1
|
Zhang G, Yin X, Tang X, Wang K, Liu Y, Gong L, Tian Z. Integrated metabolomics and network pharmacology analysis to reveal the mechanisms of naringin against atherosclerosis. J Pharm Pharmacol 2025; 77:621-634. [PMID: 39946214 DOI: 10.1093/jpp/rgae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/02/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES The purpose of this study was to explore the mechanism of naringin in atherosclerotic mice from the perspective of network pharmacology and non-targeted metabolomics. METHODS ApoE-/- mice were induced to establish an atherosclerotic model to explore the pharmacodynamics and potential mechanism of naringin in atherosclerosis (AS). Pathological section and blood lipid levels were used to evaluate the intervention effects. The core targets, metabolites, and related pathways of naringin alleviating atherosclerotic were predicted through network pharmacology and metabolomics analysis. Furthermore, the inflammatory factors and pathway-related protein expression were detected using ELISA and Western blot methods. KEY FINDINGS It turned out that compared with the model group, the naringin could reduce the development degree in atherosclerotic mice. The network pharmacology suggested that PI3K-AKT pathway was an important mechanism for naringin to interfere with AS. Serum metabolic data were collected and analyzed, and a total of 27 potential biomarkers were identified, involving vitamin B6 metabolism, arginine metabolism, and retinol metabolism. The experiment verified that naringin inhibited inflammation in AS through the PI3K-AKT/TLR4/NF-κB pathway. CONCLUSIONS This study provides a strategy combining metabolomics and network pharmacology to explore the alleviation of AS by naringin and offers a new idea for its application.
Collapse
Affiliation(s)
- Gaoning Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoyi Yin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Tang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kexin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lili Gong
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
2
|
Gao H, Liu T, Liu J, Yang L, Liu L, Cui Z, Du X, Gu Y, Huang P. Oleanolic Acid@SPIONs Alleviates Lipid-Oxidative Stress Injury of Zebrafish Blood Vessels via Regulating the Expression of JNK and MAPK Signaling Pathways in Vascular Endothelial Cells. Drug Des Devel Ther 2025; 19:2921-2940. [PMID: 40255470 PMCID: PMC12009123 DOI: 10.2147/dddt.s512752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025] Open
Abstract
Background and Aims The incidence of and mortality due to atherosclerosis, a leading cause of cardiovascular disease, is rising annually. Oleanolic acid (OA), an active component of the traditional Chinese medicine Ligustrum lucidum, has been proven to have significant anti-inflammatory and lipid-lowering potential. Methods The fli1a::EGFP+ zebrafish fed with oxidized low-density lipoprotein (oxLDL) diet were used as Atherosclerosis model. The zebrafish Atherosclerosis model were fed with oxalic acid driven by superparamagnetic ferrite nanoparticles (OA@SPIONs). Isolation and enrichment of fli1a::EGFP+ zebrafish endothelial cells (zeECs) from each group and RNA-seq to analyze changes in gene transcription. The H&E, MASSION, Oil red O staining were used to identifying pathological phenotypes. Results Pathological staining and ultrastructural identification indicated that oxLDL-treated zebrafish exhibited significant lipid plaque deposition and signs of cellular senescence that were significantly alleviated by OA@SPIONs treatment. OA@SPIONs treatment notably improved the ultrastructural integrity of myocardial, liver, and intestinal tissues in oxLDL-treated zebrafish. The RNA-seq results showed that OA@SPIONs treatment significantly altered the expression levels of multiple gene transcripts in zeECs. The KEGG analysis revealed that in the OA@SPION-treated group zeECs, key genes in the JNK and MAPK signaling pathways, such as Cacna1c, Rab1ab (Ras), Map3k1 (MEKK1), Mapk8b (JNK), and JunD, had significantly lower sequencing signals than in the oxLDL+SPION-treated group zeECs. The qPCR results were highly consistent with the RNA-sequencing data. Conclusion Therefore, our results confirm that SPIONs can effectively deliver OA for stable release in zebrafish and provide strong evidence that OA@SPION-polyethyleneimine exerts protective effects against oxLDL-induced damage in zebrafish by downregulating the expression of the JNK and MAPK signaling pathways.
