1
|
Zhang W, Ai Z, Zhu G, Yang M, Liu Y, Xu H, Zheng Q, Song Y, Su D. Drosophila model of depression-like behavior: systematic investigation of external stress parameters and intrinsic susceptibility. Pharmacol Biochem Behav 2025; 252:174014. [PMID: 40262700 DOI: 10.1016/j.pbb.2025.174014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Currently, Drosophila is widely used to study brain diseases. Unfortunately, Drosophila still lacks a mature and stable model for research on depression. This study addressed this issue by systematically exploring external stress and intrinsic susceptibility factors (Drosophila strains, adult/larval forms) that may influence the establishment and reproducibility of the stress-induced model. On this basis, the parameters are optimized. The results indicate Drosophila strains and forms are critical factors influencing model establishment, while external stress is the primary cause affecting the model's mortality rate. Compared with the other four strains, Canton-S are the most susceptible to chronic unpredictable mild stress (CUMS). Larval forms exhibit lower reactivity to external stress compared to adults. Parameter variations greatly influence model mortality rates from cold/heat/starvation stress. The model methodology validation study conducted subsequently through assessments of face, construct, and predictive validity demonstrates that the model exhibits face (neurobehavioral differences), structural (neurotransmitter changes in the Drosophila brain), and predictive (behavioral changes after fluoxetine treatment) validity. Additionally, spatial behavior experiments in Drosophila provide more realistic activity patterns compared to planar behavior, minimizing potential errors in interpreting lateral movements of the Drosophila, and it is recommended that this metric be included in model evaluation. This study presents a comprehensive set of methods for establishing and evaluating a depression-like behavior model and offers greater convenience for research on the pathogenesis of depression, as well as the screening, efficacy evaluation, and mechanistic studies of antidepressant drugs.
Collapse
Affiliation(s)
- Wenhao Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Acupuncture and Brain Science Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Acupuncture and Brain Science Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Acupuncture and Brain Science Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Ming Yang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Acupuncture and Brain Science Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Yali Liu
- School of Clinical Medicine, Nanchang Medical College, No.689 Huiren Avenue, Xiaolan Economic Development Zone, Nanchang 330052, China
| | - Huanhua Xu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Acupuncture and Brain Science Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Acupuncture and Brain Science Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Acupuncture and Brain Science Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China; Key Laboratory of Pathological Research on Experimental Animals, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China.
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Acupuncture and Brain Science Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China.
| |
Collapse
|
2
|
Al Hasan MS, Bhuia MS, Chowdhury R, Husain Z, Saifuzzaman M, Mia E, Akbor MS, Yana NT, Islam MA, Ansari SA, Ansari IA, Islam MT. Tangeretin enhances sedative activity of diazepam in Swiss mice through GABA A receptor interaction: In vivo and in silico approaches. Neuroscience 2025; 572:1-10. [PMID: 40049390 DOI: 10.1016/j.neuroscience.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The citrus peel flavonoid tangeretin (TAN) has diverse biological activities, including antioxidant, anti-inflammatory, antitumor, hepatoprotective, and neuroprotective effects. This study investigates the sedative effects of TAN, in Swiss albino mice using in vivo and in silico approaches. TAN (10 and 20 mg/kg, i.p.) was administered alone and in combination with diazepam (DZP, 2 mg/kg, i.p.) and flumazenil (FLU, 0.1 mg/kg, i.p.) to evaluate its impact on thiopental sodium (TS)-induced sleep, locomotor activity, and dark-light behavior. Results demonstrated that TAN at 10 mg/kg significantly (p < 0.05) reduced sleep onset latency and increased sleep duration, with a synergistic effect observed when combined with DZP. In locomotor activity tests, TAN dose-dependently decreased the distance traveled, while the combination with DZP further enhanced this effect. Dark-light tests revealed that TAN increased dark residence time, indicating potential anxiolytic properties. Molecular docking studies showed that TAN binds to the GABAA receptor (α1 and β2 subunits) with a binding affinity of -6.6 kcal/mol, suggesting its interaction with GABAergic pathways. Pharmacokinetic analysis indicated high intestinal absorption and compliance with Lipinski's rule of five, with a favorable safety profile (LD50 = 5000 mg/kg). Overall, TAN enhances the sedative effects of DZP through GABAA receptor modulation, highlighting its potential as a natural sedative agent. Further research should explore the long-term effects, bioavailability, blood-brain barrier permeability, and synergistic interactions of TAN, with comprehensive in vitro studies and clinical trials needed to validate its potential as a natural sedative.
Collapse
Affiliation(s)
- Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh.
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh.
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh.
| | - Zakir Husain
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh.
| | - Md Saifuzzaman
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh.
| | - Emon Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh.
