1
|
Chen CH, Wu NL, Tsai TF. How Cells Die in Psoriasis? Int J Mol Sci 2025; 26:3747. [PMID: 40332377 PMCID: PMC12027842 DOI: 10.3390/ijms26083747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Psoriasis, a chronic immune-mediated inflammatory skin disorder characterized by keratinocyte hyperproliferation and inflammatory cell infiltration, involves multiple distinct programmed cell death pathways in its pathogenesis. Following the Nomenclature Committee on Cell Death recommendations, we analyzed the current literature examining diverse modes of cellular death in psoriatic lesions, with particular focus on keratinocyte cell death patterns and their molecular signatures. Analysis revealed several distinct cell death mechanisms: autophagy dysfunction through IL-17A pathways, decreased apoptotic activity in lesional skin, medication targeting anoikis in psoriasis, upregulated necroptosis mediated by RIPK1/MLKL signaling, gasdermin-mediated pyroptosis with enhanced IL-1β secretion, coordinated PANoptotic activation through specialized complexes, PARP1-mediated parthanatos promoting cutaneous inflammation, iron-dependent ferroptosis correlating with Th22/Th17 responses, copper-dependent cuproptosis with elevated MTF1/ATP7B/SLC31A1 expression, and NETosis amplifying immune responses through interaction with the Th17 axis. The intricate interplay between these cell death mechanisms has led to the development of targeted therapeutic strategies, including mTOR inhibitors for autophagy modulation, RIPK1 inhibitors for necroptosis, and various approaches targeting ferroptosis and NETosis, providing new directions for more effective psoriasis treatments.
Collapse
Affiliation(s)
- Chung-Han Chen
- Department of Education, National Taiwan University Hospital, Taipei City 100, Taiwan;
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei City 104, Taiwan;
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan
| |
Collapse
|
2
|
Liang N, Cao Y, Li J, Zhang K. Normal dermal mesenchymal stem cells improve the functions of psoriatic keratinocytes by inducing autophagy. Acta Histochem 2025; 127:152229. [PMID: 39864345 DOI: 10.1016/j.acthis.2025.152229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation and abnormal differentiation of keratinocytes. Although stem cell-based therapies have shown promise in treating psoriasis, the underlying mechanisms remain unclear. This study aimed to established a psoriatic cell model to investigate the effect of normal dermal mesenchymal stem cell (DMSCs) on keratinocyte proliferation, inflammation responses and the associated mechanism. METHODS To create an in vitro model of psoriasis, HaCaT cells were stimulated with a mixture of five inflammatory cytokines including IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5). A transwell co-culture system was employed to assess the influence of normal DMSCs on proliferation and inflammation response of HaCaT cells. Cell viability was assessed using the CCK-8 assay and EDU incorporation assay. The expression levels of mRNA for inflammatory cytokines (IL-8, IL-17A and TNF-α) in HaCaT cells co-cultured with either normal or psoriatic DMSCs were quantified by qRT-PCR. Apoptosis was evaluated by annexin V-FITC/PI double staining and TUNEL/DAPI staining assay. Autophagy was detected by immunostaining, RT-PCR and western blotting. Additionally, the expression levels of mRNA and protein of both Akt and mammalin target of rapamycin(mTOR) were also determined. RESULTS Normal DMSCs were found to decrease the viability and promote apoptosis of HaCaT cells treated with M5. Furthermore, DMSCs reduced the secretion of proinflammatory cytokines, such as IL-8, IL-17A and TNF-α. Importantly, normal DMSCs were shown to induced autophagy in HaCaT cell. Pretreatment of HaCaT cells with autophagy inhibitor 3-methyladenine (3-MA) reversed the anti-psoriatic effect of normal DMSCs. Notably, DMSCs promote autophagy in M5-treated HaCaT cells by inhibition of p-Akt/Akt and p-mTOR/mTOR ratio. CONCLUSION Normal mesenchymal stem cells promote autophagy through the inhibition of Akt/mTOR signaling pathway, leading to the alleviation of psoriasis in vitro. These findings provide insights into the potential mechanisms by which DMSCs may exert therapeutic effects in psoriasis and support further investigation into their clinical applications.
Collapse
Affiliation(s)
- Nannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Cho YH, Park JE. Anti-Inflammatory and Autophagy Activation Effects of 7-Methylsulfonylheptyl Isothiocyanate Could Suppress Skin Aging: In Vitro Evidence. Antioxidants (Basel) 2024; 13:1282. [PMID: 39594424 PMCID: PMC11591029 DOI: 10.3390/antiox13111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Skin inflammation, characterized by redness, swelling, and discomfort, is exacerbated by oxidative stress, where compounds like 7-methylsulfonylheptyl isothiocyanate (7-MSI) from cruciferous plants exhibit promising antioxidant and anti-inflammatory properties, though their effects on skin aging and underlying mechanisms involving the NLRP3 inflammasome and autophagy are not fully elucidated. NLRP3 is a crucial inflammasome involved in regulating inflammatory responses, and our study addresses its activation and associated physiological effects. Using biochemical assays such as ELISA, RT-qPCR, Western blotting, confocal microscopy, and RNA interference, we evaluated 7-MSI's impact on cytokine production, protein expression, and genetic regulation in Raw 264.7 and RAW-ASC cells. 7-MSI significantly reduced TNF-α, IL-1β, IL-6, COX-2, and PGE transcription levels in LPS-stimulated Raw 264.7 cells, indicating potent anti-inflammatory effects. It also inhibited NF-κB signaling and NLRP3 inflammasome activity, demonstrating its role in preventing the nuclear translocation of NF-κB and reducing caspase-1 and IL-1β production. In terms of autophagy, 7-MSI enhanced the expression of Beclin-1, LC3, and Atg12 while reducing phospho-mTOR levels, suggesting an activation of autophagy. Moreover, it effectively decreased ROS production induced by LPS. The interaction between autophagy and inflammasome regulation was further confirmed through experiments showing that interference with autophagy-related genes altered the effects of 7-MSI on cytokine production. Collectively, this study demonstrates that 7-MSI promotes autophagy, including ROS removal, and to suppress inflammation, we suggest the potential use of 7-MSI as a skin care and disease treatment agent.