Collapse
Affiliation(s)
- Hongguo Gao
- Department of Traditional Chinese Medicine, Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330100, People’s Republic of China
- Department of Geriatric Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, People’s Republic of China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, People’s Republic of China
| | - Junfeng Liu
- Department of Nephrology, Shanghai Quyang Hospital, Shanghai, 200083, People’s Republic of China
| | - Lian Yang
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, People’s Republic of China
| | - Luxi Liu
- Class 1, Grade 8, Shanghai Wenlai Middle School, Shanghai, 201101, People’s Republic of China
| | - Zeyu Cui
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, People’s Republic of China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Yun Gu
- Department of Traditional Chinese Medicine, Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330100, People’s Republic of China
- Department of Geriatric Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, People’s Republic of China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200031, People’s Republic of China
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, People’s Republic of China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, People’s Republic of China
| |
Collapse
|
3
|
Wang B, Wang J, Liu C, Li C, Meng T, Chen J, Liu Q, He W, Liu Z, Zhou Y. Ferroptosis: Latest evidence and perspectives on plant-derived natural active compounds mitigating doxorubicin-induced cardiotoxicity. J Appl Toxicol 2025; 45:135-158. [PMID: 39030835 DOI: 10.1002/jat.4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug widely used in clinical settings, acting as a first-line treatment for various malignant tumors. However, its use is greatly limited by the cardiotoxicity it induces, including doxorubicin-induced cardiomyopathy (DIC). The mechanisms behind DIC are not fully understood, but its potential biological mechanisms are thought to include oxidative stress, inflammation, energy metabolism disorders, mitochondrial damage, autophagy, apoptosis, and ferroptosis. Recent studies have shown that cardiac injury induced by DOX is closely related to ferroptosis. Due to their high efficacy, availability, and low side effects, natural medicine treatments hold strong clinical potential. Currently, natural medicines have been shown to mitigate DOX-induced ferroptosis and ease DIC through various functions such as antioxidation, iron ion homeostasis correction, lipid metabolism regulation, and mitochondrial function improvement. Therefore, this review summarizes the mechanisms of ferroptosis in DIC and the regulation by natural plant products, with the expectation of providing a reference for future research and development of inhibitors targeting ferroptosis in DIC. This review explores the mechanisms of ferroptosis in doxorubicin-induced cardiomyopathy (DIC) and summarizes how natural plant products can alleviate DIC by inhibiting ferroptosis through reducing oxidative stress, correcting iron ion homeostasis, regulating lipid metabolism, and improving mitochondrial function.
Collapse
Affiliation(s)
- Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiameng Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wang He
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiping Liu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Bai RN, Gu F, Che QZ, Zhang X, Cai YJ, Xi RX, Zhao Y, Guo M, Dong GJ, Gao ZY, Fu CG, Wang PL, Du JP, Zhang DW, Duan WH, Li LZ, Yang QN, Shi DZ. Effectiveness and Safety of Qishen Yiqi Dripping Pill in Patients with Acute Coronary Syndrome after Percutaneous Coronary Intervention: 3-Year Results from a Multicentre Cohort Study. Chin J Integr Med 2024; 30:877-885. [PMID: 39172302 DOI: 10.1007/s11655-024-3664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES To evaluate the effectiveness and safety of Qishen Yiqi Dripping Pill (QSYQ) in patients with acute coronary syndrome (ACS) after percutaneous coronary intervention (PCI). METHODS This multicentre prospective cohort study was conducted at 40 centers in China. Patients with ACS after PCI entered either the QSYQ or Western medicine (WM) groups naturally based on whether they had received QSYQ before enrollment. QSYQ group received QSYQ (0.52 g, 3 times a day for 12 months) in addition to WM. The primary endpoint included cardiac death, non-fatal myocardial infarction, and urgent revascularization. The secondary endpoint included rehospitalization due to ACS, heart failure, stroke, and other thrombotic events. Quality of life was assessed by the Seattle Angina Questionnaire (SAQ). RESULTS A total of 936 patients completed follow-up of the