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh.
| | - Noshin Tasnim Yana
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh.
| | - Md Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, East West University, Dhaka 1212, Bangladesh.
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O Box 2457, Riyadh 11451, Saudi Arabia.
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology University of Turin, 10124 Turin, Italy.
| | - Md Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh.
| |
Collapse
|
3
|
Naoi M, Wu Y, Maruyama W, Shamoto-Nagai M. Phytochemicals Modulate Biosynthesis and Function of Serotonin, Dopamine, and Norepinephrine for Treatment of Monoamine Neurotransmission-Related Psychiatric Diseases. Int J Mol Sci 2025; 26:2916. [PMID: 40243512 PMCID: PMC11988947 DOI: 10.3390/ijms26072916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Serotonin (5-HT), dopamine (DA), and norepinephrine (NE) are key monoamine neurotransmitters regulating behaviors, mood, and cognition. 5-HT affects early brain development, and its dysfunction induces brain vulnerability to stress, raising the risk of depression, anxiety, and autism in adulthood. These neurotransmitters are synthesized from tryptophan and tyrosine via hydroxylation and decarboxylation, and are metabolized by monoamine oxidase (MAO). This review aims to summarize the current findings on the role of dietary phytochemicals in modulating monoamine neurotransmitter biosynthesis, metabolism, and function, with an emphasis on their potential therapeutic applications in neuropsychiatric disorders. Phytochemicals exert antioxidant, neurotrophic, and neurohormonal activities, regulate gene expression, and induce epigenetic modifications. Phytoestrogens activate the estrogen receptors or estrogen-responsive elements of the promoter of target genes, enhance transcription of tryptophan hydroxylase and tyrosine hydroxylase, while inhibiting that of MAO. These compounds also influence the interaction between genetic and environmental factors, potentially reversing dysregulated neurotransmission and the brain architecture associated with neuropsychiatric conditions. Despite promising preclinical findings, clinical applications of phytochemicals remain challenging. Advances in nanotechnology and targeted delivery systems offer potential solutions to enhance clinical efficacy. This review discusses mechanisms, challenges, and strategies, underscoring the need for further research to advance phytochemical-based interventions for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin 320-195, Aichi, Japan; (Y.W.); (W.M.); (M.S.-N.)
| | | | | | | |
Collapse
|
4
|
Chen SH, Lan B, Zhang YY, Li GH, Qian YL, Hu MX, Tian YL, Zang WD, Cao J, Wang GH, Wang YG. Activation of zona incerta gamma-aminobutyric acid-ergic neurons alleviates depression-like and anxiety-like behaviors induced by chronic restraint stress. World J Psychiatry 2025; 15:101807. [PMID: 39974487 PMCID: PMC11758062 DOI: 10.5498/wjp.v15.i2.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Depression is a prevalent affective disorder, but its pathophysiology remains unclear. Dysfunction in the gamma-aminobutyric acid (GABA)-ergic system may contribute to its onset. Recently, antidepressants (e.g., brexanolone, zuranolone) targeting the GABA-A receptor were introduced. The zona incerta (ZI), an inhibitory subthalamic region mainly composed of GABAergic neurons, has been implicated in emotional regulation. Deep brain stimulation of the ZI in humans affects anxiety and depression symptoms, while activation of ZI neurons in mice can either worsen or alleviate anxiety. Currently, there is no direct evidence linking GABAergic neurons in the ZI to depression-like behaviors in rodents. AIM To explore the relationship between GABAergic neurons in the ZI and depression-like behaviors in mice. METHODS A chronic restraint stress (CRS) model was utilized to induce depression in mice. Whole-cell patch-clamp recordings assessed the excitability changes of GABAergic neurons in the ZI. Additionally, chemogenetic techniques were employed to modulate ZI GABAergic neurons. The performance of the mice in behavioral tests for depression and anxiety was observed. RESULTS The findings indicated that GABAergic neurons in the ZI were closely associated with depression-like behaviors in mice. Twenty-eight days after the CRS model was established, depression-like and anxiety-like behaviors were observed in the mice. The excitability of GABAergic neurons in the ZI was reduced. Chemogenetic activation of these neurons alleviated CRS-induced depression-like and anxiety-like behaviors. Conversely, inhibition of GABAergic neurons in the ZI led to changes in emotion-related behavioral outcomes in mice. CONCLUSION Activity of GABAergic neurons in the ZI was closely associated with depression-like phenotypes in mice, suggesting that these neurons could be a potential therapeutic target for treating depression.
