1
|
Singh IP, Tanwar AK, Chatterjee D, Lal UR. Medicinal chemistry and detoxification of poisonous plants in traditional medicine: A comprehensive review. Toxicon 2025; 258:108307. [PMID: 40056954 DOI: 10.1016/j.toxicon.2025.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Poisonous and toxic plants are used in different traditional systems of medicine for medicinal preparations after certain processing (detoxification) method. However, the correlation between plant toxicity and their chemical constituents remains unexplored for many of these plants. A thorough study on bioactive constituents from poisonous plants could also benefit their proper utilization and improve their usage systematically. METHODS A thorough search of research articles and data bases (Science Direct, PubMed, SciFinder, and Google Scholar) have been done for phytoconstituents and their toxicity aspects. Emphasis was upon searching chemistry of detoxification aspects of traditional poisonous plant materials. RESULTS Exploration and correlation with traditional system of medicine would help for future drug research and development. The detoxification methods of poisonous plants have been reported but the chemical changes occurring after detoxification remains unexplored for majority of these plants. To understand the safe and informed usage of these poisonous medicinal plants, it is important to investigate their chemical constituents, toxicity phenotypes, mode of action, underlying mechanisms, and detoxification processing techniques. In the present review, poisonous plants of traditional systems of medicine with their constituents and toxicity have been compiled. CONCLUSION We discussed poisonous medicinal plants and their toxicity, ways to lessen their toxicity, and discover the processes that underlie detoxification and process of detoxification, and the chemical modification of constituents as a result of detoxification. These provide information on how to employ poisonous medicinal plants safely and sensibly in clinics, how to control the quality of toxic herbs. Limited references were available for Papaver somniferum and Cannabis sativa for their restricted (narcotics) use. This review will give valuable insights for researchers in traditional medicine.
Collapse
Affiliation(s)
- Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, 160062, Punjab, India.
| | - Ankur Kumar Tanwar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Debanjan Chatterjee
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Uma Ranjan Lal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, 160062, Punjab, India
| |
Collapse
|
2
|
Rajbongshi BL, Mukherjee AK. Drugs from poisonous plants: Ethnopharmacological relevance to modern perspectives. Toxicon X 2025; 25:100215. [PMID: 39990776 PMCID: PMC11847069 DOI: 10.1016/j.toxcx.2025.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
The world of plant diversity is endlessly fascinating and essential for life on Earth. Since the inception of early civilization, humans have utilized plants for several purposes, particularly for their medicinal value. While some plants are known for their toxicity, they also contain beneficial phytochemicals that are important for both plants and humans, indicating their dual nature. This study aims to explore and synthesize the existing knowledge on various poisonous plant species found worldwide. It primarily focuses on the therapeutic potential of specific types of phytochemicals responsible for treating multiple diseases. This review includes a list of 70 poisonous plants with medicinal properties for treating various ailments, as well as some of their traditional uses. A few of these plants are emphasized, which have been tremendously explored and studied, hold significant potential to contribute to modern drug discovery. Furthermore, it addresses the possible prospects and challenges of using poisonous plants and their phytochemicals as therapeutic agents. Although the therapeutic potential of poisonous plants is substantial, many toxins remain unexplored. This review accentuates the need for rigorous scientific investigations, prior to clinical trials to validate their traditional uses, which would reveal the pharmacological interventions that will eventually advance human health and well-being.
