneri infection. METHODS We initially reproduced the mouse model of Shigella flexneri-induced dysentery, and then, assessed the therapeutic effect of BBR. In vitro, we measured the inhibitory effect of BBR against S. flexneri and the GTPase activity of FtsZ (filamentous temperature sensitive protein Z) using the minimum inhibitory concentration (MIC) test and an enzyme activity assay to investigate the bacteria-directed mechanisms. Subsequently, we utilized both the in vivo mouse model of dysentery and the in vitro macrophage infection model with S. flexneri to explore the host-directed anti-Shigella mechanisms of BBR. The canonical pyroptosis pathway mediated by caspase-1 and mitochondrial damage were examined by Western blot, immunofluorescence and RNA interference analysis. RESULTS Administration of BBR alleviated the symptoms of dysentery induced by S. flexneri infection. In vitro, BBR could inhibit the growth of S. flexneri by targeting the GTPase activity of FtsZ, thereby affecting bacterial cell division. Additionally, our in vivo findings revealed that BBR suppressed macrophage pyroptosis by inhibiting the expression of caspase-1 and subsequently the mitochondrial damage, which in turn reduced the intestinal inflammation and tissue damage. CONCLUSIONS Our results provide a novel mechanism of BBR's action, which targets both the bacterium and the host to exert its antibacterial effects. Furthermore, it also provides an explanation for the discrepancy between BBR's relatively modest antibacterial efficacy in vitro and its enhanced antibacterial effects in vivo, thus, giving support to its clinical use.
Collapse
Affiliation(s)
- Xiangyin Chi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinwen Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Gencer G, Sarikurkcu C, Tepe B. Unveiling the Phytochemical Diversity and Bioactivity of Astragalus melanophrurius: A First Report Integrating Experimental and In Silico Approaches. Pharmaceuticals (Basel) 2025; 18:103. [PMID: 39861165 PMCID: PMC11768182 DOI: 10.3390/ph18010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background: The genus Astragalus is renowned for its diverse bioactive potential, yet the chemical composition and biological properties of Astragalus melanophrurius remain inadequately explored. This study aimed to investigate the chemical profile, antioxidant capacity, and enzyme inhibitory activities of methanol extracts from various plant parts of A. melanophrurius. Methods: Methanol extracts were obtained from leaves, stems, flowers, roots, and aerial portions of A. melanophrurius. The chemical composition was determined using LC-ESI-MS/MS, focusing on key phytochemicals such as hyperoside, kaempferol, 4-hydroxybenzoic acid, and chlorogenic acid. Antioxidant activities were assessed via DPPH, ABTS, and FRAP assays, while enzyme inhibitory activities were evaluated against α-amylase and tyrosinase. In silico molecular docking analyses were conducted to explore the interactions between major compounds and target enzymes. Results: The leaf extract exhibited the highest total phenolic and flavonoid contents, correlating with superior antioxidant activities, achieving IC50 values of 16.55 mg/mL, 4.58 mg/mL, and 3.07 mg/mL in DPPH, ABTS, and FRAP assays, respectively. The root extract demonstrated notable α-amylase (IC50 = 2.99 mg/mL) and tyrosinase (IC50 = 1.34 mg/mL) inhibitory activities, suggesting potential applications in diabetes and hyperpigmentation management. Molecular docking revealed stable complexes of hyperoside and kaempferol with target enzymes, supporting their roles in observed bioactivities. Conclusions: This study highlights the bioactivity of A. melanophrurius extracts, particularly from leaves and roots, supporting their therapeutic potential. Future research should focus on isolating active compounds and conducting in vivo studies to confirm efficacy and elucidate mechanisms of action.