Collapse
Affiliation(s)
- Si-Hai Chen
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Bo Lan
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Ying-Ying Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Guo-Hui Li
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Yu-Long Qian
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Ming-Xing Hu
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Yin-Lin Tian
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Wei-Dong Zang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Jing Cao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
- School of Nursing and Health, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Guang-Hai Wang
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Yi-Gang Wang
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| |
Collapse
|
5
|
Permana A, Akili AWR, Hardianto A, Latip JB, Sulaeman AP, Herlina T. Virtual Screening, Toxicity Evaluation and Pharmacokinetics of Erythrina Alkaloids as Acetylcholinesterase Inhibitor Candidates from Natural Products. Adv Appl Bioinform Chem 2025; 17:179-201. [PMID: 39931375 PMCID: PMC11808975 DOI: 10.2147/aabc.s495947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Purpose Alzheimer's disease (AD) is a progressive neurodegenerative disorder with limited treatment options, necessitating the development of safer and more effective therapies. The potential of alkaloids derived from the genus Erythrina as acetylcholinesterase (AChE) inhibitors is being investigated to enhance acetylcholine levels in the brain, which is crucial for the treatment of AD. The objective of this study is to identify Erythrina alkaloids with strong inhibitory capacity against AChE and favorable pharmacokinetic profiles. Materials and Methods A multi-step computational approach was employed, beginning with the virtual screening of 143 Erythrina alkaloid structures using molecular docking against the human AChE crystal structure. The binding affinities were compared with the known AChE inhibitor, galantamine. The top alkaloid, 8-oxoerymelanthine (128), was subjected to further analysis through molecular dynamics simulations, with the objective of evaluating its stability and interactions. In silico ADMET predictions were conducted to assess the pharmacokinetic properties. The applicability of Lipinski's Rule of Five was applied to evaluate oral drug-likeness. Results 8-Oxoerymelanthine (128) exhibited the highest binding affinity and remarkable stability in molecular dynamics simulations. The toxicity predictions indicated a low risk of mutagenicity, hepatotoxicity, and cardiotoxicity. Pharmacokinetic assessments indicated good absorption, moderate blood-brain barrier penetration, and favorable metabolic and excretion profiles, supporting its potential as an orally active drug candidate. Conclusion 8-Oxoerythmelanthine (128) exhibits strong potential as an AChE inhibitor with a favorable balance of efficacy, safety, and pharmacokinetic properties. These results warrant further investigation in preclinical and clinical studies to validate its therapeutic potential and safety for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Afri Permana
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Abd Wahid Rizaldi Akili
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Jalifah Binti Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Selangor, Malaysia
| | - Allyn Pramudya Sulaeman
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| |
Collapse
|
6
|
Fu MJ, Jin H, Wang SP, Shen L, Liu HM, Liu Y, Zheng YC, Dai XJ. Unleashing the Power of Covalent Drugs for Protein Degradation. Med Res Rev 2025. [PMID: 39834319 DOI: 10.1002/med.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions. Two prominent PROTACs, ARV-471 and ARV-110, are currently undergoing phase III and II clinical trials, respectively. Traditional PROTACs are encountering obstacles such as limited binding affinity and a restricted range of E3 ligase ligands for facilitating the protein of interest (POI) degradation. Covalent medicines offer the potential to enhance PROTAC efficacy by enabling the targeting of previously considered "undruggable" shallow binding sites. Strategic alterations allow PROTAC to establish covalent connections with particular target proteins, including Kirsten rat sarcoma viral oncogene homolog (KRAS), Bruton's tyrosine kinase (BTK), epidermal growth factor receptor (EGFR), as well as E3 ligases such as DDB1 and CUL4 associated factor 16 (DCAF16) and Kelch-like ECH-associated protein 1 (Keap1). The concept of covalent degradation has also been utilized in various new forms of degraders, including covalent molecule glue (MG), in-cell click-formed proteolysis targeting chimera (CLIPTAC), HaloPROTAC, lysosome-targeting chimera (LYTAC) and GlueTAC. This review focuses on recent advancements in covalent degraders beyond covalent PROTACs and examines obstacles and future directions pertinent to this field.
