1
|
He Y, Huang H, Li G, Zhang Y, He J, Lin Y, Wu F, Yan J, Cai X, Liu L. Safety Profile, Toxicokinetic, and Intestinal Absorption Differences of a Naturally-Derived Anti-Rheumatic Drug, Sinomenine Hydrochloride, in Normal and Arthritic Rats. Pharmaceutics 2025; 17:484. [PMID: 40284479 PMCID: PMC12030057 DOI: 10.3390/pharmaceutics17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objective: Sinomenine hydrochloride (SH), a natural anti-rheumatic drug derived from the Chinese medicinal plant Sinomenium acutum, demonstrates disease-modifying properties but lacks comprehensive safety and toxicokinetic (TK) comparisons between physiological and pathological states. This study evaluated SH's safety profile, TK parameters, and intestinal absorption differences in adjuvant-induced arthritis (AIA) and normal rats. Methods: Safety assessments determined median lethal doses (LD50) in female Sprague Dawley rats. TK parameters were analyzed via a validated ultrahigh performance liquid chromatography-tandem mass spectrometry approach after single oral administration of 600 mg/kg SH. Plasma protein binding (PPB) were measured using equilibrium dialysis. Intestinal absorption was evaluated through everted gut sac experiments, with P-glycoprotein (P-gp) inhibition tested via verapamil co-administration. Results: LD50 values revealed AIA rats tolerated SH better than normal rats (1179 vs. 805 mg/kg). TK analysis showed that Cmax, AUC(0-t), and AUC(0-∞) of SIN in normal rats were 2.01, 1.94, and 2.14 times higher than in AIA rats, respectively, while CL/F and V/F in AIA rats were 2.24 times greater. In addition, the PPB of SIN in normal rats was 2 times greater than that in AIA rats. AIA rats exhibited significantly lower SH absorption in the jejunum and ileum compared to normal rats. Notably, verapamil co-administration markedly increased SH absorption across most intestinal segments. Conclusions: Pathological states significantly alter SH's safety and TK profiles. Enhanced tolerance in AIA rats correlates with reduced intestinal absorption via altered P-gp activity and decreased PPB. These findings emphasize the necessity of disease-specific evaluations for optimizing SH's therapeutic safety in pathological contexts.
Collapse
Affiliation(s)
- Yini He
- Institute of Innovation and Applied Research in Chinese Medicine, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.H.); (H.H.); (G.L.); (Y.Z.); (J.H.); (Y.L.); (J.Y.)
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hong Huang
- Institute of Innovation and Applied Research in Chinese Medicine, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.H.); (H.H.); (G.L.); (Y.Z.); (J.H.); (Y.L.); (J.Y.)
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.H.); (H.H.); (G.L.); (Y.Z.); (J.H.); (Y.L.); (J.Y.)
| | - Ye Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.H.); (H.H.); (G.L.); (Y.Z.); (J.H.); (Y.L.); (J.Y.)
| | - Junjie He
- Institute of Innovation and Applied Research in Chinese Medicine, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.H.); (H.H.); (G.L.); (Y.Z.); (J.H.); (Y.L.); (J.Y.)
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.H.); (H.H.); (G.L.); (Y.Z.); (J.H.); (Y.L.); (J.Y.)
| | - Feichi Wu
- Hunan ZhenQin Pharmaceutical Group Co., Ltd., Huaihua 418000, China;
| | - Jianye Yan
- Institute of Innovation and Applied Research in Chinese Medicine, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.H.); (H.H.); (G.L.); (Y.Z.); (J.H.); (Y.L.); (J.Y.)
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.H.); (H.H.); (G.L.); (Y.Z.); (J.H.); (Y.L.); (J.Y.)