Collapse
Affiliation(s)
- Yeong Hee Cho
- Department of Biomedical Science, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju 61452, Republic of Korea;
- Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA, Wanju-gun 55365, Republic of Korea
| | - Jung Eun Park
- Department of Biomedical Science, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju 61452, Republic of Korea;
- BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
4
|
Eckhart L, Gruber F, Sukseree S. Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages. Cells 2024; 13:1675. [PMID: 39451193 PMCID: PMC11506049 DOI: 10.3390/cells13201675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The epidermis of the skin and skin appendages, such as nails, hair and sebaceous glands, depend on a balance of cell proliferation and terminal differentiation in order to fulfill their functions at the interface of the body and the environment. The differentiation of epithelial cells of the skin, commonly referred to as keratinocytes, involves major remodeling processes that generate metabolically inactive cell remnants serving as building blocks of the epidermal stratum corneum, nail plates and hair shafts. Only sebaceous gland differentiation results in cell disintegration and holocrine secretion. A series of studies performed in the past decade have revealed that the lysosome-dependent intracellular degradation mechanism of autophagy is active during keratinocyte differentiation, and the blockade of autophagy significantly alters the properties of the differentiation products. Here, we present a model for the autophagy-mediated degradation of organelles and cytosolic proteins as an important contributor to cellular remodeling in keratinocyte differentiation. The roles of autophagy are discussed in comparison to alternative intracellular degradation mechanisms and in the context of programmed cell death as an integral end point of epithelial differentiation.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence—SKINMAGINE, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Ali ML, Roky AH, Azad SAK, Shaikat AH, Meem JN, Hoque E, Ahasan AMF, Islam MM, Arif MSR, Mostaq MS, Mahmud MZ, Amin MN, Mahmud MA. Autophagy as a targeted therapeutic approach for skin cancer: Evaluating natural and synthetic molecular interventions. CANCER PATHOGENESIS AND THERAPY 2024; 2:231-245. [PMID: 39371094 PMCID: PMC11447340 DOI: 10.1016/j.cpt.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 10/08/2024]
Abstract
Skin cancer, a prevalent malignancy worldwide, poses significant health concerns owing to its increasing incidence. Autophagy, a natural cellular process, is a pivotal event in skin cancer and has advantageous and detrimental effects. This duality has prompted extensive investigations into medical interventions targeting autophagy modulation for their substantial therapeutic potential. This systematic review aimed to investigate the relationship between skin cancer and autophagy and the contribution and mechanism of autophagy modulators in skin cancer. We outlined the effectiveness and safety of targeting autophagy as a promising therapeutic strategy for the treatment of skin cancer. This comprehensive review identified a diverse array of autophagy modulators with promising potential for the treatment of skin cancer. Each of these compounds demonstrates efficacy through distinct physiological mechanisms that have been elucidated in detail. Interestingly, findings from a literature search indicated that none of the natural, synthetic, or semisynthetic compounds exhibited notable adverse effects in either human or animal models. Consequently, this review offers novel mechanistic and therapeutic perspectives on the targeted modulation of autophagy in skin cancer.
Collapse
Affiliation(s)
- Md. Liakot Ali
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Amdad Hossain Roky
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - S.M. Asadul Karim Azad
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Abdul Halim Shaikat
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Jannatul Naima Meem
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Emtiajul Hoque
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Abu Mohammed Fuad Ahasan
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Mohammed Murshedul Islam
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md. Saifur Rahaman Arif
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh
| | - Md. Saqline Mostaq
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Mohammad Nurul Amin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Md. Ashiq Mahmud
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| |
Collapse
|
6
|
Vikram A, Patel SK, Singh A, Pathania D, Ray RS, Upadhyay AK, Dwivedi A. Natural autophagy activators: A promising strategy for combating photoaging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155508. [PMID: 38901286 DOI: 10.1016/j.phymed.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Photodamage to the skin stands out as one of the most widespread epidermal challenges globally. Prolonged exposure to sunlight containing ultraviolet radiation (UVR) instigates stress, thereby compromising the skin's functionality and culminating in photoaging. Recent investigations have shed light on the importance of autophagy in shielding the skin from photodamage. Despite the acknowledgment of numerous phytochemicals possessing photoprotective attributes, their potential to induce autophagy remains relatively unexplored. PURPOSE Diminished autophagy activity in photoaged skin underscores the potential benefits of restoring autophagy through natural compounds to enhance photoprotection. Consequently, this study aims to highlight the role of natural compounds in safeguarding against photodamage and to assess their potential to induce autophagy via an in-silico approach. METHODS A thorough search of the literature was done using several databases, including PUBMED, Science Direct, and Google Scholar, to gather relevant studies. Several keywords such as Phytochemical, Photoprotection, mTOR, Ultraviolet Radiation, Reactive oxygen species, Photoaging, and Autophagy were utilized to ensure thorough exploration. To assess the autophagy potential of phytochemicals through virtual screening, computational methodologies such as molecular docking were employed, utilizing tools like AutoDock Vina. Receptor preparation for docking was facilitated using MGLTools. RESULTS The initiation of structural and functional deterioration in the skin due to ultraviolet radiation (UVR) or sunlight-induced reactive oxygen species/reactive nitrogen species (ROS/RNS) involves the modulation of various pathways. Natural compounds like phenolics, flavonoids, flavones, and anthocyanins, among others, possess chromophores capable of absorbing light, thereby offering photoprotection by modulating these pathways. In our molecular docking study, these phytochemicals have shown binding affinity with mTOR, a negative regulator of autophagy, indicating their potential as autophagy modulators. CONCLUSION This integrated review underscores the photoprotective characteristics of natural compounds, while the in-silico analysis reveals their potential to modulate autophagy, which could significantly contribute to their anti-photoaging properties. The findings of this study hold promise for the advancement of cosmeceuticals and therapeutics containing natural compounds aimed at addressing photoaging and various skin-related diseases. By leveraging their dual benefits of photoprotection and autophagy modulation, these natural compounds offer a multifaceted approach to combatting skin aging and related conditions.