Collapse
Affiliation(s)
- Bhagya Lakhmi Rajbongshi
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashis K. Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| |
Collapse
|
3
|
Xiang C, Cao J, Hu R, Li K, Meng T, Xia Y, Meng Q, Liu K, Liu L, Zhu X. Oleandrin inhibits osteoclast differentiation by targeting the LRP4/MAPK/NF-κB signalling pathway to treat osteoporosis. Int Immunopharmacol 2025; 148:114073. [PMID: 39823799 DOI: 10.1016/j.intimp.2025.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Osteoporosis is a common inflammation-related disease in which the release of proinflammatory cytokines promotes bone loss. Oleandrin is a monomer compound extracted from the leaves of the Nerium oleander plant, has been shown to exert an anti-inflammatory effect on a variety of inflammation-related diseases. However, its role in osteoporosis and the underlying mechanisms remain unclear. In this study, Oleandrin was shown to reduce bone loss in ovariectomy-induced osteoporotic mice in vivo. Additionally, Oleandrin inhibited RANKL-induced osteoclast differentiation in a concentration-dependent manner in vitro. Signalling pathway studies showed that Oleandrin could inhibit osteoclast differentiation by targeting MAPK and NF-κB signalling pathways. Further mechanistic studies showed that Oleandrin binds to low-density lipoprotein receptor-related protein 4 in osteoclast, thereby exerting inhibitory effects on osteoclast differentiation. In conclusion, this study lays the foundation for further research on the anti-inflammatory and anti-osteoporotic effects of Oleandrin on osteoporosis and its underlying mechanism and provides new possibilities for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Chongxin Xiang
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jiankang Cao
- Department of Pain, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Rui Hu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Kaixuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Tingyu Meng
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yutao Xia
- Department of Oncology, YiDu Central Hospital of Weifang, Weifang, Shandong 262500, China
| | - Qunbo Meng
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Kaiwen Liu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Lian Liu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Xuetao Zhu
- Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, China.
| |
Collapse
|
4
|
Andary J, El Ballouz H, Abou-Khalil R. Lebanese Medicinal Plants with Ophthalmic Properties. Pharmaceuticals (Basel) 2025; 18:155. [PMID: 40005969 PMCID: PMC11858532 DOI: 10.3390/ph18020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Lebanon benefits from a rich biodiversity, with medicinal and aromatic plants (MAPs) representing an important part of the country's natural wealth; however, limited data are available documenting medicinal plants being employed in eye health. This review is the first to document Lebanese medicinal plants with ophthalmic characteristics and phytochemistry that might be beneficial in the development of new, accessible, and efficient ocular medications. In this study, we searched for studies on ocular therapeutic plants using known resources, including PubMed, ScienceDirect, and Google Scholar, and confirmed these plants' presence within the Lebanese flora. The efficacy of 52 species from 28 families, including two endemic species (Crepis libanotica and Salvia libanotica), has been documented. Their Latin names, regional names, ocular medical applications, the plant parts used, and preparation forms are detailed below. The largest number of species belongs to the Lamiaceae family (21%), followed by Asteraceae (14%) and Solanaceae (7%). The most commonly used plant parts are the stems, leaves, and seeds. Ocular treatments fall into several categories: inflammation, infection, irritation, dry-eye, eyewash, the prevention or delay of cataracts, and general eye problems. A significant percentage (68%) of the medicinal plants target the anterior part of the eye. Some of the reported plants can be harmful to the eyes and should be handled with caution. The Lebanese medicinal plants listed, constituting a local heritage with global importance, could be used for treating ophthalmic ailments and require special screening and preservation.
Collapse
Affiliation(s)
- Jeanne Andary
- Faculty of Health Sciences, Modern University for Business and Science, Beirut P.O. Box 113-7501, Lebanon
- Department of Optics and Optometry, Faculty of Health Sciences, American University of Science and Technology, Beirut P.O. Box 16-6452, Lebanon;
| | - Haitham El Ballouz
- Department of Optics and Optometry, Faculty of Health Sciences, American University of Science and Technology, Beirut P.O. Box 16-6452, Lebanon;
| | - Rony Abou-Khalil
- Biology Department, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon;