Collapse
Affiliation(s)
- Gulcan Gencer
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye
| | - Cengiz Sarikurkcu
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03100 Afyonkarahisar, Türkiye;
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science, Kilis 7 Aralik University, 79000 Kilis, Türkiye;
| |
Collapse
|
5
|
Xiao Q, Huang J, Zhu X, Shi M, Chen L, Chen L, Liu X, Liu R, Zhong Y. Formononetin ameliorates dextran sulfate sodium-induced colitis via enhancing antioxidant capacity, promoting tight junction protein expression and reshaping M1/M2 macrophage polarization balance. Int Immunopharmacol 2024; 142:113174. [PMID: 39288627 DOI: 10.1016/j.intimp.2024.113174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Ulcerative colitis (UC) is a complex, refractory inflammatory bowel disease characterized impared intestinal mucosal barrier and imbalanced M1/M2 macrophage polarization mediating its progression. Formononetin (FN), a bioactive isoflavone with established anti-inflammatory and immunomodulatory properties, shows promise in mitigating UC, yet its therapeutic and underlying mechanisms remain unclear. In this study, colitis was induced in mice by administering 2.5% (w/v) dextran sulfate sodium (DSS) solution for 7 days. Oral (25, 50, and 100 mg/kg) FN for 10 days significantly ameliorated colitis symptoms in a dose-dependent manner, by mitigating body weight loss, reducing disease activity index (DAI), colonic weight, and colonic weight index, while enhancing survival rates and colonic length. Histological analysis revealed FN remarkably suppressed inflammatory damage in colonic tissues. Furthermore, FN modulated the expression of pro- and anti-inflammatory cytokines and enhanced antioxidant capacity. Notably, FN treatment significantly enhanced the expression of tight junction (TJ) proteins (claudin-1, ZO-1, occludin) at both protein and mRNA levels in the colon tissues, suggesting improved intestinal barrier function. Crucially, FN inhibited macrophage infiltration in colonic tissues and rebalanced M1/M2 macrophage polarization. While, macrophage depletion largely abrogated FN's protective effects against colitis, indicating a crucial role for macrophages in mediating FN's therapeutic response. Overall, FN effectively alleviated colitis primarily via modulating inflammatory cytokine expression, enhancing antioxidant capacity, upregulating TJs proteins expression, and remodeling M1/M2 macrophage polarization equilibrium. These findings suggest that FN could be the next candidate to unlocking UC's treatment challenge.
Collapse
Affiliation(s)
- Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiyan Zhu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Min Shi
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Liling Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Lai Chen
- Institute of Cancer Research, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xuan Liu
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Ronghua Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
6
|
Wang Z, Zhong Y, Xin M, Zhang J, Dong X, Zhang W, Lu X, Li L, Tu Y, Zhang L. Swiprosin-1 participates in the berberine-regulated AMPK/MLCK pathway to attenuate colitis-induced tight junction damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156111. [PMID: 39369569 DOI: 10.1016/j.phymed.2024.156111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/16/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND AND PURPOSE Activation of AMP-activated protein kinase (AMPK) is essential in maintaining the epithelial tight junction (TJ) barrier. Berberine, a phytochemical AMPK agonist, has been widely reported to ameliorate colitis. Berberine or AMPK activation inhibits cytoskeletal contraction induced by myosin light chain kinase (MLCK), thereby ameliorating TJ barrier defects. We previously found that swiprosin-1, an actin-binding protein, affects MLCK expression. Here, we aimed to reveal the role of swiprosin-1 in the regulation of AMPK/MLCK by berberine. METHODS Caco-2 monolayer transfected with AMPKα1 (or swiprosin-1) siRNA was treated with berberine after being stimulated with TNFα/IFNγ to assess the effect on the TJ barrier. Intestinal epithelial conditional knockout mice for AMPKα1 (or swiprosin-1) were treated with berberine after experimental colitis to evaluate the effect on the TJ barrier. TJ integrity was evaluated by immunoblotting and immunofluorescence for ZO-1 and Occludin. RESULTS The protection of berberine against TJ barrier damage was blocked by AMPK inhibitor or knockout of AMPKα1 in epithelial cells. Swiprosin-1 was distributed in colonic epithelial cells and upregulated in colitis. Knockout of swiprosin-1 in intestinal epithelial cells ameliorated TJ barrier damage and abolished the protective effect of berberine. Impaired assembly of TJ caused by overexpression of swiprosin-1 was alleviated by MLCK inhibitor, and inhibition of the MLCK pathway by berberine also required the presence of swiprosin-1. In addition, berberine downregulated swiprosin-1 expression in an AMPK-dependent manner. CONCLUSION Swiprosin-1 may be a key intermediate molecule in the regulation of the AMPK/MLCK pathway by berberine to attenuate colitis-induced TJ barrier damage.