primary endpoint from February 2012 to December 2018. Overall, 487 patients received QSYQ and WM. During a median follow-up of 566 days (inter quartile range, IQR, 517-602), the primary endpoint occurred in 46 (9.45%) and 65 (14.48%) patients in QSYQ and WM groups respectively [adjusted hazard ratio (HR) 0.60, 95% confidence interval (CI) 0.41-0.90; P=0.013]. The secondary endpoint occurred in 61 (12.53%) and 74 (16.48%) patients in QSYQ and WM groups, respectively (adjusted HR 0.76, 95% CI 0.53-1.09; P=0.136). In sensitivity analysis, the results still demonstrated that WM combined with QSYQ reduced the risk of the primary endpoint (HR 0.67, 95% CI 0.46-0.98; P=0.039). Moreover, QSYQ improved the disease perception domain of the SAQ (P<0.05). CONCLUSION In patients with ACS after PCI, QSYQ combined with WM reduced the incidence of the primary endpoint. These findings provide a promising option for managing ACS after PCI and suggest the potential treatment for reducing the risk of primary endpoint included cardiac death, non-fatal myocardial infarction, and urgent revascularization through intermittent administration of QSYQ (Registration No. ChiCTR-OOC-14005552).
Collapse
Affiliation(s)
- Rui-Na Bai
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Feng Gu
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Qian-Zi Che
- Department of Evidence-Based Medicine Basic Research Laboratory, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xuan Zhang
- Department of Traditional Chinese Medicine, Beijing Shangdi Hospital, Beijing, 100193, China
| | - Ya-Jie Cai
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Rui-Xi Xi
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yang Zhao
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Medical Products Administration, Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, 100091, China
| | - Ming Guo
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Guo-Ju Dong
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Zhu-Ye Gao
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Chang-Geng Fu
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Pei-Li Wang
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Jian-Peng Du
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Da-Wu Zhang
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Wen-Hui Duan
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Li-Zhi Li
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Qiao-Ning Yang
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Da-Zhuo Shi
- Department of Cardiovascular, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China.
| |
Collapse
|
5
|
Qi H, Ge T, Wang K, Wang J, Dang L, Li J, Wang H. Effect of High Magnesium and Astragaloside IV on Vascular Endothelial Cells. Cell Biochem Biophys 2024; 82:987-996. [PMID: 38722470 DOI: 10.1007/s12013-024-01250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 08/25/2024]
Abstract
Percutaneous coronary intervention (PCI) is the main treatment for patients with severe coronary vascular stenosis. However, In-stent neo-atherosclerosis (ISNA) is an important clinical complication in patients after PCI, which is mainly caused by a persistent inflammatory response and endothelial insufficiency. In the cardiovascular field, magnesium-based scaffolds stand out due to their properties. Magnesium plays a key role in regulating cardiovascular physiology. Magnesium deficiency can promote endothelial cell dysfunction, which contributes to the formation of atherosclerosis. Since astragaloside IV (AS‑IV) has been proven to have potent cardioprotective effects, we asked whether high levels of magnesium cooperate with AS‑IV might have effects on endothelial function and ISNA. We performed in vitro experiments on endothelial cells. Being treated with different concentrations of magnesium or/and AS-IV, the cell growth and migration were detected by CCK-8 and wound healing assay, respectively. The pro-inflammatory factors tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), adhesion molecule vascular cell adhesion molecule-1 (VCAM-1), and NF-kB were determined by qRT-PCR, ELISA kits or western blot. Results showed that high magnesium and AS-IV improved endothelial function, including promoting cell migration and decreasing the content of TNF-α, IL-6, VCAM-1, and NF-kB. With the supplement of AS-IV, additive magnesium maintains cell proliferation, migration, and function of endothelial cells. In conclusion, these findings suggest that high magnesium and AS‑IV could improve vascular endothelial dysfunction. Early detection and treatment for neo-atherosclerosis may be of great clinical significance for improving stent implantation efficacy and long-term prognosis.