| |
Collapse
|
5
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
6
|
Bello ET, Awe S, Bale MI, Awosika A, Oladejo JM, Olaitan FJ, Ikibe JE. Antibacterial Activity of Phyto-Synthesized Silver Nanoparticles From Dryopteris cristata Against Staphylococcus aureus ATCC 28923 and Escherichia coli ATCC 28922. Cureus 2024; 16:e70856. [PMID: 39493097 PMCID: PMC11531801 DOI: 10.7759/cureus.70856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Nanotechnology has emerged as a vital field, particularly in synthesizing nanoparticles. Silver nanoparticles (AgNPs) are recognized for their strong antimicrobial properties against various pathogens, including Staphylococcus aureus and Escherichia coli, due to their small size and high surface area. Green synthesis using plant extracts offers an eco-friendly alternative. The rise of multidrug-resistant bacteria underscores the urgent need for new antimicrobial agents. This study investigates the antibacterial activities of Dryopteris cristata AgNPs (DC-AgNPs) against S. aureus and E. coli, employing antimicrobial susceptibility testing (AST), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assessments, along with nanoparticle characterization. Materials and method The antimicrobial activity ofDC-AgNPs was evaluated using clinical isolates of E. coli and S. aureus. Bacterial inoculums were standardized to 0.5 MacFarlard (1.5 × 108 CFU/mL) and tested via a modified agar-well diffusion method. The MIC and MBC were determined using broth microdilution and sub-culturing methods, respectively. Characterization of the nanoparticles was conducted using Ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Results and conclusion D. cristata was identified as the plant used to synthesize AgNPs, confirmed by the University of Ilorin, Nigeria. Phytochemical screening revealed the presence of tannins, flavonoids, glycosides, and phenolics. The AgNPs were synthesized by adding the aqueous extract to silver nitrate, resulting in a color change. Characterization via UV-Vis spectrophotometry confirmed nanoparticle formation. Antimicrobial testing showed that DC-AgNPs effectively inhibited S. aureus and E. coli, with minimum inhibitory concentrations of 125 μg and 250 μg, respectively, indicating their potential as antimicrobial agents.
Collapse
Affiliation(s)
- Emmanuel T Bello
- Department of Science Laboratory Technology (Microbiology Unit), Newland Polytechnic, Ilorin, NGA
| | - Sunday Awe
- Department of Microbiology, Kwara State University, Ilorin, NGA
| | - Muritala I Bale
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, University of Rwanda, Kigali, RWA
| | - Ayoola Awosika
- College of Medicine, University of Illinois Chicago, Chicago, USA
| | - Janet M Oladejo
- Department of Medical Microbiology and Parasitology, University of Ilorin Teaching Hospital, Ilorin, NGA
| | - Faith J Olaitan
- Department of Biological Sciences (Microbiology Unit), Thomas Adewumi University, Oko, NGA
| | | |
Collapse
|
7
|
Liu Z, Wang Q, Chi Y, Chen R, Zhao L, Liu Z, Zhai J, Li S, Han N, Yin J. Acovenosigenin A β-glucoside mediates JAK2-STAT3 signaling pathway by targeting GP130 in A549 and H460 cells based on integrative analysis of transcriptome and proteome and biological verification. Bioorg Chem 2024; 151:107633. [PMID: 39003941 DOI: 10.1016/j.bioorg.2024.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Acovenosigenin A β-glucoside (AAG) is a cardiac glycoside derived from Streptocaulon juventas (Lour.) Merr, which exhibited the potential in treating lung cancer in our previous research. However, the action mechanism remains unclear. In this research, JAK2-STAT3 signaling pathway was predicted to be the critical regulation pathway based on the integrative analysis of transcriptome and proteome. Western blotting and qPCR assays were performed to identify that AAG can regulate JAK2-STAT3 signaling pathway and its downstream genes, such as c-Myc, Survivin, Cyclin B1, CDK1, Bcl-2. And this action of AAG depended on the suppression of STAT3 phosphorylation and its nuclear translocation through the experiments of Immunofluorescence, transient transfection and cryptotanshinone treatment. Additionally, AAG was discovered to mediate the JAK2-STAT3 pathway in IL-6-driven A549 and H460 cells, which in turn inhibited cell proliferation, promoted mitochondria-related apoptosis, and arrested the cell cycle progression. By molecular docking analysis, CETSA and SIP experiments, the protein of GP130 was identified as the specific target of AAG in A549 and H460 cells. Further studies suggested that AAG inhibited JAK2-STAT3 pathway and its downstream genes by targeting GP130 in nude mice xenograft model in vivo. This research presented that AAG exhibits the promising potential in the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhe Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qilong Wang
