1
|
Tao J, Hao TC, Zhang XY, Lu P, Yang Y. Coptisine inhibits lipid accumulation in high glucose- and palmitic acid-induced HK-2 cells by regulating the AMPK/ACC/CPT-1 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5465-5474. [PMID: 39560754 DOI: 10.1007/s00210-024-03617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
AMPK (Adenosine 5'-Monophosphate activated Protein Kinase) functions as a fundamental regulator of glycolipid metabolism by regulating the rate-limiting enzyme activity of ACC (Acetyl-CoA Carboxylase, essential for fatty acid biosynthesis) and CPT-1 (Carnitine palmitoyltransferase-1, essential for mitochondrial fatty acid oxidation, FAO) in cells, which is crucial for maintaining energy homeostasis in the human body. Coptisine (COP) is a natural berberine and isoquinoline alkaloid in Coptis chinensis that has been used as a traditional Chinese herb to treat diabetes for thousands of years, but its mechanism of action is still unclear. In this study, we investigated the anti-lipid accumulation effect and mechanism of COP in high glucose and palmitic acid-induced HK-2 cells. Compared with the control HK-2 cells, the model HK-2 cells exhibited markedly greater lipid deposition, after treatment with high glucose (HG, 30 mM) and palmitic acid (PA, 250 µM) for 24 h. However, COP significantly decreased the TC and TG levels in a dose dependent manner (2.5, 5, and 10 µM). Moreover, COP dramatically enhanced the effect of the positive control (AICAR, Acadesine, an AMPK activator) in alleviating lipid deposition, which was reversed by the negative control (Compound C, an AMPK inhibitor). Furthermore, COP also increased p-AMPK, p-ACC and CPT-1 protein expression. Our results indicate that COP can effectively protects HK-2 cells against HG- and PA-induced lipid accumulation by affecting the AMPK/ACC/CPT-1 signaling pathway, inhibiting de novo lipogenesis and enhancing the FAO processes, which offers novel insights for the application of COP in the clinic.
Collapse
Affiliation(s)
- Jie Tao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China
| | - Tian-Chu Hao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China
| | - Xiao-Yu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China
| | - Pei Lu
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou, 511400, P.R. China.
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China.
| |
Collapse
|
2
|
Chen G, Zhang C, Zou J, Zhou Z, Zhang J, Yan Y, Liang Y, Tang G, Chen G, Xu X, Wang N, Feng Y. Coptidis Rhizoma and Berberine as Anti-cancer Drugs: a 10-year updates and future perspectives. Pharmacol Res 2025:107742. [PMID: 40258505 DOI: 10.1016/j.phrs.2025.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Cancer continues to be among the most substantial health challenges globally. Among various natural compounds, berberine, an isoquinoline alkaloid obtained from Coptidis Rhizoma, has garnered considerable attention for its broad-spectrum biological activities, including anti-inflammatory, antioxidant, anti-diabetic, anti-obesity, and anti-microbial activities. Furthermore, berberine exhibits a broad spectrum of anti-cancer efficacy against various malignancies, such as ovarian, breast, lung, gastric, hepatic, colorectal, cervical, and prostate cancers. Its anti-cancer mechanisms are multifaceted, encompassing the inhibition of cancer cell proliferation, the prevention of metastasis, the induction of apoptosis, the facilitation of autophagy, the modulation of the tumor microenvironment and gut microbiota, and the enhancement of the efficacy of conventional therapeutic strategies. This paper offers an exhaustive overview of the cancer-fighting characteristics of Coptidis Rhizoma and berberine, while also exploring recent developments in nanotechnology aimed at enhancing the bioavailability of berberine. Furthermore, the side effects and safety of berberine are addressed as well. The potential role of artificial intelligence in optimizing berberine's therapeutic applications is also highlighted. This paper provides precious perspectives on the prospective application of Coptidis Rhizoma and berberine in the prevention and management of cancer.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Jiayi Zou
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zitian Zhou
- The Fourth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Yan
- The School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinglan Liang
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoyi Tang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Guang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Xiaoyu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R., China.