Collapse
Affiliation(s)
- Zhibin Wang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Yuting Zhong
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China; Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; The People's Hospital of Sixian County, Anhui province, China
| | - Meng Xin
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jiaqi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaohui Dong
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Wenzhao Zhang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Xin Lu
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Ling Li
- Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Lichao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
7
|
Wei X, Leng X, Liang J, Liu J, Chi L, Deng H, Sun D. Pharmacological potential of natural medicine Astragali Radix in treating intestinal diseases. Biomed Pharmacother 2024; 180:117580. [PMID: 39413615 DOI: 10.1016/j.biopha.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
Due to changes in diet and lifestyle, the prevalence of intestinal diseases has been increasing annually. Current treatment methods exhibit several limitations, including adverse reactions and drug resistance, necessitating the development of new, safe, and effective therapies. Astragali Radix, a natural medicine utilized for over two millennia, offers unique advantages in treating intestinal ailments due to its multi-component and multi-target properties. This study aims to review the effective components of Astragali Radix that provide intestinal protection and to explore its pharmacological effects and molecular mechanisms across various intestinal diseases. This will provide a comprehensive foundation for using Astragali Radix in treating intestinal diseases and serve as a reference for future research directions. The active components of Astragali Radix with protective effects on the intestines include astragaloside (AS)-IV, AS-III, AS-II, astragalus polysaccharide (APS), cycloastagenol, calycosin, formononetin, and ononin. Astragali Radix and its active components primarily address intestinal diseases such as colorectal cancer (CRC), inflammatory bowel disease (IBD), and enterocolitis through mechanisms including anti-inflammatory actions, antioxidative stress responses, anti-proliferation and invasion activities, regulation of programmed cell death, immunoregulation, restoration of the intestinal epithelial barrier, and modulation of the intestinal microbiota and its metabolites. Consequently, Astragali Radix demonstrates significant intestinal protective activity and represents a promising natural treatment for intestinal diseases. However, the pharmacological actions and mechanisms of some active components in Astragali Radix remain unexplored. Moreover, further comprehensive toxicological and clinical studies are required to ascertain its safety and clinical effectiveness.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaohui Leng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jiahui Liu
- Department of Gastroenterology, Shandong Provincial Third Hospital, Jinan 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Hualiang Deng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Dajuan Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
8
|
Abdulazeez R, Highab SM, Onyawole UF, Jeje MT, Musa H, Shehu DM, Ndams IS. Co-administration of resveratrol rescued lead-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104470. [PMID: 38763436 DOI: 10.1016/j.etap.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/23/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Lead toxicity poses a significant environmental concern linked to diverse health issues. This study explores the potential mitigating effects of resveratrol on lead-induced toxicity in Drosophila melanogaster. Adult fruit flies, aged three days, were orally exposed to lead (60 mg/L), Succimer (10 mg), and varying concentrations of resveratrol (50, 100, and 150 mg). The investigation encompassed the assessment of selected biological parameters, biochemical markers, oxidative stress indicators, and antioxidant enzymes. Resveratrol exhibited a dose-dependent enhancement of egg-laying, eclosion rate, filial generation output, locomotor activity, and life span in D. melanogaster, significantly to 150 mg of diet. Most of the investigated biochemical parameters were significantly rescued in lead-exposed fruit flies when co-treated with resveratrol (p < 0.05). However, oxidative stress remained unaffected by resveratrol. The findings suggest that resveratrol effectively protects against lead toxicity in Drosophila melanogaster and may hold therapeutic potential as an agent for managing lead poisoning in humans.
Collapse
Affiliation(s)
- R Abdulazeez
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - S M Highab
- Department of Clinical Pharmacology and Therapeutics, Faculty of Clinical Sciences, College of Medicine and Health Sciences, Federal University, Dutse, Jigawa State, Nigeria
| | - U F Onyawole
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - M T Jeje
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - H Musa
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - D M Shehu
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - I S Ndams
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
9
|
Qiu X, Luo W, Li H, Li T, Huang Y, Huang Q, Zhou R. A Traditional Chinese Medicine, Zhenqi Granule, Potentially Alleviates Dextran Sulfate Sodium-Induced Mouse Colitis Symptoms. BIOLOGY 2024; 13:427. [PMID: 38927307 PMCID: PMC11200386 DOI: 10.3390/biology13060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that causes chronic inflammation in the large intestine. The etiology of UC is complex and incompletely understood, with potential contributing factors including genetic susceptibility, environmental influences, immune dysregulation, and gut barrier dysfunction. Despite available therapeutic drugs, the suboptimal cure rate for UC emphasizes the necessity of developing novel therapeutics. Traditional Chinese Medicine (TCM) has attracted great interest in the treatment of such chronic inflammatory diseases due to its advantages, such as multi-targets and low side effects. In this study, a mouse model of Dextran Sulfate Sodium (DSS)-induced acute colitis was established and the efficacy of Zhenqi Granule, a TCM preparation composed of the extractives from Astragali Radix and Fructus Ligustri Lucidi, was evaluated. The results showed that treatment with Zhenqi Granule prior to or post-DSS induction could alleviate the symptoms of colitis, including weight loss, diarrhea, hematochezia, colon length shortening, and pathological damage of colon tissues of the DSS-treated mice. Further, network pharmacology analysis showed that there were 98 common targets between the active components of Zhenqi Granule and the targets of UC, and the common targets were involved in the regulation of inflammatory signaling pathways. Our results showed that Zhenqi Granule had preventive and therapeutic effects on acute colitis in mice, and the mechanism may be that the active components of Zhenqi Granule participated in the regulation of inflammatory response. This study provided data reference for further exploring the mechanism of Zhenqi Granule and also provided potential treatment strategies for UC.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Wentao Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Yaxue Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Q.); (W.L.); (H.L.); (T.L.); (Y.H.)