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Chi
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Chen
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lichun Zhao
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhihui Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianxiu Zhai
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sikai Li
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
8
|
Kanungo J, Sorkin BC, Krzykwa J, Mitchell CA, Embry M, Spencer P, Harry GJ, Cannon J, Liu F, McPherson CA, Gafner S, Westerink RH. Screening tools to evaluate the neurotoxic potential of botanicals: building a strategy to assess safety. Expert Opin Drug Metab Toxicol 2024; 20:629-646. [PMID: 38984683 PMCID: PMC11542175 DOI: 10.1080/17425255.2024.2378895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
AREAS COVERED This paper outlines the selection of NAMs, including in vitro assays using primary rat cortical neurons, zebrafish embryos, and Caenorhabditis elegans. These assays aim to assess neurotoxic endpoints such as neuronal activity and behavioral responses. Microelectrode array recordings of rat cortical neurons provide insights into the impact of botanical extracts on neuronal function, while the zebrafish embryos and C. elegans assays evaluate neurobehavioral responses. The paper also provides an account of the selection of botanical case studies based on expert judgment and existing neuroactivity/toxicity information. The proposed battery of assays will be tested with these case studies to evaluate their utility for neurotoxicity screening. EXPERT OPINION The complexity of botanicals necessitates the use of multiple NAMs for effective neurotoxicity screening. This paper discusses the evaluation of methodologies to develop a robust framework for evaluating botanical safety, including complex neuronal models and key neurodevelopmental process assays. It aims to establish a comprehensive screening framework.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Barbara C. Sorkin
- Office of Dietary Supplements, Division of Program Coordination, Planning, and Strategic Initiatives, U.S. National Institutes of Health, Bethesda, MD
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Health & Science University
| | - G. Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jason Cannon
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Christopher A. McPherson
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Stefan Gafner
- American Botanical Council, 6200 Manor Road, Austin, Texas 78723, United States
| | - Remco H.S. Westerink
- Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Contreras RG, Torres-Carrillo A, Flores-Maldonado C, Shoshani L, Ponce A. Na +/K +-ATPase: More than an Electrogenic Pump. Int J Mol Sci 2024; 25:6122. [PMID: 38892309 PMCID: PMC11172918 DOI: 10.3390/ijms25116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium pump, or Na+/K+-ATPase (NKA), is an essential enzyme found in the plasma membrane of all animal cells. Its primary role is to transport sodium (Na+) and potassium (K+) ions across the cell membrane, using energy from ATP hydrolysis. This transport creates and maintains an electrochemical gradient, which is crucial for various cellular processes, including cell volume regulation, electrical excitability, and secondary active transport. Although the role of NKA as a pump was discovered and demonstrated several decades ago, it remains the subject of intense research. Current studies aim to delve deeper into several aspects of this molecular entity, such as describing its structure and mode of operation in atomic detail, understanding its molecular and functional diversity, and examining the consequences of its malfunction due to structural alterations. Additionally, researchers are investigating the effects of various substances that amplify or decrease its pumping activity. Beyond its role as a pump, growing evidence indicates that in various cell types, NKA also functions as a receptor for cardiac glycosides like ouabain. This receptor activity triggers the activation of various signaling pathways, producing significant morphological and physiological effects. In this report, we present the results of a comprehensive review of the most outstanding studies of the past five years. We highlight the progress made regarding this new concept of NKA and the various cardiac glycosides that influence it. Furthermore, we emphasize NKA's role in epithelial physiology, particularly its function as a receptor for cardiac glycosides that trigger intracellular signals regulating cell-cell contacts, proliferation, differentiation, and adhesion. We also analyze the role of NKA β-subunits as cell adhesion molecules in glia and epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (R.G.C.); (A.T.-C.); (C.F.-M.); (L.S.)