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
2
|
Xia X, Ding Y, Zhou C, Zhang H, Yang X, Shen C, Xu S, Zhang H, Gu Y, Bai H. Electroacupuncture Preconditioning Attenuates Myocardial Ischemia-Reperfusion Injury in Rats Partially Through Nrf2-Mediated Reduction of Oxidative Stress and Pyroptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:337-352. [PMID: 40107884 DOI: 10.1142/s0192415x25500132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Oxidative stress and pyroptosis have been established as key contributors to myocardial ischemia-reperfusion injury (MIRI). While previous studies reported that electroacupuncture (EA) preconditioning exerted cardioprotective effects, the underlying mechanisms remain elusive. Thus, this study aimed to investigate the effects of EA preconditioning on oxidative stress and pyroptosis in MIRI rats, and explore the role of nuclear factor E2-associated factor 2 (Nrf2) throughout that process. A MIRI model was constructed by ligating the left anterior descending coronary artery for 30 min, followed by 4 h of reperfusion in rats. Prior to modeling, rats were subjected to EA at the Neiguan Point for three days. Furthermore, ML385, a Nrf2 inhibitor, was administered in order to examine the role of Nrf2 in regulating oxidative stress and pyroptosis following EA preconditioning. The results revealed that EA preconditioning improved left ventricular function after MIRI and reduced both the myocardial infarction area and cTnT levels. Meanwhile, EA preconditioning alleviated MIRI-induced oxidative stress and pyroptosis, as evidenced by the downregulation of ROS, MDA, NF-κB p65, caspase-1, IL-1β, and GSDMD-N, and the upregulation of SOD and HO-1. Mechanistically, EA up-regulated enhanced the expression of Nrf2. However, its cardioprotective effects and ability to attenuate oxidative stress and pyroptosis were suppressed by the inhibition of Nrf2. Taken together, our study indicated that EA preconditioning attenuated MIRI in rats by mitigating oxidative stress and pyroptosis, with Nrf2 playing a vital role in this protective mechanism.
Collapse
Affiliation(s)
- Xuefeng Xia
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yaping Ding
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chunmei Zhou
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hanyu Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xinran Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chuchu Shen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Senlei Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hongru Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yihuang Gu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hua Bai
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Zhang H, Dong J, Zhang J, Chen H, Liu T, Gan R, Wen J, Li Y. Effects of borneol on apoptosis of hypoxia/reoxygenation H9c2 cells and myocardial ischemia-reperfusion injury rats. Acta Cir Bras 2025; 40:e402225. [PMID: 40105602 PMCID: PMC11908740 DOI: 10.1590/acb402225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/29/2024] [Indexed: 03/20/2025] Open
Abstract
PURPOSE To explore the protective effects of borneol in myocardial ischemia-reperfusion injury (MIRI) and the mechanism of apoptosis. METHODS Cell viability was detected by CCK-8. The total superoxide dismutase (T-SOD) and lactate dehydrogenase (LDH) leakage of cells were tested by biochemical assay kit. Detection of apoptosis was by flow cytometry. Serum levels of creatine kinase isoenzyme MB (CK-MB), LDH, and cardiac troponin I (cTnI) were detected by enzyme-linked immunosorbent assay. Myocardial infarction area and pathological changes were observed via 2,3,5-triphenyltetrazolium chloride (TTC) staining and hematoxylin and eosin staining. The expressions of apoptosis-related proteins in cells and myocardial tissues were detected by Western blot. RESULTS H9c2 cell viability was significantly increased by pretreatment with 16 and 32 μg/mL of borneol. Borneol pretreatment significantly increased the T-SOD levels and reduced LDH leakage and apoptosis. In MIRI rats, borneol pretreatment significantly reduced serum levels of CK-MB, LDH and cTnI, decreased myocardial infarction area, and improved myocardial injury in different degree. Western blot results showed that borneol pretreatment significantly reduced the expression of Bcl-2-associated X protein (Bax) and Cysteine-aspartate protease-3 (Caspase-3) in cells and myocardial tissues of rats. CONCLUSION Borneol can protect myocardial injury cells and mitigate MIRI by inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Hui Zhang