Collapse
Affiliation(s)
- Hongfei Qi
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Teng Ge
- School of the First Clinical Medicine, Shaanxi University of Chinese Medicine, Shiji Ave, Xianyang, 712046, China
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jing Wang
- School of the Second Clinical Medicine, Shaanxi University of Chinese Medicine, Shiji Ave, Xianyang, 712046, China
| | - Lin Dang
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Shiji Ave, Xianyang, 712046, China.
| | - Juane Li
- Department of Chinese Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Haifang Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
6
|
Liu C, Guo X, Zhang X. Modulation of atherosclerosis-related signaling pathways by Chinese herbal extracts: Recent evidence and perspectives. Phytother Res 2024; 38:2892-2930. [PMID: 38577989 DOI: 10.1002/ptr.8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Atherosclerotic cardiovascular disease remains a preeminent cause of morbidity and mortality globally. The onset of atherosclerosis underpins the emergence of ischemic cardiovascular diseases, including coronary heart disease (CHD). Its pathogenesis entails multiple factors such as inflammation, oxidative stress, apoptosis, vascular endothelial damage, foam cell formation, and platelet activation. Furthermore, it triggers the activation of diverse signaling pathways including Phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), NF-E2-related factor 2/antioxidant response element (Nrf2/ARE), the Notch signaling pathway, peroxisome proliferator-activated receptor (PPAR), nucleotide oligo-structural domain-like receptor thermoprotein structural domain-associated protein 3 (NLRP3), silencing information regulator 2-associated enzyme 1 (Sirt1), nuclear transcription factor-κB (NF-κB), Circular RNA (Circ RNA), MicroRNA (mi RNA), Transforming growth factor-β (TGF-β), and Janus kinase-signal transducer and activator of transcription (JAK/STAT). Over recent decades, therapeutic approaches for atherosclerosis have been dominated by the utilization of high-intensity statins to reduce lipid levels, despite significant adverse effects. Consequently, there is a growing interest in the development of safer and more efficacious drugs and therapeutic modalities. Traditional Chinese medicine (TCM) offers a vital strategy for the prevention and treatment of cardiovascular diseases. Numerous studies have detailed the mechanisms through which TCM active ingredients modulate signaling molecules and influence the atherosclerotic process. This article reviews the signaling pathways implicated in the pathogenesis of atherosclerosis and the advancements in research on TCM extracts for prevention and treatment, drawing on original articles from various databases including Google Scholar, Medline, CNKI, Scopus, and Pubmed. The objective is to furnish a reference for the clinical management of cardiovascular diseases.
Collapse
Affiliation(s)
- Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyi Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xulong Zhang
- Shaanxi Provincial Rehabilitation Hospital, Xi'an, China
| |
Collapse
|
7
|
Qin W, Li S, Cheng Z, Xue W, Tian M, Mou F, Guo H, Shao S, Liu B. Astragaloside IV attenuates sunitinib-associated cardiotoxicity by inhibiting COUP-TFII. Heliyon 2024; 10:e24779. [PMID: 38314260 PMCID: PMC10837548 DOI: 10.1016/j.heliyon.2024.e24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Sunitinib (SU) is widely used to treat solid tumors but it can be cardiotoxic and often leads to drug withdrawn or discontinuation. Astragaloside IV (ASIV) is the essential active component of the Chinese herb Astragalus membranaceus which shows potential cardioprotective effects. Herein, we investigated the effect of ASIV on SU-associated cardiotoxicity and its mechanisms. We showed that ASIV significantly ameliorated SU-induced myocardial injury in mice, as evidenced by an improvement in left ventricular ejection fraction (EF) and a decrease in blood pressure and serum concentration of myocardial injury markers. ASIV attenuated SU-induced myocardial inflammatory infiltration and fibrotic lesions. In addition, ASIV suppressed SU-induced myocardial oxidative stress and apoptosis both in vitro and in vivo. Furthermore, SU increased COUP-TFII expression both in mRNA and protein levels in mice myocardial tissue, primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cell lines, and this effect was rescued by ASIV. Knockdown of COUP-TFII reduced the oxidative stress and apoptosis induced by SU in NRCMs and H9c2 cell lines. However, the overexpression of COUP-TFII blocked the protective effects of ASIV on SU-treated cardiomyocytes. Thus, our results demonstrated that ASIV ameliorated SU-indued cardiotoxicity by inhibiting COUP-TFII, suggesting that ASIV might be a potential therapeutic strategy for the prevention of SU-associated cardiotoxicity.