Collapse
Affiliation(s)
- Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Arshwinder Singh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India
| | - Diksha Pathania
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India.
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India.
| |
Collapse
|
7
|
Liu XL, Chang LS. Deciphering the Genetic Links between Psychological Stress, Autophagy, and Dermatological Health: Insights from Bioinformatics, Single-Cell Analysis, and Machine Learning in Psoriasis and Anxiety Disorders. Int J Mol Sci 2024; 25:5387. [PMID: 38791423 PMCID: PMC11121097 DOI: 10.3390/ijms25105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The relationship between psychological stress, altered skin immunity, and autophagy-related genes (ATGs) is currently unclear. Psoriasis is a chronic skin inflammation of unclear etiology that is characterized by persistence and recurrence. Immune dysregulation and emotional disturbances are recognized as significant risk factors. Emerging clinical evidence suggests a possible connection between anxiety disorders, heightened immune system activation, and altered skin immunity, offering a fresh perspective on the initiation of psoriasis. The aim of this study was to explore the potential shared biological mechanisms underlying the comorbidity of psoriasis and anxiety disorders. Psoriasis and anxiety disorders data were obtained from the GEO database. A list of 3254 ATGs was obtained from the public database. Differentially expressed genes (DEGs) were obtained by taking the intersection of DEGs between psoriasis and anxiety disorder samples and the list of ATGs. Five machine learning algorithms used screening hub genes. The ROC curve was performed to evaluate diagnostic performance. Then, GSEA, immune infiltration analysis, and network analysis were carried out. The Seurat and Monocle algorithms were used to depict T-cell evolution. Cellchat was used to infer the signaling pathway between keratinocytes and immune cells. Four key hub genes were identified as diagnostic genes related to psoriasis autophagy. Enrichment analysis showed that these genes are indeed related to T cells, autophagy, and immune regulation, and have good diagnostic efficacy validated. Using single-cell RNA sequencing analysis, we expanded our understanding of key cellular participants, including inflammatory keratinocytes and their interactions with immune cells. We found that the CASP7 gene is involved in the T-cell development process, and correlated with γδ T cells, warranting further investigation. We found that anxiety disorders are related to increased autophagy regulation, immune dysregulation, and inflammatory response, and are reflected in the onset and exacerbation of skin inflammation. The hub gene is involved in the process of immune signaling and immune regulation. The CASP7 gene, which is related with the development and differentiation of T cells, deserves further study. Potential biomarkers between psoriasis and anxiety disorders were identified, which are expected to aid in the prediction of disease diagnosis and the development of personalized treatments.
Collapse
Affiliation(s)
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| |
Collapse
|
8
|
Deng W, Yan Y, Shi C, Sui D. Single-cell and bulk RNAseq unveils the immune infiltration landscape and targeted therapeutic biomarkers of psoriasis. Front Genet 2024; 15:1365273. [PMID: 38699235 PMCID: PMC11063342 DOI: 10.3389/fgene.2024.1365273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Background Psoriasis represents a multifaceted and debilitating immune-mediated systemic ailment afflicting millions globally. Despite the continuous discovery of biomarkers associated with psoriasis, identifying lysosomal biomarkers, pivotal as cellular metabolic hubs, remains elusive. Methods We employed a combination of differential expression analysis and weighted gene co-expression network analysis (WGCNA) to initially identify lysosomal genes. Subsequently, to mitigate overfitting and eliminate collinear genes, we applied 12 machine learning algorithms to screen robust lysosomal genes. These genes underwent further refinement through random forest (RF) and Lasso algorithms to ascertain the final hub lysosomal genes. To assess their predictive efficacy, we conducted receiver operating characteristic (ROC) analysis and verified the expression of diagnostic biomarkers at both bulk and single-cell levels. Furthermore, we utilized single-sample gene set enrichment analysis (ssGSEA), CIBERSORT, and Pearson's correlation analysis to elucidate the association between immune phenotypes and hub lysosomal genes in psoriatic samples. Finally, employing the Cellchat algorithm, we explored potential mechanisms underlying the participation of these hub lysosomal genes in cell-cell communication. Results Functional enrichment analyses revealed a close association between psoriasis and lysosomal functions. Subsequent intersection analysis identified 19 key lysosomal genes, derived from DEGs, phenotypic genes of WGCNA, and lysosomal gene sets. Following the exclusion of collinear genes, we identified 11 robust genes, further refined through RF and Lasso, yielding 3 hub lysosomal genes (S100A7, SERPINB13, and PLBD1) closely linked to disease occurrence, with high predictive capability for disease diagnosis. Concurrently, we validated their relative expression in separate bulk datasets and single-cell datasets. A nomogram based on these hub genes may offer clinical advantages for patients. Notably, these three hub genes facilitated patient classification into two subtypes, namely metabolic-immune subtype 1 and signaling subtype 2. CMap analysis suggested butein and arachidonic fasudil as preferred treatment agents for subtype 1 and subtype 2, respectively. Finally, through Cellchat and correlation analysis, we identified PRSS3-F2R as potentially promoting the expression of hub genes in the psoriasis group, thereby enhancing keratinocyte-fibroblast interaction, ultimately driving psoriasis occurrence and progression. Conclusion Our study identifies S100A7, SERPINB13, and PLBD1 as potential diagnostic biomarkers, offering promising prospects for more precisely tailored psoriatic immunotherapy designs.