| |
Collapse
|
10
|
Liu J, Ping X, Sun SJ, Yang J, Lu Y, Pei L. Safety assessment of Acori Tatarinowii Rhizoma: acute and subacute oral toxicity. Front Pharmacol 2024; 15:1377876. [PMID: 38567357 PMCID: PMC10985157 DOI: 10.3389/fphar.2024.1377876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Acori Tatarinowii Rhizoma (ATR) is a well-known traditional Chinese medicine that is used for treating neuropathic diseases. However, there is little information about the safety of ATR. Methods: The present study evaluated the acute and subacute oral toxicity of a water extract of ATR in Institute of Cancer Research (ICR) mice. In acute trials, a single administration of extract at a dose 5,000 mg/kg body weight led to no clinical signs of toxicity or mortality, indicating that the lethal dose (LD50) exceeded 5,000 mg/kg. A subacute toxicity test was done using daily doses of 1,250, 2,500, and 5,000 mg/kg of the ATR extract for 28 days, which did not show any adverse clinical symptoms or mortality. However, the male renal organ index and urea level in mice given 5,000 mg/kg was obviously abnormal, which was consistent with pathological results and suggested that this dose might cause kidney injury. Results: Doses of ATR lower than 2,500 mg/kg could be regarded as safe, although the potential cumulative effects of long-term use of high doses of ATR need to be considered. Discussion: The study highlights the function of ATR in reducing blood lipids and provides a new idea for its widespread clinical use in the future.
Collapse
Affiliation(s)
- Jia Liu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Central Laboratory, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, China
- Turbidity and Toxicity Laboratory, Hebei Key Laboratory of Turbidity, Shijiazhuang, China
| | - Xin Ping
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Central Laboratory, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, China
- Turbidity and Toxicity Laboratory, Hebei Key Laboratory of Turbidity, Shijiazhuang, China
| | - Shu-jie Sun
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jiali Yang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ye Lu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Central Laboratory, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, China
- Turbidity and Toxicity Laboratory, Hebei Key Laboratory of Turbidity, Shijiazhuang, China
| | - Lin Pei
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Central Laboratory, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, China
- Turbidity and Toxicity Laboratory, Hebei Key Laboratory of Turbidity, Shijiazhuang, China
| |
Collapse
|
11
|
Setiya A, Jani V, Sonavane U, Joshi R. MolToxPred: small molecule toxicity prediction using machine learning approach. RSC Adv 2024; 14:4201-4220. [PMID: 38292268 PMCID: PMC10826801 DOI: 10.1039/d3ra07322j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Different types of chemicals and products may exhibit various health risks when administered into the human body. For toxicity reasons, the number of new drugs entering the market through the conventional drug development process has been reduced over the years. However, with the advent of big data and artificial intelligence, machine learning techniques have emerged as a potential solution for predicting toxicity and ensuring efficient drug development and chemical safety. An ML model for toxicity prediction can reduce experimental costs and time while addressing ethical concerns by drastically reducing the need for animals and clinical trials. Herein, MolToxPred, an ML-based tool, has been developed using a stacked model approach to predict the potential toxicity of small molecules and metabolites. The stacked model consists of random forest, multi-layer perceptron, and LightGBM as base classifiers and Logistic Regression as the meta classifier. For training and validation purposes, a comprehensive set of toxic and non-toxic molecules is curated. Different structural and physicochemical-based features in the form of molecular descriptors and fingerprints were employed. MolToxPred utilizes a comprehensive feature selection process and optimizes its hyperparameters through Bayesian optimization with stratified 5-fold cross-validation. In the evaluation phase, MolToxPred achieved an AUROC of 87.76% on the test set and 88.84% on an external validation set. The McNemar test was used as the post-hoc test to determine if the stacked models' performance was significantly different compared to the base learners. The developed stacked model outperformed its base classifiers and an existing tool in the literature, reaffirming its better performance. The hypothesis is that the incorporation of a diverse set of data, the subsequent feature selection, and a stacked ensemble approach give MolToxPred the edge over other methods. In addition to this, an attempt has been made to identify structural alerts responsible for endpoints of the Tox21 data to determine the association of a molecule with a plausible downstream pathway of action. MolToxPred may be helpful for drug discovery and regulatory pipelines in pharmaceutical and other industries for in silico toxicity prediction of small molecule candidates.