- North Sichuan Medical College – Department of Pharmacy – Nanchong, Sichuan – China
| | - Junfang Dong
- North Sichuan Medical College – Department of Pharmacy – Nanchong, Sichuan – China
| | - Jianwu Zhang
- North Sichuan Medical College – Department of Pharmacy – Nanchong, Sichuan – China
| | - Hongxue Chen
- North Sichuan Medical College – Department of Pharmacy – Nanchong, Sichuan – China
| | - Ting Liu
- North Sichuan Medical College – Department of Pharmacy – Nanchong, Sichuan – China
| | - Ruixue Gan
- North Sichuan Medical College – Department of Pharmacy – Nanchong, Sichuan – China
| | - Jing Wen
- North Sichuan Medical College – Department of Pharmacy – Nanchong, Sichuan – China
| | - Yangyou Li
- North Sichuan Medical College – Animal Experimental Center – Nanchong, Sichuan – China
| |
Collapse
|
4
|
Chen J, Wang B, Meng T, Li C, Liu C, Liu Q, Wang J, Liu Z, Zhou Y. Oxidative Stress and Inflammation in Myocardial Ischemia-Reperfusion Injury: Protective Effects of Plant-Derived Natural Active Compounds. J Appl Toxicol 2024. [PMID: 39482870 DOI: 10.1002/jat.4719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death among patients with cardiovascular diseases. Percutaneous coronary intervention (PCI) has been the preferred clinical treatment for AMI due to its safety and efficiency. However, research indicates that the rapid restoration of myocardial oxygen supply following PCI can lead to secondary myocardial injury, termed myocardial ischemia-reperfusion injury (MIRI), posing a grave threat to patient survival. Despite ongoing efforts, the mechanisms underlying MIRI are not yet fully elucidated. Among them, oxidative stress and inflammation stand out as critical pathophysiological mechanisms, playing significant roles in MIRI. Natural compounds have shown strong clinical therapeutic potential due to their high efficacy, availability, and low side effects. Many current studies indicate that natural compounds can mitigate MIRI by reducing oxidative stress and inflammatory responses. Therefore, this paper reviews the mechanisms of oxidative stress and inflammation during MIRI and the role of natural compounds in intervening in these processes, aiming to provide a basis and reference for future research and development of drugs for treating MIRI.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiameng Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiping Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Zhang MW, Tan FQ, Yang JR, Yu JG. Cardiovascular events in crush syndrome: on-site therapeutic strategies and pharmacological investigations. Front Pharmacol 2024; 15:1472971. [PMID: 39372200 PMCID: PMC11452875 DOI: 10.3389/fphar.2024.1472971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
Crush syndrome often occurs after severe crush injury caused by disasters or accidents, and is associated with high mortality and poor prognosis. Cardiovascular complications, such as cardiac arrest, hypovolemic shock, and hyperkalemia-related cardiac dysfunction, are the primary causes of on-site death in crush syndrome. Prehospital evaluation, together with timely and correct treatment, is of great benefit to crush syndrome patients, which is difficult in most cases due to limited conditions. Based on current data and studies, early fluid resuscitation remains the most important on-site treatment for crush syndrome. Novel solutions and drugs used in fluid resuscitation have been investigated for their effectiveness and benefits. Several drugs have proven effective for the prevention or treatment of cardiovascular complications in crush syndrome, such as hypovolemic shock, hyperkalemia-induced cardiac complications, myocardial ischemia/reperfusion injury, ventricular dysfunction, and coagulation disorder experimentally. Moreover, these drugs are beneficial for other complications of crush syndrome, such as renal dysfunction. In this review, we will summarize the existing on-site treatments for crush syndrome and discuss the potential pharmacological interventions for cardiovascular complications to provide clues for clinical therapy of crush syndrome.