- International Research Center for Animal Disease, Ministry of Science & Technology of China, Wuhan 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
10
|
Zhang T, Chen M, Li D, Sun Y, Liu R, Sun T, Wang L. Extraction, purification, structural characteristics, bioactivity and potential applications of polysaccharides from Semen Coicis: A review. Int J Biol Macromol 2024; 272:132861. [PMID: 38838884 DOI: 10.1016/j.ijbiomac.2024.132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Semen Coicis (S. Coicis) has been regarded as a valuable source of traditional herbal medicine in China for thousands of years. S. Coicis polysaccharides (SCPs) are one of the most important bioactive ingredients of S. Coicis, which have attracted worldwide attention, because of their great marketing potential and development prospects. Hot water extraction is currently the most commonly used method to isolate SCPs. The structural characteristics of SCPs have been extensively investigated through various advanced modern analytical techniques to dissect the structure-activity relationships. SCPs are mainly composed of diverse monosaccharides, from which Rha and Ara are the most prevalent glycosyl groups. In addition, the structures of SCPs are found to be closely related to their multiple biological activities, including antioxidant activity, immunomodulatory function, antitumor activity, hypoglycemic effect, intestinal microbiota regulatory activity, anti-inflammatory activity, among others. In view of this, this review aimed to provide systematic and current information on the isolation, structural characteristics, and bioactivities of SCPs to support their future applications as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Ting Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
11
|
Li Q, Wei Y, Wei Y, He K, Liao G, Cheng L, Li M. Erythromycin regulates peroxisome proliferator-activated receptor γ to ameliorate cigarette smoke-induced oxidative stress in macrophages. J Thorac Dis 2024; 16:3051-3060. [PMID: 38883674 PMCID: PMC11170435 DOI: 10.21037/jtd-23-1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/29/2024] [Indexed: 06/18/2024]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is significantly influenced by oxidative stress. Recent studies have elucidated the anti-oxidative stress properties of peroxisome proliferator-activated receptors γ (PPARγ), augmenting its known anti-inflammatory effects. The exact influence of PPARγ on oxidative stress in COPD remains elusive. This study aimed to investigate the potential mechanism by which PPARγ counteracts the oxidative stress instigated by cigarette smoke in macrophages. Methods Macrophages were cultured and exposed to 1% cigarette smoke extract (CSE), 1 µg/mL erythromycin (EM), and 10 µmol/mL GW9662 (a PPARγ antagonist). Reactive oxygen species (ROS) in macrophages was identified using fluorescent microscopy. PPARγ expression was ascertained through reverse transcription-polymerase chain reaction (RT-PCR) and Western blot techniques. The superoxide dismutase (SOD) in macrophage supernatant was measured by enzyme linked immunosorbent assay (ELISA), as was malondialdehyde (MDA). Results Our results shown that cigarette smoke stimulated macrophages to increase ROS release, decrease the expression of PPARγ, increase the expression of MDA and decrease the expression of SOD. After PPARγ inhibitor acted on macrophages stimulated by cigarette smoke, the expression of MDA was inhibited and the content of SOD increased. When EM was used to treat macrophages stimulated by cigarette smoke, the expression of ROS decreased, the expression of PPARγ increased, the expression of MDA decreased and the expression of SOD increased. Conclusions This study suggests that PPARγ plays an anti-oxidative role by inhibiting the expression of MDA and promoting the expression of SOD. Cigarette smoke induces oxidative stress by inhibiting PPARγ pathway. EM inhibits oxidative stress by activating PPARγ pathway.