Collapse
Affiliation(s)
- Anjali Setiya
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC) Innovation Park, Panchawati, Pashan Pune 411008 India
| | - Vinod Jani
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC) Innovation Park, Panchawati, Pashan Pune 411008 India
| | - Uddhavesh Sonavane
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC) Innovation Park, Panchawati, Pashan Pune 411008 India
| | - Rajendra Joshi
- HPC-Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC) Innovation Park, Panchawati, Pashan Pune 411008 India
| |
Collapse
|
12
|
Zhou M, Boulos JC, Klauck SM, Efferth T. The cardiac glycoside ZINC253504760 induces parthanatos-type cell death and G2/M arrest via downregulation of MEK1/2 phosphorylation in leukemia cells. Cell Biol Toxicol 2023; 39:2971-2997. [PMID: 37322258 PMCID: PMC10693532 DOI: 10.1007/s10565-023-09813-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Overcoming multidrug resistance (MDR) represents a major obstacle in cancer chemotherapy. Cardiac glycosides (CGs) are efficient in the treatment of heart failure and recently emerged in a new role in the treatment of cancer. ZINC253504760, a synthetic cardenolide that is structurally similar to well-known GCs, digitoxin and digoxin, has not been investigated yet. This study aims to investigate the cytotoxicity of ZINC253504760 on MDR cell lines and its molecular mode of action for cancer treatment. Four drug-resistant cell lines (P-glycoprotein-, ABCB5-, and EGFR-overexpressing cells, and TP53-knockout cells) did not show cross-resistance to ZINC253504760 except BCRP-overexpressing cells. Transcriptomic profiling indicated that cell death and survival as well as cell cycle (G2/M damage) were the top cellular functions affected by ZINC253504760 in CCRF-CEM cells, while CDK1 was linked with the downregulation of MEK and ERK. With flow cytometry, ZINC253504760 induced G2/M phase arrest. Interestingly, ZINC253504760 induced a novel state-of-the-art mode of cell death (parthanatos) through PARP and PAR overexpression as shown by western blotting, apoptosis-inducing factor (AIF) translocation by immunofluorescence, DNA damage by comet assay, and mitochondrial membrane potential collapse by flow cytometry. These results were ROS-independent. Furthermore, ZINC253504760 is an ATP-competitive MEK inhibitor evidenced by its interaction with the MEK phosphorylation site as shown by molecular docking in silico and binding to recombinant MEK by microscale thermophoresis in vitro. To the best of our knowledge, this is the first time to describe a cardenolide that induces parthanatos in leukemia cells, which may help to improve efforts to overcome drug resistance in cancer. A cardiac glycoside compound ZINC253504760 displayed cytotoxicity against different multidrug-resistant cell lines. ZINC253504760 exhibited cytotoxicity in CCRF-CEM leukemia cells by predominantly inducing a new mode of cell death (parthanatos). ZINC253504760 downregulated MEK1/2 phosphorylation and further affected ERK activation, which induced G2/M phase arrest.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Disease (NCT), 69120, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
13
|
Mantelli G, Carollo M, Losso L, Costantini I, Morando E, Bacchion M, Pizzuto M, Spagnuolo L, Ricci G. Laurel but Hardy: unintended poisoning, a case report of oleander misidentification as bay laurel. Toxicol Rep 2023; 11:385-388. [PMID: 37885923 PMCID: PMC10598396 DOI: 10.1016/j.toxrep.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Nerium oleander is a toxic plant containing cardiac glycosides throughout all its parts, thereby posing severe health risks upon ingestion. The clinical manifestations of oleander poisoning closely resemble those of digoxin toxicity, encompassing a spectrum of gastrointestinal symptoms, neuropsychiatric disorders, and cardiac disturbances. This scientific case report describes a case of accidental intoxication resulting from the consumption of an oleander leaves infusion misidentified as bay laurel leaves. Case report An 84-year-old patient consumed an oleander leaves infusion, and after four hours experienced gastrointestinal symptoms. He contacted the poison control center (PCC) and was advised to go to the emergency department (ED). Upon arrival, the patient presented stable vital signs without cardiac irregularities. The PCC recommended the administration of activated charcoal, vigilant monitoring, including electrocardiography (ECG). Subsequent ECGs assessments revealed the presence of third-degree atrioventricular block; in consultation with the PCC, digoxin-specific antibodies and external pacing were necessary. The patient was discharged on the eighth day in good hemodynamic condition, and outpatient follow-up visits showed clinical stability. Discussion This study offers insights for the management of similar cases. The limitations of conventional assays in measuring oleander cardiac glycosides were observed, emphasizing reliance on clinical evaluation. The patient's trajectory, remaining asymptomatic despite severe ECG changes post-ingestion, underscores the importance of prolonged clinical monitoring.