Collapse
|
6
|
Chen X, Wu Y, Jia R, Fang Y, Cao K, Yang X, Qu X, Xia H. Antioxidant Activity and the Therapeutic Effect of Sinomenine Hydrochloride-Loaded Liposomes-in-Hydrogel on Atopic Dermatitis. Int J Mol Sci 2024; 25:7676. [PMID: 39062919 PMCID: PMC11276951 DOI: 10.3390/ijms25147676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Sinomenine hydrochloride is an excellent drug with anti-inflammatory, antioxidant, immune-regulatory, and other functions. Atopic dermatitis is an inherited allergic inflammation that causes itchiness, redness, and swelling in the affected area, which can have a significant impact on the life of the patient. There are many therapeutic methods for atopic dermatitis, and sinomenine with immunomodulatory activity might be effective in the treatment of atopic dermatitis. In this study, the atopic dermatitis model was established in experimental mice, and physical experiments were carried out on the mice. In the experiment, sinomenine hydrochloride liposomes-in-hydrogel as a new preparation was selected for delivery. In this case, liposomes were dispersed in the colloidal hydrogel on a mesoscopic scale and could provide specific transfer properties. The results showed that the sinomenine hydrochloride-loaded liposomes-in-hydrogel system could effectively inhibit atopic dermatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (X.C.); (Y.W.); (R.J.); (Y.F.); (K.C.); (X.Y.); (X.Q.)
| |
Collapse
|
7
|
Zhang S, Yan F, Luan F, Chai Y, Li N, Wang YW, Chen ZL, Xu DQ, Tang YP. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155649. [PMID: 38653154 DOI: 10.1016/j.phymed.2024.155649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Luan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Zhen-Lin Chen
- International Programs Office, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| |
Collapse
|
8
|
Hui B, Zhang X, Dong D, Shu Y, Li R, Yang Z. High-dose sinomenine attenuates ischemia/reperfusion-induced hepatic inflammation and oxidative stress in rats with diabetes mellitus. Immun Inflamm Dis 2024; 12:e1271. [PMID: 38888355 PMCID: PMC11184649 DOI: 10.1002/iid3.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Ischemia-reperfusion (I/R) injury, resulting from blood flow interruption and its subsequent restoration, is a prevalent complication in liver surgery. The liver, as a crucial organ for carbohydrate and lipid metabolism, exhibits decreased tolerance to hepatic I/R in patients with diabetes mellitus (DM), resulting in a significant increase in hepatic dysfunction following surgery. This may be attributed to elevated oxidative stress and inflammation. Our prior research established sinomenine's (SIN) protective role against hepatic I/R injury. Nevertheless, the impact of SIN on hepatic I/R injury in DM rats remains unexplored. OBJECTIVE AND METHODS This study aimed to investigate the therapeutic potential of SIN in hepatic I/R injury in DM rats and elucidate its mechanism. Diabetic and hepatic I/R injury models were established in rats through high-fat/sugar diet, streptozotocin injection, and hepatic blood flow occlusion. Liver function, oxidative stress, inflammatory reaction, histopathology, and Nrf-2/HO-1 signaling pathway were evaluated by using UV spectrophotometry, biochemical assays, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, and Western blot analysis. RESULTS High-dose SIN (300 mg/kg) significantly attenuated hepatic I/R injury in DM rats, reducing serum activities of ALT and AST, decreasing the AST/ALT ratio, enhancing tissue contents of SOD and GSH-Px, suppressing the levels of TNF-α and IL-6, improving the liver histopathology, and activating Nrf-2/HO-1 signaling by promoting Nrf-2 trans-location from cytoplasm to nucleus. Low-dose SIN (100 mg/kg) was ineffective. CONCLUSIONS This study demonstrates that high-dose sinomenine's mitigates hepatic I/R-induced inflammation and oxidative stress in diabetes mellitus (DM) rats via Nrf-2/HO-1 activation, suggesting its potential as a preventive strategy for hepatic I/R injury in DM patients.