Collapse
Affiliation(s)
- Wenhui Deng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yijiao Yan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chengzhi Shi
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Daoshun Sui
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Xia J, Zhang Y, Wang Q, Zhang T. Cycloastragenol restrains keratinocyte hyperproliferation by promoting autophagy via the miR-145/STC1/Notch1 axis in psoriasis. Immunopharmacol Immunotoxicol 2024; 46:229-239. [PMID: 38194243 DOI: 10.1080/08923973.2023.2300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Psoriasis is characterized by inflammation and hyperproliferation of epidermal keratinocytes. Cycloastragenol (CAG) is an active molecule of Astragalus membranaceus that potentially plays a repressive role in psoriasis. Activated cell autophagy is an effective pathway for alleviating psoriasis progression. Thus, we investigated the role of CAG in the proliferation and autophagy of interleukin (IL)-22-stimulated keratinocytes. METHODS A psoriasis model was established by stimulating HaCaT cells with IL-22. Gene or protein expression levels were measured by qRT-PCR or western blot. Autophagy flux was observed with mRFP-GFP-LC3 adenovirus transfection assay under confocal microscopy. Stanniocalcin-1 (STC1) secretion levels were determined using ELISA kits. The apoptosis rate was assessed using flow cytometry. Interactions between miR-145 and STC1 or STC1 and Notch1 were validated by luciferase reporter gene assays, RIP, and Co-IP assays. RESULTS CAG repressed cell proliferation and promoted apoptosis and autophagy in IL-22-stimulated HaCaT cells. Additionally, CAG promoted autophagy by enhancing miR-145. STC1 silencing ameliorated autophagy repression in IL-22-treated HaCaT cells. Moreover, miR-145 negatively regulated STC1, and STC1 was found to activate Notch1. Lastly, STC1 overexpression reversed CAG-promoted autophagy. CONCLUSION CAG alleviated keratinocyte hyperproliferation through autophagy enhancement via regulating the miR-145/STC1/Notch1 axis in psoriasis.
Collapse
Affiliation(s)
- Jie Xia
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
- Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, P.R. China
| | - Yuan Zhang
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
| | - Qing Wang
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
| | - Teng Zhang
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
| |
Collapse
|
10
|
Huang Y, Zhao C, Zheng G, Yuan Y, Gong L, Liu R, An J. Dictamnine Ameliorates DNFB-Induced Atopic Dermatitis Like Skin Lesions in Mice by Inhibiting M1 Macrophage Polarization and Promoting Autophagy. Biol Pharm Bull 2024; 47:175-186. [PMID: 38092386 DOI: 10.1248/bpb.b23-00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Autophagy and M1 macrophage polarization play important roles in the regulation of inflammation in atopic dermatitis (AD). Dictamnine is one of the main ingredients in Cortex Dictamni, a widely used traditional Chinese medicine for the treatment of dermatitis. In the present study, we investigated the anti-inflammatory effects of dictamnine on AD like skin lesions and M1 macrophage polarization. A 2,4-dinitrofluorobenzene (DNFB) triggered AD like skin lesions models in mice was established to identify the ameliorative effects of dictamnine on AD in vivo. In addition, an M1 macrophage polarization model was co-stimulated by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) using phorbol myristate acetate (PMA) differentiated THP-1 cells, to investigate the effect of dictamnine on promoting autophagy and inhibiting inflammatory factor release. Dictamnine suppressed DNFB-induced skin inflammation by inhibiting M1 macrophage polarization, up-regulating the expression of microtubule-associated protein 1A/1B-light chain 3 (LC3) expression, and promoting macrophage autophagy at inflammatory sites. Dictamnine also could reduce the release of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), and interleukin-8 (IL-8), and down-regulate the mRNA expression of these genes in LPS-IFN-γ triggered M1 polarized macrophages. Dictamnine ameliorates AD like skin lesions by inhibiting M1 macrophage polarization and promoting autophagy. Hence, dictamnine is expected to be a potential therapeutic candidate for AD.
Collapse
Affiliation(s)
- Yihan Huang
- School of Pharmacy, Xi'an Jiaotong University
| | | | | | - Yujuan Yuan
- School of Pharmacy, Xi'an Jiaotong University
| | - Ling Gong
- School of Pharmacy, Xi'an Jiaotong University
| | - Rui Liu
- School of Pharmacy, Xi'an Jiaotong University
| | - Jingang An
- Department of Dermatology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University
| |
Collapse
|
11
|
Bai R, Wu S, Liu X, Xing Z, Luo R, Zhang W, Liu M, Ma X, Lei H, Wang N, Zheng Y. Bioinformatic Analysis to Identify and Cellular Experiments to Validate Autophagy-related Genes in Psoriasis. Comb Chem High Throughput Screen 2024; 27:1318-1328. [PMID: 37881076 DOI: 10.2174/0113862073238968230920054712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE To explore differentially expressed genes (DEGs) associated with autophagy in psoriasis using bioinformatics analysis and verify them in an M5-induced psoriatic cell model. METHODS We obtained gene expression microarray data from patients with psoriasis and normal skin tissues from the dataset GSE78097 of the NCBI Gene Expression Omnibus (GEO) database. R software was used to identify DEGs associated with autophagy in psoriasis. Proteinprotein interaction (PPI) and correlation analyses were used to show interactions between certain genes. Their potential biological roles were determined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, all the DEGs associated with autophagy in psoriasis were validated in a psoriatic cell model by RT-qPCR. RESULTS 28 DEGs associated with autophagy were identified. These genes were linked to one another, and the most connected hub gene was VEGFA, according to PPI analysis. GO and KEGG enrichment analyses revealed various biological pathways associated with autophagy. The RT-qPCR findings of the expression of 18 genes in the psoriatic cell model confirmed the bioinformatics analysis results. The five genes with the most significant differences were IL24, CCL2, NAMPT, PPP1R15A, and SPHK1. CONCLUSION We identified DEGs associated with autophagy in patients with psoriasis. IL24, CCL2, NAMPT, PPP1R15A, and SPHK1 were identified as important genes that may influence psoriasis development through the regulation of autophagy.