Collapse
Affiliation(s)
- Giovanni Mantelli
- USD Poison Control Center, Azienda Ospedaliera Universitaria integrata, Verona, Italy
| | - Massimo Carollo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Lorenzo Losso
- Department of Medical Toxicology Unit and Poison Control Centre, University of Florence, Florence, Italy
| | - Ilaria Costantini
- USD Poison Control Center, Azienda Ospedaliera Universitaria integrata, Verona, Italy
| | - Elia Morando
- USD Poison Control Center, Azienda Ospedaliera Universitaria integrata, Verona, Italy
| | - Matilde Bacchion
- USD Poison Control Center, Azienda Ospedaliera Universitaria integrata, Verona, Italy
| | - Mauro Pizzuto
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Giorgio Ricci
- USD Poison Control Center, Azienda Ospedaliera Universitaria integrata, Verona, Italy
| |
Collapse
|
14
|
Smer-Barreto V, Quintanilla A, Elliott RJR, Dawson JC, Sun J, Campa VM, Lorente-Macías Á, Unciti-Broceta A, Carragher NO, Acosta JC, Oyarzún DA. Discovery of senolytics using machine learning. Nat Commun 2023; 14:3445. [PMID: 37301862 PMCID: PMC10257182 DOI: 10.1038/s41467-023-39120-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Cellular senescence is a stress response involved in ageing and diverse disease processes including cancer, type-2 diabetes, osteoarthritis and viral infection. Despite growing interest in targeted elimination of senescent cells, only few senolytics are known due to the lack of well-characterised molecular targets. Here, we report the discovery of three senolytics using cost-effective machine learning algorithms trained solely on published data. We computationally screened various chemical libraries and validated the senolytic action of ginkgetin, periplocin and oleandrin in human cell lines under various modalities of senescence. The compounds have potency comparable to known senolytics, and we show that oleandrin has improved potency over its target as compared to best-in-class alternatives. Our approach led to several hundred-fold reduction in drug screening costs and demonstrates that artificial intelligence can take maximum advantage of small and heterogeneous drug screening data, paving the way for new open science approaches to early-stage drug discovery.
Collapse
Affiliation(s)
- Vanessa Smer-Barreto
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK.
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN. C/ Albert Einstein 22, Santander, 39011, Spain
| | - Richard J R Elliott
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK
| | - Jiugeng Sun
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh, EH8 9AB, UK
| | - Víctor M Campa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN. C/ Albert Einstein 22, Santander, 39011, Spain
| | - Álvaro Lorente-Macías
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XR, UK.
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN. C/ Albert Einstein 22, Santander, 39011, Spain.
| | - Diego A Oyarzún
- School of Informatics, University of Edinburgh, 10 Crichton St, Edinburgh, EH8 9AB, UK.
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
- The Alan Turing Institute, 96 Euston Road, London, NW1 2DB, UK.