Collapse
Affiliation(s)
- Bo Hui
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaogang Zhang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Dinghui Dong
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yantao Shu
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ren Li
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhengan Yang
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
9
|
Xia B, Ding J, Li Q, Zheng K, Wu J, Huang C, Liu K, You Q, Yuan X. Loganin protects against myocardial ischemia-reperfusion injury by modulating oxidative stress and cellular apoptosis via activation of JAK2/STAT3 signaling. Int J Cardiol 2024; 395:131426. [PMID: 37813285 DOI: 10.1016/j.ijcard.2023.131426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) is a pathological process that follows immediate revascularization of myocardial infarction and is characterized by exacerbation of cardiac injury. Loganin, a monoterpene iridoid glycoside derived from Cornus officinalis Sieb. Et Zucc, can exert cardioprotective effects in cardiac hypertrophy and atherosclerosis. However, its role in ischemic heart disease remains largely unknown. METHODS Considering that Janus kinase 2 (JAK2)/ signal transducer and activator of transcription 3 (STAT3) has a protective effect on the heart, we developed a mouse model of MIRI to investigate the potential role of this pathway in loganin-induced cardioprotection. RESULTS Our results showed that treatment with loganin (20 mg/kg) prevented the enlargement of myocardial infarction, myocyte destruction, serum markers of cardiac injury, and deterioration of cardiac function induced by MIRI. Myocardium subjected to I/R treatment exhibited higher levels of oxidative stress, as indicated by an increase in malondialdehyde (MDA) and dihydroethidium (DHE) density and a decrease in total antioxidant capacity (T-AOC), glutathione (GSH), and superoxide dismutase (SOD), whereas treatment with loganin showed significant attenuation of I/R-induced oxidative stress. Loganin treatment also increased the expression of anti-apoptotic Bcl-2 and reduced the expression of caspase-3/9, Bax, and the number of TUNEL-positive cells in ischemic cardiac tissue. Moreover, treatment with loganin triggered JAK2/STAT3 phosphorylation, and AG490, a JAK2/STAT3 inhibitor, partially abrogated the cardioprotective effects of loganin, indicating the essential role of JAK2/STAT3 signaling in the cardioprotective effects of loganin. CONCLUSIONS Our data demonstrate that loganin protects the heart from I/R injury by inhibiting I/R-induced oxidative stress and cellular apoptosis via activation of JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiaqi Ding
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qi Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Gouda NA, Alshammari SO, Abourehab MAS, Alshammari QA, Elkamhawy A. Therapeutic potential of natural products in inflammation: underlying molecular mechanisms, clinical outcomes, technological advances, and future perspectives. Inflammopharmacology 2023; 31:2857-2883. [PMID: 37950803 DOI: 10.1007/s10787-023-01366-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023]
Abstract
Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.
Collapse
Affiliation(s)
- Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Qamar A Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea.
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
11
|
Li JM, Yao YD, Luo JF, Liu JX, Lu LL, Liu ZQ, Dong Y, Xie Y, Zhou H. Pharmacological mechanisms of sinomenine in anti-inflammatory immunity and osteoprotection in rheumatoid arthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155114. [PMID: 37816287 DOI: 10.1016/j.phymed.2023.155114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Sinomenine (SIN) is the main pharmacologically active component of Sinomenii Caulis and protects against rheumatoid arthritis (RA). In recent years, many studies have been conducted to elucidate the pharmacological mechanisms of SIN in the treatment of RA. However, the molecular mechanism of SIN in RA has not been fully elucidated. PURPOSE To summarize the pharmacological effects and molecular mechanisms of SIN in RA and clarify the most valuable regulatory mechanisms of SIN to provide clues and a basis for basic research and clinical applications. METHODS We systematically searched SciFinder, Web of Science, PubMed, China National Knowledge Internet (CNKI), the Wanfang Databases, and the Chinese Scientific Journal Database (VIP). We organized our work based on the PRISMA statement and selected studies for review based on predefined selection criteria. OUTCOME After screening, we identified 201 relevant studies, including 88 clinical trials and 113 in vivo and in vitro studies on molecular mechanisms. Among these studies, we selected key results for reporting and analysis. CONCLUSIONS We found that most of the known pharmacological mechanisms of SIN are indirect effects on certain signaling pathways or proteins. SIN was manifested to reduce the release of inflammatory cytokines such as Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and IL-1β, thereby reducing the inflammatory response, and apparently blocking the destruction of bone and cartilage. The regulatory effects on inflammation and bone destruction make SIN a promising drug to treat RA. More notably, we believe that the modulation of α7nAChR and the regulation of methylation levels at specific GCG sites in the mPGES-1 promoter by SIN, and its mechanism of directly targeting GBP5, certainly enriches the possibilities and the underlying rationale for SIN in the treatment of inflammatory immune-related diseases.