Collapse
Affiliation(s)
- Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Shaobo Wu
- Department of Medicine, Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xinyi Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Zixuan Xing
- Department of Medicine, Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Ruiting Luo
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Wen Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Meng Liu
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Xinyu Ma
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Ning Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
12
|
Kuczyńska M, Moskot M, Gabig-Cimińska M. Insights into Autophagic Machinery and Lysosomal Function in Cells Involved in the Psoriatic Immune-Mediated Inflammatory Cascade. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0005. [PMID: 38409665 DOI: 10.2478/aite-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 02/28/2024]
Abstract
Impaired autophagy, due to the dysfunction of lysosomal organelles, contributes to maladaptive responses by pathways central to the immune system. Deciphering the immune-inflammatory ecosystem is essential, but remains a major challenge in terms of understanding the mechanisms responsible for autoimmune diseases. Accumulating evidence implicates a role that is played by a dysfunctional autophagy-lysosomal pathway (ALP) and an immune niche in psoriasis (Ps), one of the most common chronic skin diseases, characterized by the co-existence of autoimmune and autoinflammatory responses. The dysregulated autophagy associated with the defective lysosomal system is only one aspect of Ps pathogenesis. It probably cannot fully explain the pathomechanism involved in Ps, but it is likely important and should be seriously considered in Ps research. This review provides a recent update on discoveries in the field. Also, it sheds light on how the dysregulation of intracellular pathways, coming from modulated autophagy and endolysosomal trafficking, characteristic of key players of the disease, i.e., skin-resident cells, as well as circulating immune cells, may be responsible for immune impairment and the development of Ps.
Collapse
Affiliation(s)
- Martyna Kuczyńska
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
13
|
Taskaeva I, Shatruk A, Bgatova N, Yeremina A, Trunov A, Kononova N, Chernykh V. Autophagy and vesicular trafficking in human uveal melanoma: A histopathological study. Microsc Res Tech 2024; 87:122-132. [PMID: 37698482 DOI: 10.1002/jemt.24417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/04/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Uveal melanoma is an ocular tumor with a high risk of developing metastases. The endo-lysosomal system can affect the melanoma progression by accelerating and facilitating invasion or metastasis. This study aims to conduct comparative analysis of normal choroidal melanocytes and uveal melanoma cells ultrastructure with a focus on intracellular transport system, and to examine the patterns of autophagy- and vesicular trafficking-related proteins expression in a case series of uveal melanomas. Transmission electron microscopy was used to assess the ultrastructure of normal choroidal melanocytes and uveal melanoma cells. The expression levels of autophagy- and vesicular trafficking-related proteins in three histological types of uveal melanoma were analyzed by immunofluorescence staining. Electron microscopy results showed that the autophagic vacuoles were more abundant in normal choroidal melanocytes, than in uveal melanoma cells. The normal choroidal melanocytes were characterized by active intracellular vesicular trafficking; however, the proportion of caveolae was higher in uveal melanoma cells. The spindle type of tumor was characterized by a high expression levels of LC3 beta, while Rab7 and Rab11 proteins expression was significantly up-regulated in the mixed-type tumor cells. The results indicate that uveal melanoma cells probably have lower basal levels of autophagy and higher receptor-mediated endocytic trafficking-associated with caveolae than normal choroidal melanocytes. RESEARCH HIGHLIGHTS: The autophagic vacuoles are abundant in normal choroidal melanocytes. Uveal melanoma cells are characterized by a high proportion of caveolae. The high expression levels of LC3 beta were revealed in a spindle type of tumor, while Rab7 and Rab11 proteins expression was up-regulated in the mixed-type tumor cells.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia Shatruk
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alena Yeremina
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Aleksander Trunov
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Natalya Kononova
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Valeriy Chernykh
- S. N. Fyodorov Federal State Institution National Medical Research Center Intersectoral Research and Technology Complex "Eye Microsurgery" Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
14
|
Taskaeva YS, Shatruk AY, Lomakin AI, Bgatova NP, Fursov SA. Assessment of Autophagy in Tumor Cells of Human Skin Melanoma of Different Stages. Bull Exp Biol Med 2024; 176:376-381. [PMID: 38340197 DOI: 10.1007/s10517-024-06027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 02/12/2024]
Abstract
High levels of autophagy can increase the viability of tumor cells as well as their resistance to chemotherapy. Evaluation of the dynamics of autophagy processes at different stages of carcinogenesis can extend our understanding of melanoma pathogenesis to develop new therapeutic approaches. We performed a comparative study of tumor cell autophagy in stages II and III human skin melanoma. Tumor cells were characterized by high content of structures associated with autophagy (autophagosomes and autolysosomes). In stage III melanoma characterized by the presence of regional metastases in the lymph nodes, tumor cells showed higher expression of the autophagy marker protein LC3beta in comparison with stage II melanoma cells, which can indicate the involvement of autophagy processes in tumor progression and the formation of metastases in the lymph nodes.