Collapse
Affiliation(s)
- Wanting Qin
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ziji Cheng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mingyue Tian
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fangfang Mou
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuijin Shao
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
8
|
Qin S, Chen J, Zhong K, Li D, Peng C. Could Cyclosiversioside F Serve as a Dietary Supplement to Prevent Obesity and Relevant Disorders? Int J Mol Sci 2023; 24:13762. [PMID: 37762063 PMCID: PMC10531328 DOI: 10.3390/ijms241813762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is the basis of numerous metabolic diseases and has become a major public health issue due to its rapidly increasing prevalence. Nevertheless, current obesity therapeutic strategies are not sufficiently effective, so there is an urgent need to develop novel anti-obesity agents. Naturally occurring saponins with outstanding bio-activities have been considered promising drug leads and templates for human diseases. Cyclosiversioside F (CSF) is a paramount multi-functional saponin separated from the roots of the food-medicinal herb Astragali Radix, which possesses a broad spectrum of bioactivities, including lowering blood lipid and glucose, alleviating insulin resistance, relieving adipocytes inflammation, and anti-apoptosis. Recently, the therapeutic potential of CSF in obesity and relevant disorders has been gradually explored and has become a hot research topic. This review highlights the role of CSF in treating obesity and obesity-induced complications, such as diabetes mellitus, diabetic nephropathy, cardiovascular and cerebrovascular diseases, and non-alcoholic fatty liver disease. Remarkably, the underlying molecular mechanisms associated with CSF in disease therapy have been partially elucidated, especially PI3K/Akt, NF-κB, MAPK, apoptotic pathway, TGF-β, NLRP3, Nrf-2, and AMPK, with the aim of promoting the development of CSF as a functional food and providing references for its clinical application in obesity-related disorders therapy.
Collapse
Affiliation(s)
| | | | | | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
9
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|
10
|
Yang C, Pan Q, Ji K, Tian Z, Zhou H, Li S, Luo C, Li J. Review on the protective mechanism of astragaloside IV against cardiovascular diseases. Front Pharmacol 2023; 14:1187910. [PMID: 37251311 PMCID: PMC10213926 DOI: 10.3389/fphar.2023.1187910] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cardiovascular disease is a global health problem. Astragaloside IV (AS-IV) is a saponin compound extracted from the roots of the Chinese herb Astragalus. Over the past few decades, AS-IV has been shown to possess various pharmacological properties. It can protect the myocardium through antioxidative stress, anti-inflammatory effects, regulation of calcium homeostasis, improvement of myocardial energy metabolism, anti-apoptosis, anti-cardiomyocyte hypertrophy, anti-myocardial fibrosis, regulation of myocardial autophagy, and improvement of myocardial microcirculation. AS-IV exerts protective effects on blood vessels. For example, it can protect vascular endothelial cells through antioxidative stress and anti-inflammatory pathways, relax blood vessels, stabilize atherosclerotic plaques, and inhibit the proliferation and migration of vascular smooth muscle cells. Thus, the bioavailability of AS-IV is low. Toxicology indicates that AS-IV is safe, but should be used cautiously in pregnant women. In this paper, we review the mechanisms of AS-IV prevention and treatment of cardiovascular diseases in recent years to provide a reference for future research and drug development.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhuang Tian
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Hongyuan Zhou
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Chuanchao Luo