Collapse
Affiliation(s)
- Juan-Min Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yun-Da Yao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Jin-Fang Luo
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, Guizhou, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510405, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
12
|
Yuan X, Liu K, Dong P, Han H. Protective effect and mechanism of different proportions of " Danggui-Kushen" herb pair on ischemic heart disease. Heliyon 2023; 9:e22150. [PMID: 38034717 PMCID: PMC10685368 DOI: 10.1016/j.heliyon.2023.e22150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
This study aims to investigate the protective effect and mechanism of "Danggui-Kushen" herb pair (DKHP) on ischemic heart disease (IHD). The rat model of myocardial reperfusion injury (MIRI) was established by ligation of the left anterior descending coronary artery. Rats were randomly divided into seven groups and administered orally for 7 days: control group, IHD group, DKHP1:1 group, DKHP1:2 group, DKHP2:1 group, DKHP1:3 group, DKHP3:1 group, the dosage was 2.7 g/kg. Measure electrocardiogram (ECG), myocardial infarction and injury assessment, Hematoxylin and eosin (HE) staining to evaluate myocardial injury and the protective effect of DKHP. Lactate dehydrogenase (LDH), Reactive oxygen species (ROS), IL-1β and IL-6 kit detection, immunohistochemical analysis, establishment of H9c2 cardiomyocyte hypoxia (Hypoxia) model, DKHP pretreatment for 3 h, MTT method to detect cell survival rate, cell immunofluorescence to observe NF- The expression of TLR-4, NF-κB, p-NF-κB, IKβα, p-IKβα, HIF-1α, VEGF and other genes and proteins were detected by κB nuclear translocation, mitochondrial membrane potential measurement, Western blot and Polymerase Chain Reaction (PCR). Compared with the model group, DKHP can reduce the size of myocardial infarction, reduce the levels of factors such as LDH, ROS, IL-1β and IL-6, and improve the cell survival rate; Compared with the model group, DKHP can inhibit the nuclear transfer of NF-κB and reduce mitochondrial damage; the results of immunohistochemical analysis, PCR and Western blot showed that compared with the model group, DKHP can reduce TLR-4, p-NF-κB, Expression levels of p-IKβα, HIF-1α, VEGF and other proteins. Reveal that DKHP may play a protective role in ischemic heart disease by reducing inflammation and oxidative stress damage. DKHP may have protective effect on ischemic heart disease, and its mechanism may be through reducing inflammatory response and oxidative stress damage to achieve this protective effect.