Collapse
Affiliation(s)
- Qiqi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yunjie Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanlin Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaiye He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guopeng Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lingyun Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meihua Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Zhang C, Zhang R, Cheng Y, Chen J, Zhu R, Gao L, Han M. Role of Zhiqiao Chuanlian decoction in the treatment of food accumulation fever: Network pharmacology and animal experiments. Heliyon 2024; 10:e29813. [PMID: 38681542 PMCID: PMC11053291 DOI: 10.1016/j.heliyon.2024.e29813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVE Food accumulation fever (FAF), a common clinical disease in children, is generally induced by the excessive intake of high-calorie or high-fat foods. Zhiqiao Chuanlian decoction (ZQCLD) is a classical traditional Chinese medicine (TCM) that may have therapeutic effects on FAF. METHODS Network pharmacological analyses of ZQCLD and FAF were conducted. Animal experiments lasted for 14 days. Rats in the model, positive control, and low-, medium-, and high-dose groups were fed a high-calorie diet. On days 11-14, the positive group was given a domperidone solution. The low-, medium-, and high-dose groups were administered different concentrations of ZQCLD. The body temperature, gastric emptying rate, and intestinal propulsion rate were measured. Relevant indicators were determined by ELISA. RESULTS The main target proteins included IL-1β, C-C motif chemokine 2 (CCL2), prostaglandin G/H synthase 2 (PTGS2), transcription factor AP-1 (JUN), haem oxygenase 1 (HMOX1), interferon-gamma (IFN-γ), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and inducible nitric oxide synthase (NOS2/iNOS). Compared with those in the control group, body weight, gastric emptying rate, intestinal propulsion rate, and neuronal nitric oxide synthase (NOS1/nNOS) levels were significantly lower in the model group, whereas body temperature and endotoxin, interleukin-1β (IL-1β), PGE2, and iNOS levels were increased. In each treatment group, body temperature and PGE2 levels returned to normal levels. Compared with those in the model group, the gastric emptying rates in the positive group and the low- and medium-dose groups increased; the intestinal propulsion rates were higher in the medium- and high-dose groups, whereas the endotoxin and IL-1β levels were lower; and the nNOS level was higher in the high-dose group, whereas the iNOS level was lower. CONCLUSIONS ZQCLD may treat FAF by regulating jejunal IL-1β and nNOS, serum endotoxin, and hypothalamic PGE2 and iNOS levels.
Collapse
Affiliation(s)
- Chuxin Zhang
- Qi-Huang Chinese Medicine School, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Ruoshi Zhang
- Qi-Huang Chinese Medicine School, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Yuli Cheng
- Qi-Huang Chinese Medicine School, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Jingpeng Chen
- The Second Clinical Medical College, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Ruizi Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lin Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Mei Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, Beijing, China
| |
Collapse
|
13
|
Li R, Hu R, Huang Y, Li D, Ma X, Yang Y. Astragalus polysaccharide alleviates polycystic ovary syndrome by reducing insulin resistance and oxidative stress and increasing the diversity of gut microbiota. Endocrine 2024; 83:783-797. [PMID: 37824046 DOI: 10.1007/s12020-023-03553-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder, which is frequently accompanied by insulin resistance, oxidative stress (OS), and dyslipidemia. Astragalus polysaccharide (APS)-as a water-soluble heteropolysaccharide-can lower blood sugar and lipid and exert anti-aging effects and thus has been proven to be beneficial to various types of metabolic diseases. However, specific mechanisms of the action of APS on PCOS are yet to be studied. METHODS Herein, BALB/C female mice aged 3 weeks were randomly divided into three groups (10 mice/group): oil + PBS group, DHEA + PBS group, and DHEA + APS group. Changes in the estrous cycle, ovarian tissue sections, serum levels of the hormone, blood glucose, blood lipid, and OS were studied. The intestinal microbiome was sequenced and Spearman correlation analysis was used to analyze the correlation between serum metabolic indexes and microflora. RESULTS The results revealed that APS treatment ameliorated insulin resistance, OS, and dyslipidemia in PCOS mice. The results of 16S rDNA sequencing indicated that there were significant differences in the composition and diversity of intestinal microorganisms between DHEA and APS treatments. Firmicutes, Lachnospiraceae, Bacilli, Lactobacillaceae, and Lachnospiraceae_NK4A13_group were abundant in the oil + PBS group. Bacteroidota and Muribaculaceae were enriched in the DHEA + PBS group, while Rikenellaceae, Odoribacter, and Marinifilaceae were enriched in the DHEA + APS group. Furthermore, Spearman correlation analysis showed that there were close interactions and correlations between intestinal bacteria and indicators of blood glucose, blood lipids, steroid hormones, and OS in PCOS mice. CONCLUSIONS Overall, the study showed that APS improved PCOS in mice by correcting serum metabolic disorders and increasing microbiome diversity, which may provide insight into understanding the pathogenesis and be a beneficial intervention for PCOS.
Collapse
Affiliation(s)
- Ruiyun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Rui Hu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaoling Ma
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.