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Pan Y, Feng X, Song W, Zhou X, Zhou Z, Chen G, Shen T, Zhang X. Effects and Potential Mechanism of Zhuyu Pill Against Atherosclerosis: Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2023; 17:597-612. [PMID: 36866196 PMCID: PMC9970883 DOI: 10.2147/dddt.s398808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is an immunoinflammatory disease associated with dyslipidemia. Zhuyu Pill (ZYP) is a classic Chinese herbal compound that has been shown to exhibit anti-inflammatory and lipid-lowering effects on AS in our previous studies. However, the underlying mechanisms by which ZYP ameliorates atherosclerosis have not yet been fully investigated. In this study, network pharmacology and in vivo experiments were conducted to explore the underlying pharmacological mechanisms of ZYP on ameliorating AS. METHODS The active ingredients of ZYP were acquired from our previous study. The putative targets of ZYP relevant to AS were obtained from TCMSP, SwissTargetPrediction, STITCH, DisGeNET, and GeneCards databases. Protein-protein interactions (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted using the Cytoscape software. Furthermore, in vivo experiments were carried out for target validation in apolipoprotein E (ApoE) -/- mice. RESULTS Animal experiments revealed that ZYP ameliorated AS mainly through lowering blood lipids, alleviating vascular inflammation, and decreasing the levels of vascular cell adhesion molecule-1 (VCAM1), intercellular adhesion molecule-1 (ICAM1), monocyte chemotactic protein-1 (MCP-1), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α). Additionally, the results of Real-Time quantitative PCR revealed that ZYP inhibited the gene expressions of mitogen-activated protein kinase (MAPK) p38, extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) p65. The Immunohistochemistry and Western blot assays showed the inhibitory effect of ZYP on the proteins level of p38, p-p38, p65, and p-p65. CONCLUSION This study has provided valuable evidence on the pharmacological mechanisms of action of ZYP in ameliorating AS that will be useful for forming the rationale of future research studying the cardio-protection and anti-inflammation effects of ZYP.
Collapse
Affiliation(s)
- Yingying Pan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xianrong Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Wei Song
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Gaoyang Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
12
|
Li S, Liu P, Feng X, Du M, Zhang Y, Wang Y, Wang J. Mechanism of Tao Hong Decoction in the treatment of atherosclerosis based on network pharmacology and experimental validation. Front Cardiovasc Med 2023; 10:1111475. [PMID: 36776258 PMCID: PMC9909180 DOI: 10.3389/fcvm.2023.1111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Background Atherosclerosis (AS) has long been recognized as a cardiovascular disease and stroke risk factor. A well-known traditional Chinese medicine prescription, Tao Hong decoction (THD), has been proven effective in treating AS, but its mechanism of action is still unclear. Objective To assess the effects, explore THD's primary mechanism for treating AS, and provide a basis for rational interpretation of its prescription compatibility. Methods Based on network pharmacology, we evaluated the mechanism of THD on AS by data analysis, target prediction, the construction of PPI networks, and GO and KEGG analysis. AutoDockTools software to conduct Molecular docking. Then UPLC-Q-TOF-MS was used to identify significant constituents of THD. Furthermore, an AS mice model was constructed and intervened with THD. Immunofluorescence, RT-qPCR, and Western blot were used to verify the critical targets in animal experiments. Results The network pharmacology results indicate that eight core targets and seven core active ingredients play an essential role in this process. The GO and KEGG analysis results suggested that the mechanism is mainly involved in Fluid shear stress and atherosclerosis and Lipid and atherosclerosis. The molecular docking results indicate a generally strong affinity. The animal experiment showed that THD reduced plaque area, increased plaque stability, and decreased the levels of inflammatory cytokines (NF-κB, IL-1α, TNF-α, IL-6, IL-18, IL-1β) in high-fat diet -induced ApoE-/-mice. Decreased levels of PTGS2, HIF-1α, VEGFA, VEGFC, FLT-4, and the phosphorylation of PI3K, AKT, and p38 were detected in the THD-treated group. Conclusion THD plays a vital role in treating AS with multiple targets and pathways. Angiogenesis regulation, oxidative stress regulation, and immunity regulation consist of the crucial regulation cores in the mechanism. This study identified essential genes and pathways associated with the prognosis and pathogenesis of AS from new insights, demonstrating a feasible method for researching THD's chemical basis and pharmacology.