Collapse
Affiliation(s)
- Xu Yuan
- College of Medicine, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| | - Kemeng Liu
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| |
Collapse
|
13
|
Xia B, Li Q, Zheng K, Wu J, Huang C, Liu K, You Q, Yuan X. Down-regulation of Hrd1 protects against myocardial ischemia-reperfusion injury by regulating PPARα to prevent oxidative stress, endoplasmic reticulum stress, and cellular apoptosis. Eur J Pharmacol 2023; 954:175864. [PMID: 37392829 DOI: 10.1016/j.ejphar.2023.175864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
The E3 ubiquitin ligase HMG-CoA reductase degradation protein 1 (Hrd1) is a key enzyme for ER-associated degradation of misfolded proteins. Its role in ischemic heart disease has not been fully elucidated. Here, we investigated its effect on oxidative status and cell survival in cardiac ischemia-reperfusion injury (MIRI). We found that virus-induced down-regulation of Hrd1 expression limited infarct size, decreased creatinine kinase (CK) and lactate dehydrogenase (LDH), and preserved cardiac function in mice subjected to left anterior descending coronary artery ligation and reperfusion. Silencing of the Hrd1 gene also prevented the ischemia/reperfusion (I/R)-induced (i) increase in dihydroethidium (DHE) intensity, mitochondrial production of reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO), (ii) decrease in total antioxidant capacity (T-AOC) and glutathione (GSH), (iii) disruption of mitochondrial membrane potential, and (iv) increase in the expression of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) in ischemic heart tissue. In addition, down-regulation of Hrd1 expression prevented the abnormally increased caspase-3/caspase-9/Bax expression and decreased Bcl-2 expression in ischemic heart tissue of I/R mice. Further analysis showed that the I/R stimulus reduced peroxisome proliferation activated receptor α (PPARα) expression in ischemic heart tissue, which was partially prevented by down-regulation of Hrd1. Pharmacological inhibition of PPARα was able to abolish the preventive effect of down-regulation of Hrd1 on oxidative stress, endoplasmic reticulum stress, and cellular apoptosis in ischemic heart tissue. These data suggest that down-regulation of Hrd1 protects the heart from I/R-induced damage by suppressing oxidative stress and cellular apoptosis likely through PPARα.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qi Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Wan Y, Piao L, Xu S, Meng X, Huang Z, Inoue A, Wang H, Yue X, Jin X, Nan Y, Shi GP, Murohara T, Umegaki H, Kuzuya M, Cheng XW. Cathepsin S activity controls chronic stress-induced muscle atrophy and dysfunction in mice. Cell Mol Life Sci 2023; 80:254. [PMID: 37589754 PMCID: PMC10435624 DOI: 10.1007/s00018-023-04888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Exposure to chronic psychological stress (CPS) is an intractable risk factor for inflammatory and metabolic diseases. Lysosomal cysteinyl cathepsins play an important role in human pathobiology. Given that cathepsin S (CTSS) is upregulated in the stressed vascular and adipose tissues, we investigated whether CTSS participates in chronic stress-induced skeletal muscle mass loss and dysfunction, with a special focus on muscle protein metabolic imbalance and apoptosis. Eight-week-old male wildtype (CTSS+/+) and CTSS-knockout (CTSS-/-) mice were randomly assigned to non-stress and variable-stress groups. CTSS+/+ stressed mice showed significant losses of muscle mass, dysfunction, and fiber area, plus significant mitochondrial damage. In this setting, stressed muscle in CTSS+/+ mice presented harmful alterations in the levels of insulin receptor substrate 2 protein content (IRS-2), phospho-phosphatidylinositol 3-kinase, phospho-protein kinase B, and phospho-mammalian target of rapamycin, forkhead box-1, muscle RING-finger protein-1 protein, mitochondrial biogenesis-related peroxisome proliferator-activated receptor-γ coactivator-α, and apoptosis-related B-cell lymphoma 2 and cleaved caspase-3; these alterations were prevented by CTSS deletion. Pharmacological CTSS inhibition mimics its genetic deficiency-mediated muscle benefits. In C2C12 cells, CTSS silencing prevented stressed serum- and oxidative stress-induced IRS-2 protein reduction, loss of the myotube myosin heavy chain content, and apoptosis accompanied by a rectification of investigated molecular harmful changes; these changes were accelerated by CTSS overexpression. These findings demonstrated that CTSS plays a role in IRS-2-related protein anabolism and catabolism and cell apoptosis in stress-induced muscle wasting, suggesting a novel therapeutic strategy for the control of chronic stress-related muscle disease in mice under our experimental conditions by regulating CTSS activity.