Collapse
Affiliation(s)
- Yu S Taskaeva
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - A Yu Shatruk
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A I Lomakin
- Novosibirsk Regional Clinical Oncology Dispensary, Novosibirsk, Russia
| | - N P Bgatova
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Fursov
- Novosibirsk Regional Clinical Oncology Dispensary, Novosibirsk, Russia
| |
Collapse
|
15
|
Xiao T, Yu X, Yang L, Duan X. Palmatine treats urticaria by reducing inflammation and increasing autophagy. Front Immunol 2023; 14:1268467. [PMID: 38035098 PMCID: PMC10682667 DOI: 10.3389/fimmu.2023.1268467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Chronic spontaneous urticaria (CSU) is mainly manifested as wheals and erythema on the skin accompanied by itching, which will cause emotional anxiety and seriously affect the quality of life in patients. Palmatine (PAL) is a main chemical component of Yajieshaba, which has been found to effectively alleviate the symptoms of food allergy. However, its role and mechanism in CSU remain unclear. The present study aimed to investigate the protective effect of PAL on CSU rats. Methods We replicated the CSU rat model by intraperitoneal injection of ovalbumin (OVA) in rats on days 0, 2, 4, and 14, with a double dose given on the last challenge. PAL, loratadine and saline were given by gavage from day 5 to day 14. We observed the skin pathologic changes, mast cell degranulation, immune factor levels, inflammatory response and autophagy-related protein expression in CSU rats. Results We found PAL treatment to be effective in alleviating CSU-like skin lesions and reducing itching and mast cell degranulation in rats. Compared with the OVA group, the levels of immune and inflammatory factors were significantly reduced, neutrophil recruitment was alleviated, suggesting a reduced inflammatory response. The autophagy results showed that PAL further increased the expression of LC3, Beclin-1 and p-LKB1, p-AMPK, Atg5, Atg12 and Atg5-Atg12, while P62 and p-p70S6K1 expression decreased. They collectively suggested that autophagic flux was activated after PAL treatment. However, there was an increase in the expression of LC3I, probably due to the fact that PAL induced its accumulation in order to provide substrate for the generation of more LC3II. Discussion Overall, PAL had a protective effect on CSU in normal rats, activated the expression of autophagy and improved the inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
16
|
Dernovics Á, Seprényi G, Rázga Z, Ayaydin F, Veréb Z, Megyeri K. Phenol-Soluble Modulin α3 Stimulates Autophagy in HaCaT Keratinocytes. Biomedicines 2023; 11:3018. [PMID: 38002017 PMCID: PMC10669503 DOI: 10.3390/biomedicines11113018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Phenol-soluble modulins (PSMs) are pore-forming toxins (PFTs) produced by staphylococci. PSMs exert diverse cellular effects, including lytic, pro-apoptotic, pro-inflammatory and antimicrobial actions. Since the effects of PSMs on autophagy have not yet been reported, we evaluated the autophagic activity in HaCaT keratinocytes treated with recombinant PSMα3. METHODS The autophagic flux and levels of autophagic marker proteins were determined using Western blot analysis. Subcellular localization of LC3B and Beclin-1 was investigated using an indirect immunofluorescence assay. The ultrastructural features of control and PSMα3-treated cells were evaluated via transmission electron microscopy. Cytoplasmic acidification was measured via acridine orange staining. Phosphorylation levels of protein kinases, implicated in autophagy regulation, were studied using a phospho-kinase array and Western blot analysis. RESULTS PSMα3 facilitated the intracellular redistribution of LC3B, increased the average number of autophagosomes per cell, promoted the development of acidic vesicular organelles, elevated the levels of LC3B-II, stimulated autophagic flux and triggered a significant decrease in the net autophagic turnover rate. PSMα3 induced the accumulation of autophagosomes/autolysosomes, amphisomes and multilamellar bodies at the 0.5, 6 and 24 h time points, respectively. The phospho-Akt1/2/3 (T308 and S473), and phospho-mTOR (S2448) levels were decreased, whereas the phospho-Erk1/2 (T202/Y204 and T185/Y187) level was increased in PSMα3-treated cells. CONCLUSIONS In HaCaT keratinocytes, PSMα3 stimulates autophagy. The increased autophagic activity elicited by sub-lytic PSM concentrations might be an integral part of the cellular defense mechanisms protecting skin homeostasis.
Collapse
Affiliation(s)
- Áron Dernovics
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary;
| | - György Seprényi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Kossuth L. sgt. 40., H-6724 Szeged, Hungary;
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás u. 2, H-6720 Szeged, Hungary;
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Nonprofit Ltd., Római krt. 21., H-6723 Szeged, Hungary;
- Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Korányi Fasor 6, H-6720 Szeged, Hungary;
- Biobank, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary;
| |
Collapse
|
17
|
Liu M, Lu F, Feng J. Therapeutic potential of adipose tissue derivatives in skin photoaging. Regen Med 2023; 18:869-883. [PMID: 37743749 DOI: 10.2217/rme-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Photoaging, the primary cause of exogenous skin aging and predominantly caused by ultraviolet radiation, is an essential type of skin aging characterized by chronic skin inflammation. Recent studies have shown that oxidative stress, inflammation, skin barrier homeostasis, collagen denaturation and pigmentation are the main contributors to it. As a composite tissue rich in matrix and vascular components, adipose tissue derivatives have been recently gaining attention as potential therapeutic agents for various human diseases with fat-processing technology upgrades. This review analyzes both 'minimally treated' and 'nonminimally treated' fat derivatives to give an overview of the preclinical and clinical relevance of adipose tissue derivatives for antiphotoaging application, highlighting their good clinical prospects as well as discussing their safety and potential risks.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| | - Feng Lu
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| | - Jingwei Feng
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| |
Collapse
|
18
|