Collapse
|
13
|
ZHANG D, LI Z, GAO Y, SUN H. Astragaloside IV improves renal function and alleviates renal damage and inflammation in rats with chronic glomerulonephritis. Turk J Biol 2022; 47:61-73. [PMID: 37529109 PMCID: PMC10387845 DOI: 10.55730/1300-0152.2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/22/2023] [Accepted: 12/09/2022] [Indexed: 03/06/2023] Open
Abstract
From Astragalus membranaceus (Fisch.) Bge.var. mongholicus (Bge.) Hsiao, astragaloside IV (AS-IV), a saponin can be purified and is considered traditional Chinese medicine. The purpose of this study was to evaluate the AS-IV-mediated mechanism on chronic glomerulonephritis (CGN). A cationic bovine serum albumin-induced CGN rat model was established and 10, 15, or 20 mg/kg of AS-IV was administered to measure renal function and inflammatory infiltration. Influences of AS-IV on proliferation, cell cycle, and inflammation of LPS-induced rat mesangial cells (RMCs) were determined. The results demonstrated that AS-IV alleviated renal dysfunction, renal lesions, and inflammation in CGN rats. AS-IV prolonged the G0-G1 phase, shortened the S phase, and inhibited cell proliferation and inflammation in RMCs. AS-IV can promote miR-181d-5p expression to inhibit CSF1. miR-181d-5p promotion or CSF1 suppression could further enhance the therapeutic role of AS-IV in CGN rats, while miR-181d-5p silencing or CSF1 overexpression abolished the effect of AS-IV. In conclusion, AS-IV by mediating the miR-181d-5p/CSF1 axis protects against CGN.
Collapse
Affiliation(s)
- Dong ZHANG
- The First Department of Nephrology, Cangzhou Central Hospital, Hebei Province,
China
| | - ZongYing LI
- The First Department of Nephrology, Cangzhou Central Hospital, Hebei Province,
China
| | - Yuan GAO
- The First Department of Nephrology, Cangzhou Central Hospital, Hebei Province,
China
| | - HaiLing SUN
- Department of Hematology, Cangzhou Central Hospital, Hebei Province,
China
| |
Collapse
|
14
|
Advances in the Bioactivities of Phytochemical Saponins in the Prevention and Treatment of Atherosclerosis. Nutrients 2022; 14:nu14234998. [PMID: 36501028 PMCID: PMC9735883 DOI: 10.3390/nu14234998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by hardening and narrowing of arteries. AS leads to a number of arteriosclerotic vascular diseases including cardiovascular diseases, cerebrovascular disease and peripheral artery disease, which pose a big threat to human health. Phytochemicals are a variety of intermediate or terminal low molecular weight secondary metabolites produced during plant energy metabolism. Phytochemicals from plant foods (vegetables, fruits, whole grains) and traditional herb plants have been shown to exhibit multiple bioactivities which are beneficial for prevention and treatment against AS. Many types of phytochemicals including polyphenols, saponins, carotenoids, terpenoids, organic sulfur compounds, phytoestrogens, phytic acids and plant sterols have already been identified, among which saponins are a family of glycosidic compounds consisting of a hydrophobic aglycone (sapogenin) linked to hydrophilic sugar moieties. In recent years, studies have shown that saponins exhibit a number of biological activities such as anti-inflammation, anti-oxidation, cholesterol-lowering, immunomodulation, anti-platelet aggregation, etc., which are helpful in the prevention and treatment of AS. This review aims to summarize the recent advances in the anti-atherosclerotic bioactivities of saponins such as ginsenoside, soyasaponin, astra-galoside, glycyrrhizin, gypenoside, dioscin, saikosaponin, etc.