Collapse
Affiliation(s)
- Ying Wan
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
| | - Shengnan Xu
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Xiangkun Meng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Zhe Huang
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4660855, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Xueying Jin
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China
| | - Yongshan Nan
- Department of Anesthesiology, Yanbian University Hospital, 1327 Juzijie, Yanji, 133000, Jilin, People's Republic of China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan
| | - Hiroyuki Umegaki
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4660855, Japan
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi-ken, 466-8550, Japan
- Meitetsu Hospital, Nagoya, Aichi, 451-8511, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, 133000, Jilin, People's Republic of China.
| |
Collapse
|
15
|
Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med 2023; 21:519. [PMID: 37533007 PMCID: PMC10394930 DOI: 10.1186/s12967-023-04361-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to exert a significant impact on global mortality rates, encompassing conditions like pulmonary arterial hypertension (PAH), atherosclerosis (AS), and myocardial infarction (MI). Oxidative stress (OS) plays a crucial role in the pathogenesis and advancement of CVDs, highlighting its significance as a contributing factor. Maintaining an equilibrium between reactive oxygen species (ROS) and antioxidant systems not only aids in mitigating oxidative stress but also confers protective benefits on cardiac health. Herbal monomers can inhibit OS in CVDs by activating multiple signaling pathways, such as increasing the activity of endogenous antioxidant systems and decreasing the level of ROS expression. Given the actions of herbal monomers to significantly protect the normal function of the heart and reduce the damage caused by OS to the organism. Hence, it is imperative to recognize the significance of herbal monomers as prospective therapeutic interventions for mitigating oxidative damage in CVDs. This paper aims to comprehensively review the origins and mechanisms underlying OS, elucidate the intricate association between CVDs and OS, and explore the therapeutic potential of antioxidant treatment utilizing herbal monomers. Furthermore, particular emphasis will be placed on examining the cardioprotective effects of herbal monomers by evaluating their impact on cardiac signaling pathways subsequent to treatment.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care, Changsha, People's Republic of China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Tan
- Department of Nephrology, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
16
|
Meng T, Zhang Y, Wang J, Leo CH, Li Z, Zhang J, Gao K, He Q. Editorial: Efficacy and mechanism of herbal medicines and their functional compounds in preventing and treating cardiovascular diseases and cardiovascular disease risk factors. Front Pharmacol 2023; 14:1236821. [PMID: 37469872 PMCID: PMC10352117 DOI: 10.3389/fphar.2023.1236821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Affiliation(s)
- Tiantian Meng
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Jie Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Huei Leo
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore, Singapore
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Kuo Gao
- Beijing University of Chinese Medicine, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Wang S, Zhang L, Zhou Y, Huang J, Zhou Z, Liu Z. A review on pharmacokinetics of sinomenine and its anti-inflammatory and immunomodulatory effects. Int Immunopharmacol 2023; 119:110227. [PMID: 37119677 DOI: 10.1016/j.intimp.2023.110227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Autoimmune diseases (ADs), with significant effects on morbidity and mortality, are a broad spectrum of disorders featured by body's immune responses being directed against its own tissues, resulting in chronic inflammation and tissue damage. Sinomenine (SIN) is an alkaloid isolated from the root and stem of Sinomenium acutum which is mainly used to treat pain, inflammation and immune disorders for centuries in China. Its potential anti-inflammatory role for treating immune-related disorders in experimental animal models and in some clinical applications have been reported widely, suggesting an inspiring application prospect of SIN. In this review, the pharmacokinetics, drug delivery systems, pharmacological mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of SIN, and the possibility of SIN as adjuvant to disease-modifying anti-rheumatic drugs (DMARDs) therapy were summarized and evaluated. This paper aims to reveal the potential prospects and limitations of SIN in the treatment of inflammatory and immune diseases, and to provide ideas for compensating its limitations and reducing the side effects, and thus to make SIN better translate to the clinic.
Collapse
Affiliation(s)
- Siwei Wang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Lvzhuo Zhang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yanhua Zhou
- Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Jiangrong Huang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Jingzhou Central Hospital Affiliated to Yangtze University, Jingzhou 434020, Hubei Province, China.
| | - Zushan Zhou
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China.
| | - Zhenzhen Liu
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China.
| |
Collapse
|