- The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
14
|
Yao Q, Xu J, Tang N, Chen W, Gu Q, Li H. Screening, cloning, immobilization and application prospects of a novel β-glucosidase from the soil metagenome. ENVIRONMENTAL RESEARCH 2024; 244:117676. [PMID: 37996002 DOI: 10.1016/j.envres.2023.117676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
The soil environment for straw return is a rich and valuable library containing many microorganisms and proteins. In this study, we aimed to screen a high-quality β-glucosidase (BGL) from the soil metagenomic library and to overcome the limitation of the low extraction rate of resveratrol in Polygonum cuspidatum. This includes the construction of a soil metagenomic library, screening of BGL, bioinformatics analysis, cloning, expression, immobilization, enzymatic property analysis, and application for the transformation of polydatin. The results showed that the soil metagenomic library of straw return was successfully constructed, and a novel BGL was screened. The identified 1356 bp long BGL belonged to the glycoside hydrolase 1 (GH1) family and was named Bgl1356. After successful cloning and expression of Bgl1356, it was immobilized using chitosan. The optimum temperature of immobilized Bgl1356 was 50 °C, and the pH was 5. It exhibited good tolerance for various metal ions (CO2+, Ni2+, Cu2+, Mn2+, Na2+, Ca2+, and Ag+) and organic solvents (DMSO, Triton-X-10, and ethanol). Enzymatic kinetics assays showed that Bgl1356 had good affinity for the substrate, and the specific enzyme activity was 234.03 U/mg. The conversion rate of polydatin by immobilized Bgl1356 was 95.70 ± 1.08%, facilitating the production of high amounts of resveratrol. Thus, this paper reports a novel temperature-, organic solvent-, and metal ion-tolerant BGL that has good application prospects in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qian Yao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| | - Jin Xu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| | - Nan Tang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Weiji Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Quliang Gu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - He Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Xu Z, Cai K, Su SL, Zhu Y, Liu F, Duan JA. Salvianolic acid B and tanshinone IIA synergistically improve early diabetic nephropathy through regulating PI3K/Akt/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117356. [PMID: 37890803 DOI: 10.1016/j.jep.2023.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which lacks effective treatment. Salviae Miltiorrhizae Radix Et Rhizoma is one of the key compatible traditional Chinese medicine in the prescription for the treatment of DN. Salvianolic acid B and tanshinone IIA are two monomer active components with high content and clear structure in Salvia miltiorrhiza, which can effectively improve early (DN), respectively. AIM OF THE STUDY To evaluate the compatible effect of salvianolic acid B and tanshinone IIA on early DN rats and elucidate the mechanism. METHODS Early DN rats were induced by streptozotocin combined with high glucose and high fat diet, and intervened by salvianolic acid B, tanshinone IIA and their combinations. The pathological sections of kidney, liver and biochemical indexes were analyzed. Network pharmacology method was used to predict the possible mechanism. The mechanisms were elucidated by metabolomics, Elisa, and Western blot. RESULTS Given our analysis, salvianolic acid B and tanshinone IIA can synergistically regulate 24 h UTP, Urea and Scr and improve kidney damage in early DN rats. The metabolic abnormalities of early DN rats were improved by regulating the biosynthesis of saturated fatty acids, glycerol phospholipid metabolism, steroid biosynthesis, alanine, and arachidonic acid. Salvianolic acid B combined with tanshinone IIA at a mass ratio of 13.4:1 can significantly reduce kidney inflammation, up-regulate p-PI3K/PI3K and p-Akt/Akt and down-regulate p-NF-κB/NF-κB, which better than the single-used group and can be reversed by PI3K inhibitor LY294002. CONCLUSION Salvianolic acid B and tanshinone IIA can synergistically improve glucose and lipid disorders, liver and kidney damage, and resist kidney inflammation in early DN rats, and the mechanism may be related to regulating PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhuo Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Cai
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Liu
- Shaanxi Institute of International Trade and Commerce, Xianyang, 710061, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, Tang Y, Wang Y, Lai H, Leung ELH. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol Res 2024; 199:107034. [PMID: 38070793 DOI: 10.1016/j.phrs.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China.