| |
Collapse
|
15
|
Mazumdar R, Dutta PP, Saikia J, Borah JC, Thakur D. Streptomyces sp. Strain PBR11, a Forest-Derived Soil Actinomycetia with Antimicrobial Potential. Microbiol Spectr 2023; 11:e0348922. [PMID: 36719230 PMCID: PMC10101066 DOI: 10.1128/spectrum.03489-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 02/01/2023] Open
Abstract
The Actinomycetia isolate PBR11 was isolated from the forest rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate was identified as Streptomyces sp. with 92.91% sequence similarity to their closest type strain, Streptomyces atrovirens NRRL B-16357 DQ026672. The strain demonstrated significant antimicrobial activity against 19 test pathogens, including multidrug-resistant (MDR) clinical isolates and dermatophytes. Phenol, 2,5-bis(1,1-dimethylethyl), is the major chemical compound detected by gas chromatography-mass spectrometry in the ethyl acetate extract of PBR11 (EtAc-PBR11). The presence of the PKS type II gene (type II polyketide synthases) and chitinase gene suggested that it has been involved in the production of antimicrobial compounds. Metabolic profiling of the EtAc-PBR11 was performed by thin-layer chromatography and flash chromatography resulted in the extraction of two bioactive fractions, namely, PBR11Fr-1 and PBR11Fr-2. Liquid chromatography-tandem mass spectrometry analysis of both the fractions demonstrated the presence of significant antimicrobial compounds, including ethambutol. This is the first report on the detection of antituberculosis drug in the bioactive fractions of Streptomyces sp. PBR11. EtAc-PBR11 and PBR11Fr-1 showed the lowest MIC values (>0.097 and >0.048 μg/mL, respectively) against Candida albicans MTCC 227, whereas they showed the highest MIC values (>0.390 and >0.195 μg/mL, respectively) against Escherichia coli ATCC BAA-2469. The effects of PBR11Fr-1 were investigated on the pathogens by using a scanning electron microscope. The results indicated major morphological alterations in the cytoplasmic membrane. PBR11Fr-1 exhibited low cytotoxicity on normal hepatocyte cell line (CC-1) and the percent cell viability started to decline as the concentration increased from 50 μg/mL (87.07% ± 3.22%) to 100 μg/mL (81.26% ± 2.99%). IMPORTANCE Novel antibiotic breakthroughs are urgently required to combat antimicrobial resistance. Actinomycetia are the principal producers of antibiotics. The present study demonstrated the broad-spectrum antimicrobial potential of an Actinomycetia strain Streptomyces sp. strain PBR11 isolated from the PWS of Assam, India, which represents diverse, poorly screened habitats for novel microorganisms. The strain displayed 92.4% sequence similarity with genes of the closest type strain, indicating that the strain may represent a novel taxon within the phylum Actinomycetota. The metabolomics studies of EtAc-PBR11 revealed structurally diverse antimicrobial agents, including the detection of the antituberculosis drug ethambutol, in the bioactive fraction of Streptomyces sp. PBR11 for the first time. The PBR11 strain also yielded positive results for the antibiotic synthesis gene and the chitinase gene, both of which are responsible for broad-spectrum antimicrobial activity. This suggests that the untouched forest ecosystems have a tremendous potential to harbor potent actinomycetia for future drug discovery.
Collapse
Affiliation(s)
- Rajkumari Mazumdar
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | | | - Juri Saikia
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Jagat Chandra Borah
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Debajit Thakur
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
16
|
Bai X, Wang G, Ren Y, Han J. Detection of Highly Poisonous Nerium oleander Using Quantitative Real-Time PCR with Specific Primers. Toxins (Basel) 2022; 14:toxins14110776. [PMID: 36356026 PMCID: PMC9696062 DOI: 10.3390/toxins14110776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Nerium oleander is one of the most poisonous plants, and its accidental ingestion has frequently occurred in humans and livestock. It is vital to develop a rapid and accurate identification method for the timely rescue of oleander-poisoned patients and the investigation of poisoning cases. In this study, a specific and highly sensitive quantitative real-time PCR (qPCR)-based method was developed to identify oleander in mixture systems and simulated forensic specimens (SFS). First, a new pair of oleander-specific primers, JZT-BF/BR, was designed and validated. Then, a qPCR method was developed using the primers, and its detective sensitivity was examined. The results showed that JZT-BF/BR could specifically identify oleander in forage and food mixtures, and qPCR was capable of accurate authentication even at a low DNA concentration of 0.001 ng/μL. This method was further applied to the analysis of SFS containing different ratios of N. oleander. The method was confirmed to be applicable to digested samples, and the detection limit reached 0.1% (w/w) oleander in mixture systems. Thus, this study undoubtedly provides strong support for the detection of highly toxic oleander and the diagnosis of food poisoning in humans and animals.
Collapse
|