| |
Collapse
|
3
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024; 38:5962-5984. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Kang YH, Wang JH, Lee JS, Hwang SJ, Lee NH, Son CG. Berberine inhibits colorectal liver metastasis via modulation of TGF-β in a cecum transplant mouse model. Eur J Med Res 2024; 29:552. [PMID: 39558413 PMCID: PMC11575064 DOI: 10.1186/s40001-024-02122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Hepatic metastasis is the primary cause of colorectal cancer (CRC)-induced death. Our previous results showed the anti-metastatic effects of Coptidis rhizoma using in vitro model. AIM The present study aimed to investigate whether berberine, the main active compound of C. rhizoma, inhibits colon-liver metastasis in an animal model, and to elucidate the underlying mechanisms. METHODS Murine colon carcinoma (CT26) tumor tissue was implanted into the cecum of balb/c mice with/without oral administration of berberine (100 mg/kg) for 21 days, after which liver metastasis was evaluated. In addition, the pharmacological actions of berberine were explored using 5-fluorouracil-resistant human colon cancer cells (HCT116/R). RESULT The administration of berberine significantly decreased the number of tumor nodules in the liver, while significant activation of E-cadherin (an epithelial marker), and suppression of vimentin, Snail and TGF-β (mesenchymal markers) were observed in primary colon tumor tissues. Berberine treatment also notably lowered the levels of inflammatory cytokines (TGF-β, TNF- α, IL-6 and IL-1β) in the blood. In HCT116/R cells, berberine significantly inhibited migration and invasion and modulated the expression of TGF-β and representative molecules related to its pathway. The results obtained with a TGF-β inhibitor (SB431542) and a TGF-β siRNA, strongly suggest that the mechanism of action of berberine is linked to TGF-β signaling. CONCLUSION In conclusion, berberine evidently possess an anti-colon-liver metastatic effect, and its underlying mechanisms involve the inhibition of epithelial-mesenchymal transition (EMT) through the TGF-β signaling pathway. Thus, we cautiously propose the pharmacological potential of berberine in drug research studies targeting hepatic metastasis from CRC.
Collapse
Affiliation(s)
- Yong-Hwi Kang
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Jing-Hua Wang
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Jin-Seok Lee
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Seung-Ju Hwang
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Nam-Hun Lee
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea.
- East-West Cancer Center, Cheonan Oriental Hospital of Daejeon University, 4, Notaesan-Ro, Seobuk-Gu, Cheonan-Si, 31099, Korea.
| | - Chang-Gue Son
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea.
| |
Collapse
|
5
|
Zhang Y, Wang Y, Zhang B, Li P, Zhao Y. Methods and biomarkers for early detection, prediction, and diagnosis of colorectal cancer. Biomed Pharmacother 2023; 163:114786. [PMID: 37119736 DOI: 10.1016/j.biopha.2023.114786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common digestive diseases worldwide. It has steadily ascended to the top three cancers in terms of incidence and mortality. The primary cause is the inability to diagnose it at an early stage. Therefore, early detection and diagnosis are essential for colorectal cancer prevention. Although there are now various methods for CRC early detection, in addition to recent developments in surgical and multimodal therapy, the poor prognosis and late detection of CRC still remain significant. Thus, it is important to investigate novel technologies and biomarkers to improve the sensitization and specification of CRC diagnosis. Here, we present some common methods and biomarkers for early detection and diagnosis of CRC, we hope this review will encourage the adoption of screening programs and the clinical use of these potential molecules as biomarkers for CRC early detection and prognosis.