| | - Huanling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangdong Province, China; Guangzhou Laboratory, Guangzhou 510005, Guangdong Province, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
17
|
Bai Y, Li M, Geng D, Liu S, Chen Y, Li S, Zhang S, Wang H. Polyphyllins in cancer therapy: A systematic review and meta-analysis of animal studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155096. [PMID: 37769554 DOI: 10.1016/j.phymed.2023.155096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Polyphyllins are secondary metabolites that inhibit the growth of various tumours; however, clinical trials on their use are lacking. HYPOTHESIS/PURPOSE In this study, we aimed to evaluate the antitumour efficacy of polyphyllins in animal models. STUDY DESIGN Systematic review and meta-analysis. METHODS Electronic bibliographic databases including PubMed, Web of Science, China Science and Technology Journal Database, Wanfang Data, and China National Knowledge Infrastructure were searched for relevant articles. The Systematic Review Centre for Laboratory Animal Experimentation's Risk of Bias tool was used to assess methodological quality. RevMan V.5.4 (Cochrane) and Stata MP 17 software were used to perform a meta-analysis. RESULTS Thirty articles were analysed including 33 independent experiments and 452 animals in this paper. Overall, tumour volume (standardised mean difference [SMD]: -3.35; 95 % confidence interval [CI]: -4.27 to -2.43; p < 0.00001) and tumour weight (SMD: -3.79; 95% CI: -4.75 to -2.82; p < 0.00001) were reduced by polyphyllins, which showed a good cancer therapeutic effect; mouse weight (SMD: -0.22; 95% CI: -0.61 to -0.18; p = 0.28) was insignificantly different, which indicated that polyphyllins did not affect the growth of the mice within the test range. Moreover, the molecular mechanisms of the antitumour activity of polyphyllins were explained, including the P53, NF-kB, AMPK, and ERK signalling pathways. CONCLUSION Polyphyllins inhibit the growth of cancers within the experimental dose. However, due to heterogeneity of the results of the included studies, more studies are needed to support this conclusion.
Collapse
Affiliation(s)
- Yan Bai
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Mengmeng Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Dongjie Geng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shouzan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Botanical Garden, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Ye Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shan Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shaobo Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311300, China
| | - Hongzhen Wang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China; College of Food and Health, Department of Traditional Chinese Medicine, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
18
|
Cao F, Xia W, Dai S, Wang C, Shi R, Yang Y, Guo C, Xu XL, Luo J. Berberine: An inspiring resource for the treatment of colorectal diseases. Biomed Pharmacother 2023; 167:115571. [PMID: 37757496 DOI: 10.1016/j.biopha.2023.115571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer is a prevalent malignant tumor with a complex and diverse pathogenesis. In recent years, natural products have shown promising application prospects as sources of anticancer drugs. BBR, a class of benzoquinoline alkaloids extracted from various plants, is widely used in disease treatments owing to its pharmacological activities, including antibacterial, anti-inflammatory, antioxidant, anticancer, and anti-angiogenesis properties. Research has demonstrated that BBR exerts an anti-Salmonella and -Escherichia coli infection effect, attenuating inflammatory reactions by inhibiting harmful bacteria. During the stage of colorectal precancerous lesions, BBR inhibits the activity of cell cyclin by regulating the PI3K/AKT, MAPK, and Wnt signaling pathways, thereby decelerating the cell cycle progression of polyp or adenoma cells. Moreover, the inhibitory effect of BBR on colorectal cancer primarily occurs through the regulation of the cancer cell cycle, anti-angiogenesis, gut microbiota, and antioxidant pathways. The specific involved pathways include the MPK/ERK, NF-kB, and EGFR signaling pathways, encompassing the regulation of Bcl-2 family proteins, vascular endothelial growth factor, and superoxide dismutase. This study reviews and summarizes, for the first time, the specific mechanisms of action of BBR in the carcinogenesis process of colorectal cancer, providing novel insights for its clinical application in intestinal diseases.
Collapse
Affiliation(s)
- Fang Cao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Shengcheng Dai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changkang Wang
- Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rui Shi
- Tong Ren People's Hospital, Chongqing, China
| | - Yujie Yang
- Chongqing Xinqiao Community Health Service Center, Chongqing, China
| | - Cui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xue Liang Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jian Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
19
|
Generalov E, Yakovenko L. Receptor basis of biological activity of polysaccharides. Biophys Rev 2023; 15:1209-1222. [PMID: 37975017 PMCID: PMC10643635 DOI: 10.1007/s12551-023-01102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 11/19/2023] Open
Abstract
Polysaccharides, the most diverse forms of organic molecules in nature, exhibit a large number of different biological activities, such as immunomodulatory, radioprotective, antioxidant, regenerative, metabolic, signaling, antitumor, and anticoagulant. The reaction of cells to a polysaccharide is determined by its specific interaction with receptors present on the cell surface, the type of cells, and their condition. The effect of many polysaccharides depends non-linearly on their concentration. The same polysaccharide in different conditions can have very different effects on cells and organisms, up to the opposite; therefore, when conducting studies of the biological activity of polysaccharides, both for the purpose of developing new drugs or approaches to the treatment of patients, and in order to clarify the features of intracellular processes, information about already known research results is needed. There is a lot of scattered data on the biological activities of polysaccharides, but there are few reviews that would consider natural polysaccharides from various sources and possible molecular mechanisms of their action. The purpose of this review is to present the main results published at different times in order to facilitate the search for information necessary for conducting relevant studies.