Minoretti P, Santiago Sáez A, Liaño Riera M, Gómez Serrano M, García Martín Á. Topically Applied Magnetized Saline Water Improves Skin Biophysical Parameters Through Autophagy Activation: A Pilot Study. Cureus 2023; 15:e49180. [PMID: 38130575 PMCID: PMC10734659 DOI: 10.7759/cureus.49180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background Water exposed to a magnetic field exhibits several changes in its properties, such as increased electrical conductivity, reduced density, and low surface tension. Additionally, it has reduced dissolved oxygen levels and becomes more alkaline. Previous experimental studies have demonstrated that exposure to saline alkaline water leads to a dose-dependent increase in the expression of autophagy-related genes. Here, we hypothesize that the topical application of magnetized alkaline water to the skin can activate autophagy and improve cutaneous biophysical parameters, making it a promising strategy for enhancing skin aesthetics. Methods Two distinct substudies were undertaken. Firstly, a 12-week, uncontrolled, open-label investigation was conducted with 20 females who desired to enhance the appearance of their facial and neck skin. Secondly, a molecular study was carried out on a subset of 10 females to investigate the serum's impact on two autophagy markers (Beclin-1 and mammalian/mechanistic target of rapamycin {mTOR}) in skin biopsies taken from the posterior neck area below the hair attachment line. Results After a period of 12 weeks, the application of the serum resulted in significant improvements in skin hydration within the stratum corneum (56 ± 14 arbitrary units {a.u.}) compared to the baseline measurement (47 ± 12 a.u.; p < 0.001). Moreover, the transepidermal water loss (TEWL) decreased from 14 ± 2 g/m2/hour to 11 ± 3 g/m2/hour (p < 0.001). The results also revealed a notable reduction in sebum content from 38 ± 7 µg/cm2 to 30 ± 4 µg/cm2 after the 12-week period of serum application (<0.001). Additionally, the melanin index (p < 0.01) and erythema index (p < 0.001) were both significantly lower at 12 weeks compared to baseline. The molecular study showed a 38% increase in Beclin-1 levels after 12 weeks of serum application on the posterior neck area, as measured from skin biopsies. In contrast, mTOR levels decreased by 24% from baseline to 12 weeks. Conclusion The application of magnetized saline water topically, within a serum formulation, shows potential in improving skin biophysical parameters for females seeking to enhance the appearance of their facial and neck skin. These beneficial effects are achieved through the activation of cutaneous autophagy, as evidenced by an increase in Beclin-1 expression and a decrease in mTOR content in the skin.
Collapse
Affiliation(s)
| | - Andrés Santiago Sáez
- Legal Medicine, Hospital Clinico San Carlos, Madrid, ESP
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Miryam Liaño Riera
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Manuel Gómez Serrano
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Ángel García Martín
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| |
Collapse
|
19
|
Spasovski V, Andjelkovic M, Parezanovic M, Komazec J, Ugrin M, Klaassen K, Stojiljkovic M. The Role of Autophagy and Apoptosis in Affected Skin and Lungs in Patients with Systemic Sclerosis. Int J Mol Sci 2023; 24:11212. [PMID: 37446389 DOI: 10.3390/ijms241311212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune inflammatory disorder with multiple organ involvement. Skin changes present the hallmark of SSc and coincide with poor prognosis. Interstitial lung diseases (ILD) are the most widely reported complications in SSc patients and the primary cause of death. It has been proposed that the processes of autophagy and apoptosis could play a significant role in the pathogenesis and clinical course of different autoimmune diseases, and accordingly in SSc. In this manuscript, we review the current knowledge of autophagy and apoptosis processes in the skin and lungs of patients with SSc. Profiling of markers involved in these processes in skin cells can be useful to recognize the stage of fibrosis and can be used in the clinical stratification of patients. Furthermore, the knowledge of the molecular mechanisms underlying these processes enables the repurposing of already known drugs and the development of new biological therapeutics that aim to reverse fibrosis by promoting apoptosis and regulate autophagy in personalized treatment approach. In SSc-ILD patients, the molecular signature of the lung tissues of each patient could be a distinctive criterion in order to establish the correct lung pattern, which directly impacts the course and prognosis of the disease. In this case, resolving the role of tissue-specific markers, which could be detected in the circulation using sensitive molecular methods, would be an important step toward development of non-invasive diagnostic procedures that enable early and precise diagnosis and preventing the high mortality of this rare disease.
Collapse
Affiliation(s)
- Vesna Spasovski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marina Parezanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jovana Komazec
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| |
Collapse
|
20
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Purewal JS, Doshi GM. Deciphering the Function of New Therapeutic Targets and Prospective Biomarkers in the Management of Psoriasis. Curr Drug Targets 2023; 24:1224-1238. [PMID: 38037998 DOI: 10.2174/0113894501277656231128060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Psoriasis is an immune-mediated skin condition affecting people worldwide, presenting at any age, and leading to a substantial burden physically and mentally. The innate and adaptive immune systems interact intricately with the pathomechanisms that underlie disease. T cells can interact with keratinocytes, macrophages, and dendritic cells through the cytokines they secrete. According to recent research, psoriasis flare-ups can cause systemic inflammation and various other co-morbidities, including depression, psoriatic arthritis, and cardio-metabolic syndrome. Additionally, several auto-inflammatory and auto-immune illnesses may be linked to psoriasis. Although psoriasis has no proven treatment, care must strive by treating patients as soon as the disease surfaces, finding and preventing concurrent multimorbidity, recognising and reducing bodily and psychological distress, requiring behavioural modifications, and treating each patient individually. Biomarkers are traits that are assessed at any time along the clinical continuum, from the early stages of a disease through the beginning of treatment (the foundation of precision medicine) to the late stages of treatment (outcomes and endpoints). Systemic therapies that are frequently used to treat psoriasis provide a variety of outcomes. Targeted therapy selection, better patient outcomes, and more cost-effective healthcare would be made possible by biomarkers that reliably predict effectiveness and safety. This review is an attempt to understand the role of Antimicrobial peptides (AMP), Interleukin-38 (IL-38), autophagy 5 (ATG5) protein and squamous cell carcinoma antigen (SCCA) as biomarkers of psoriasis.