Collapse
Affiliation(s)
- Yue Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province affiliated to Qingdao University, Shandong Province, China
| | - Bingqiang Zhang
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yi Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
6
|
Yang Y, Hua Y, Chen W, Zheng H, Wu H, Qin S, Huang S. Therapeutic targets and pharmacological mechanisms of Coptidis Rhizoma against ulcerative colitis: Findings of system pharmacology and bioinformatics analysis. Front Pharmacol 2022; 13:1037856. [PMID: 36532769 PMCID: PMC9748441 DOI: 10.3389/fphar.2022.1037856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 08/09/2023] Open
Abstract
Evidence of the advantages of Coptidis Rhizoma (CR) for the treatment of ulcerative colitis (UC) is accumulating. However, research revealing the targets and molecular mechanisms of CR against UC is scarce. In this research, a bioinformatics analysis was performed to carry out the physicochemical properties and biological activities of phytochemicals in CR and analyze the binding activities, targets, biological functions and mechanisms of CR against UC. This research shows that the CR's key phytochemicals, which are named Coptisine, Berberrubine, Berlambine, Berberine, Epiberberine, Obacunone, Worenine, Quercetin, (R)-Canadine, Magnograndiolide, Palmatine and Moupinamide, have ideal physicochemical properties and bioactivity. A total of 1,904 potential phytochemical targets and 17,995 UC-related targets are identified, and we finally acquire 233 intersection targets between key phytochemicals and disease. A protein-protein interaction network of 233 common targets was constructed; and six hub targets were acquired with a degree greater than or equal to median, namely TP53, HSP90AA1, STAT3, ESR1, MYC, and RELA. The enrichment analysis suggested that the core targets may exert an impact on anti-inflammatory, immunoregulatory, anti-oxidant and anti-fibrosis functions mainly through the PI3K/ART signaling pathway, Th17 differentiation signaling pathway, inflammatory bowel disease signaling pathway, etcetera. Also, a molecular docking analysis shows that the key phytochemicals have strong affinity for binding to the core targets. Finally, the interaction network of CR, phytochemicals, targets, GO functions, KEGG pathways and UC is constructed. This study indicates that the key phytochemicals in CR have superior drug likeness and bioactivity, and the molecular mechanism of key phytochemicals against UC may be via the signaling pathway mentioned above. The potential and critical pharmacological mechanisms provide a direction for future research.
Collapse
Affiliation(s)
- Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Yiwei Hua
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Haomeng Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shumin Qin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Yang Chunbo Academic Experience Inheritance Studio of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Anwar S, Malik JA, Ahmed S, Kameshwar VA, Alanazi J, Alamri A, Ahemad N. Can Natural Products Targeting EMT Serve as the Future Anticancer Therapeutics? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227668. [PMID: 36431766 PMCID: PMC9698579 DOI: 10.3390/molecules27227668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Cancer is the leading cause of death and has remained a big challenge for the scientific community. Because of the growing concerns, new therapeutic regimens are highly demanded to decrease the global burden. Despite advancements in chemotherapy, drug resistance is still a major hurdle to successful treatment. The primary challenge should be identifying and developing appropriate therapeutics for cancer patients to improve their survival. Multiple pathways are dysregulated in cancers, including disturbance in cellular metabolism, cell cycle, apoptosis, or epigenetic alterations. Over the last two decades, natural products have been a major research interest due to their therapeutic potential in various ailments. Natural compounds seem to be an alternative option for cancer management. Natural substances derived from plants and marine sources have been shown to have anti-cancer activity in preclinical settings. They might be proved as a sword to kill cancerous cells. The present review attempted to consolidate the available information on natural compounds derived from plants and marine sources and their anti-cancer potential underlying EMT mechanisms.
Collapse
Affiliation(s)
- Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
- Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail 81422, Saudi Arabia
- Correspondence:
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, Gujarat, India
| | - Verma Abhishek Kameshwar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 641112, Kerala, India
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
- Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail 81422, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
- Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail 81422, Saudi Arabia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan lagoon Selatan, Bandar Sunway, Petaling Jaya 47500, Selangor DE, Malaysia
| |
Collapse
|