Collapse
Affiliation(s)
- Evgenii Generalov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Leonid Yakovenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
20
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
21
|
Juha M, Molnár A, Jakus Z, Ledó N. NETosis: an emerging therapeutic target in renal diseases. Front Immunol 2023; 14:1253667. [PMID: 37744367 PMCID: PMC10514582 DOI: 10.3389/fimmu.2023.1253667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear and granular components. The primary role of NETS is to prevent the dissemination of microbes and facilitate their elimination. However, this process is accompanied by collateral proinflammatory adverse effects when the NET release becomes uncontrollable, or clearance is impaired. Although NET-induced organ damage is conducted primarily and indirectly via immune complexes and the subsequent release of cytokines, their direct effects on cells are also remarkable. NETosis plays a critical pathogenic role in several renal disorders, such as the early phase of acute tubular necrosis, anti-neutrophil cytoplasmic antibody-mediated renal vasculitis, lupus nephritis, thrombotic microangiopathies, anti-glomerular basement membrane disease, and diabetic nephropathy. Their substantial contribution in the course of these disorders makes them a desirable target in the therapeutic armamentarium. This article gives an in-depth review of the heterogeneous pathogenesis and physiological regulations of NETosis and its pivotal role in renal diseases. Based on the pathogenesis, the article also outlines the current therapeutic options and possible molecular targets in the treatment of NET-related renal disorders. Methods We carried out thorough literature research published in PubMed and Google Scholar, including a comprehensive review and analysis of the classification, pathomechanisms, and a broad spectrum of NET-related kidney disorders. Conclusions NETosis plays a pivotal role in certain renal diseases. It initiates and maintains inflammatory and autoimmune disorders, thus making it a desirable target for improving patient and renal outcomes. Better understanding and clinical translation of the pathogenesis are crucial aspects to treatment, for improving patient, and renal outcomes.
Collapse
Affiliation(s)
- Márk Juha
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Adél Molnár
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Nóra Ledó
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Bai X, Bian Z, Zhang M. Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154582. [PMID: 36610130 DOI: 10.1016/j.phymed.2022.154582] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a classical nuclear transcription factor that regulates the system's anti-oxidative stress response. The activation of Nrf2 induces the expression of antioxidant proteins and improves the system's anti-oxidative stress ability. Accumulating evidence suggests that Nrf2-centered signaling pathways may be a key pharmacological target for the treatment of neurodegenerative diseases (NDDs). However, phytochemicals as new therapeutic agents against NDDs have not been clearly delineated. PURPOSE To review the therapeutic effects of phytochemical ingredients on NDDs by activating Nrf2 and reducing oxidative stress injury. METHODS A comprehensive search of published articles was performed using various literature databases including PubMed, Google Scholar, and China National Knowledge Infrastructure. The search terms included "Nrf2", "phytochemical ingredients", "natural bioactive agents", "neurodegenerative diseases", "Antioxidant", "Alzheimer's disease", "Parkinson's disease", "Huntington's disease", "amyotrophic lateral sclerosis" "multiple sclerosis", "toxicity", and combinations of these keywords. A total of 769 preclinical studies were retrieved until August 2022, and we included 39 of these articless on phytochemistry, pharmacology, toxicology and other fields. RESULTS Numerous in vivo and in vitro studies showed that phytochemical ingredients could act as an Nrf2 activator in the treatment of NDDs through the antioxidant defense mechanism. These phytochemical ingredients, such as salidroside, naringenin, resveratrol, sesaminol, ellagic acid, ginsenoside Re, tanshinone I, sulforaphane, curcumin, naringin, tetramethylpyrazine, withametelin, magnolol, piperine, and myricetin, had the potential to improve Nrf2 signaling, thereby combatting NDDs. CONCLUSION As Nrf2 activators, phytochemical ingredients may provide a novel potential strategy for the treatment of NDDs. Here, we reviewed the interaction between phytochemical ingredients, Nrf2, and its antioxidant damaging pathway in NDDs and explored the advantages of phytochemical ingredients in anti-oxidative stress, which provides a reliable basis for improving the treatment of NDDs. However, further clinical trials are needed to determine the safety and efficacy of Nrf2 activators for NDDs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China.
| |
Collapse
|