Collapse
Affiliation(s)
- Japneet Singh Purewal
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Mahesh Doshi
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
22
|
Mattera R, De Pace R, Bonifacino JS. The adaptor protein chaperone AAGAB stabilizes AP-4 complex subunits. Mol Biol Cell 2022; 33:ar109. [PMID: 35976721 DOI: 10.1091/mbc.e22-05-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adaptor protein 4 (AP-4) is a heterotetrameric complex composed of ε, β4, μ4 and σ4 subunits that mediates export of a subset of transmembrane cargos, including autophagy protein 9A (ATG9A), from the trans-Golgi network (TGN). AP-4 has received particular attention in recent years because mutations in any of its subunits cause a complicated form of hereditary spastic paraplegia (HSP or SPG) referred to as "AP-4-deficiency syndrome." The identification of proteins that interact with AP-4 has shed light on the mechanisms of AP-4-dependent cargo sorting and distribution within the cell. However, the mechanisms by which the AP-4 complex itself is assembled have remained unknown. Herein, we report that the alpha- and gamma-adaptin-binding protein (AAGAB, also known as p34) binds to and stabilizes the AP-4 ε-and σ4 subunits, thus promoting complex assembly. The importance of this binding is underscored by the observation that AAGAB-knockout cells exhibit reduced levels of AP-4 subunits and accumulation of ATG9A at the TGN like those in cells, mice, or patients with mutations in AP-4-subunit genes. These findings demonstrate that AP-4 assembly is not spontaneous but AAGAB-assisted, thus contributing to the understanding of an adaptor protein complex that is critically involved in development of the central nervous system.
Collapse
Affiliation(s)
- Rafael Mattera
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
23
|
Barros G, Duran P, Vera I, Bermúdez V. Exploring the Links between Obesity and Psoriasis: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23147499. [PMID: 35886846 PMCID: PMC9321445 DOI: 10.3390/ijms23147499] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a major public health issue worldwide since it is associated with the development of chronic comorbidities such as type 2 diabetes, dyslipidemias, atherosclerosis, some cancer forms and skin diseases, including psoriasis. Scientific evidence has indicated that the possible link between obesity and psoriasis may be multifactorial, highlighting dietary habits, lifestyle, certain genetic factors and the microbiome as leading factors in the progress of both pathologies because they are associated with a chronic pro-inflammatory state. Thus, inflammation management in obesity is a plausible target for psoriasis, not only because of the sick adipose tissue secretome profile but also due to the relationship of obesity with the rest of the immune derangements associated with psoriasis initiation and maintenance. Hence, this review will provide a general and molecular overview of the relationship between both pathologies and present recent therapeutic advances in treating this problem.
Collapse
Affiliation(s)
- Gabriela Barros
- Departamento de Post-Grado, Universidad Católica de Cuenca, Ciudad Cuenca 010109, Ecuador;
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo 4004, Venezuela; (P.D.); (I.V.)
| | - Ivana Vera
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo 4004, Venezuela; (P.D.); (I.V.)
| | - Valmore Bermúdez
- Departamento de Post-Grado, Universidad Católica de Cuenca, Ciudad Cuenca 010109, Ecuador;
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence:
| |
Collapse
|
24
|
Lopez-Toledo G, Silva-Lucero MDC, Herrera-Díaz J, García DE, Arias-Montaño JA, Cardenas-Aguayo MDC. Patient-Derived Fibroblasts With Presenilin-1 Mutations, That Model Aspects of Alzheimer’s Disease Pathology, Constitute a Potential Object for Early Diagnosis. Front Aging Neurosci 2022; 14:921573. [PMID: 35847683 PMCID: PMC9283986 DOI: 10.3389/fnagi.2022.921573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disorder that can occur in middle or old age, is characterized by memory loss, a continuous decline in thinking, behavioral and social skills that affect the ability of an individual to function independently. It is divided into sporadic and familial subtypes. Early-onset familial AD (FAD) is linked to mutations in genes coding for the amyloid-β protein precursor (AβPP), presenilin 1 (PS1), and presenilin 2 (PS2), which lead to alterations in AβPP processing, generation of the Amyloid-β peptide and hyperphosphorylation of tau protein. Identification of early biomarkers for AD diagnosis represents a challenge, and it has been suggested that molecular changes in neurodegenerative pathways identified in the brain of AD patients can be detected in peripheral non-neural cells derived from familial or sporadic AD patients. In the present study, we determined the protein expression, the proteomic and in silico characterization of skin fibroblasts from FAD patients with PS1 mutations (M146L or A246E) or from healthy individuals. Our results shown that fibroblasts from AD patients had increased expression of the autophagy markers LC3II, LAMP2 and Cathepsin D, a significant increase in total GSK3, phosphorylated ERK1/2 (Thr202/Tyr204) and phosphorylated tau (Thr231, Ser396, and Ser404), but no difference in the phosphorylation of Akt (Ser473) or the α (Ser21) and β (Ser9) GSK3 isoforms, highlighting the relevant role of abnormal protein post-translational modifications in age-related neurodegenerative diseases, such as AD. Both 2-DE gels and mass spectrometry showed significant differences in the expression of the signaling pathways associated with protein folding and the autophagic pathway mediated by chaperones with the expression of HSPA5, HSPE1, HSPD1, HSP90AA1, and HSPE1 and reticular stress in the FAD samples. Furthermore, expression of the heat shock proteins HSP90 and HSP70 was significantly higher in the cells from AD patients as confirmed by Western blot. Taken together our results indicate that fibroblasts from patients with FAD-PS1 present alterations in signaling pathways related to cellular stress, autophagy, lysosomes, and tau phosphorylation. Fibroblasts can therefore be useful in modeling pathways related to neurodegeneration, as well as for the identification of early AD biomarkers.
Collapse
Affiliation(s)
- Gustavo Lopez-Toledo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| | - Maria-del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Jorge Herrera-Díaz
- Unidad de Servicios de Apoyo a la Investigación y a la Industria, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David-Erasmo García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico City, Mexico
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- *Correspondence: Maria-del-Carmen Cardenas-Aguayo,
| |
Collapse
|