Collapse
|
15
|
Zhang L, Hu Y, Qi S, Zhang C, Zhou Q, Zhang D, Mu Y, Zhang H, Chen G, Liu P, Chen J, Liu W. Astragalus saponins and its main constituents ameliorate ductular reaction and liver fibrosis in a mouse model of DDC-induced cholestatic liver disease. Front Pharmacol 2022; 13:965914. [PMID: 36339578 PMCID: PMC9632275 DOI: 10.3389/fphar.2022.965914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cholestatic liver disease (CLD) is a chronic liver disease characterized by ductular reaction, inflammation and fibrosis. As there are no effective chemical or biological drugs now, majority of CLD patients eventually require liver transplantation. Astragali radix (AR) is commonly used in the clinical treatment of cholestatic liver disease and its related liver fibrosis in traditional Chinese medicine, however its specific active constituents are not clear. Total astragalus saponins (ASTs) were considered to be the main active components of AR. The aim of this study is to investigate the improvement effects of the total astragalus saponins (ASTs) and its main constituents in cholestatic liver disease. The ASTs from AR was prepared by macroporous resin, the content of saponins was measured at 60.19 ± 1.68%. The ameliorative effects of ASTs (14, 28, 56 mg/kg) were evaluated by 3, 5-Diethoxycarbonyl-1, 4-dihydrocollidine (DDC)-induced CLD mouse model. The contents of hydroxyproline (Hyp), the mRNA and protein expression of cytokeratin 19 (CK19) and α-smooth muscle actin (α-SMA) in liver tissue were dose-dependently improved after treatment for ASTs. 45 astragalus saponins were identified in ASTs by UHPLC-Q-Exactive Orbitrap HRMS, including astragaloside I, astragaloside II, astragaloside III, astragaloside IV, isoastragaloside I, isoastragaloside II, cycloastragenol, etc. And, it was found that ductular reaction in sodium butyrate-induced WB-F344 cell model were obviously inhibited by these main constituents. Finally, the improvement effects of astragaloside I, astragaloside II, astragaloside IV and cycloastragenol (50 mg/kg) were evaluated in DDC-induced CLD mice model. The results showed that astragaloside I and cycloastragenol significantly improved mRNA and protein expression of CK19 and α-SMA in liver tissue. It suggested that astragaloside I and cycloastragenol could alleviate ductular reaction and liver fibrosis. In summary, this study revealed that ASTs could significantly inhibit ductular reaction and liver fibrosis, and astragaloside I and cycloastragenol were the key substances of ASTs for treating cholestatic liver disease.
Collapse
Affiliation(s)
- Linzhang Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghong Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenglan Qi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Congcong Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qun Zhou
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dingqi Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaofeng Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Meng T, Li X, Li C, Liu J, Chang H, Jiang N, Li J, Zhou Y, Liu Z. Natural products of traditional Chinese medicine treat atherosclerosis by regulating inflammatory and oxidative stress pathways. Front Pharmacol 2022; 13:997598. [PMID: 36249778 PMCID: PMC9563010 DOI: 10.3389/fphar.2022.997598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a prevalent arteriosclerotic vascular disease that forms a pathological basis for coronary heart disease, stroke, and other diseases. Inflammatory and oxidative stress responses occur throughout the development of AS. Treatment for AS over the past few decades has focused on administering high-intensity statins to reduce blood lipid levels, but these inevitably damage liver and kidney function over the long term. Natural medicines are widely used to prevent and treat AS in China because of their wide range of beneficial effects, low toxicity, and minimal side effects. We searched for relevant literature over the past 5 years in databases such as PubMed using the keywords, “atherosclerosis,” “traditional Chinese medicine,” “natural medicines,” “inflammation,” and “oxidative stress.” We found that the PI3K/AKT, TLR4, JAK/STAT, Nrf2, MAPK, and NF-κB are the most relevant inflammatory and oxidative stress pathways in AS. This review summarizes studies of the natural alkaloid, flavonoid, polyphenol, saponin, and quinone pathways through which natural medicines used to treat AS. This study aimed to update and summarize progress in understanding how natural medicines treat AS via inflammatory and oxidative stress-related signaling pathways. We also planned to create an information base for the development of novel drugs for future AS treatment.
Collapse
Affiliation(s)
- Tianwei Meng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xinghua Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chengjia Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiawen Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Nan Jiang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiarui Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yabin Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- *Correspondence: Yabin Zhou, ; Zhiping Liu,
| | - Zhiping Liu
- Respiratoy Disease Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- *Correspondence: Yabin Zhou, ; Zhiping Liu,
| |
Collapse
|