Collapse
Affiliation(s)
- Meng-Jie Fu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shao-Peng Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Shen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, Henan, China
| |
Collapse
|
7
|
Tanaka M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025; 13:167. [PMID: 39857751 PMCID: PMC11761901 DOI: 10.3390/biomedicines13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The dual forces of structured inquiry and serendipitous discovery have long shaped neuropsychiatric research, with groundbreaking treatments such as lithium and ketamine resulting from unexpected discoveries. However, relying on chance is becoming increasingly insufficient to address the rising prevalence of mental health disorders like depression and schizophrenia, which necessitate precise, innovative approaches. Emerging technologies like artificial intelligence, induced pluripotent stem cells, and multi-omics have the potential to transform this field by allowing for predictive, patient-specific interventions. Despite these advancements, traditional methodologies such as animal models and single-variable analyses continue to be used, frequently failing to capture the complexities of human neuropsychiatric conditions. Summary: This review critically evaluates the transition from serendipity to precision-based methodologies in neuropsychiatric research. It focuses on key innovations such as dynamic systems modeling and network-based approaches that use genetic, molecular, and environmental data to identify new therapeutic targets. Furthermore, it emphasizes the importance of interdisciplinary collaboration and human-specific models in overcoming the limitations of traditional approaches. Conclusions: We highlight precision psychiatry's transformative potential for revolutionizing mental health care. This paradigm shift, which combines cutting-edge technologies with systematic frameworks, promises increased diagnostic accuracy, reproducibility, and efficiency, paving the way for tailored treatments and better patient outcomes in neuropsychiatric care.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
8
|
Bhuia MS, Al Hasan MS, Chowdhury R, Ansari SA, Ansari IA, Islam MT. Trans-Ferulic acid reduces the sedative activity of diazepam in thiopental sodium-induced sleeping mice: A potential GABAergic transmission. Neurotoxicol Teratol 2024; 106:107403. [PMID: 39547315 DOI: 10.1016/j.ntt.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
trans-Ferulic acid (TFA), a bioactive compound found in many plants, has been recognized for its diverse pharmacological activities, including potential neurological benefits. Previous studies suggest that TFA exerts anxiolytic effects via GABAergic pathways. This study aimed to investigate the sedative effects of TFA and its possible molecular mechanisms through in vivo and in silico approaches. Adult Swiss mice were randomly divided into six groups (n = 7): control (vehicle), standard (DZP: Diazepam at 3 mg/kg, p.o.), three test groups (TFA at 25, 50, and 75 mg/kg, p.o.), and a combination group (TFA: 50 mg/kg with DZP: 3 mg/kg, p.o.). Thirty minutes post-treatment, thiopental sodium (TS) at 40 mg/kg was administered to induce sedation, and latency as well as duration of sleep, were observed for up to 4 h. In silico studies were conducted with GABAA receptor subunits (α1 and β2) to elucidate the possible molecular interactions. The results demonstrated that TFA significantly reduced latency and extended sleep duration in a dose-dependent manner compared to the control. Additionally, TFA combined with DZP further significantly (p < 0.001) enhanced these effects. In silico analysis revealed that TFA and DZP exhibited strong binding affinities with the GABAA receptor subunits (α1 and β2) in the identical binding sites, with binding energies of -6.8 and - 8.7 kcal/mol, respectively. Collectively, TFA exerted a mild sedative effect in TS-induced sleeping mice and modulated the activity of DZP, likely through interactions with GABAA receptors. TFA showed promising activity as a potential candidate for managing sleep disorders such as insomnia.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinforamtics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh.
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinforamtics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinforamtics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia,.
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin 10124, Italy.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinforamtics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Pharmacy Discipline, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
9
|
Afshar Ghahremani S, Raisi A, Minaei Beirami S, Kahroba H, Mardani M, Dezfoulian O, Tarhriz V. Curcumin alleviates inflammatory effects of ketamine anesthesia in postnatal rats. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:473-480. [PMID: 39564472 PMCID: PMC11571040 DOI: 10.30466/vrf.2024.2018359.4107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 11/21/2024]
Abstract
Curcumin has been employed in traditional medicine for over a millennium to treat various ailments, and its global use is now widespread. Chinese medicine relies heavily on curcumin as a primary element and uses it to cure infectious diseases, skin disorders, depression, and stress. It has cardioprotective, neuroprotective, and anti-diabetic properties, as well as pharmacological effects on disorders like type II diabetes, atherosclerosis, and human immunodeficiency virus replication. The anti-cancer activity of curcumin has been studied extensively with notable improvements in gastrointestinal, melanoma, urogenital, breast, and lung malignancies. We investigated the anti-inflammatory effects of curcumin on expression of tumor necrosis factor (TNF)-α, c-Fos, and interleukin (IL)-6 genes in brain and liver tissue owing to the effects of ketamine anesthesia on postnatal rats. The thalamic and hepatic tissues were collected without anesthesia, immediately after anesthesia, and 4 and 12 hr after anesthesia in control and curcumin treated postnatal rats. The results showed that glucose, triglyceride, high- and low-density lipoprotein levels were lowered with curcumin treatment. We also found that ketamine increased c-Fos and inflammatory cytokines like TNF-α and IL-6, all of which contribute to inflammation. Brain and liver immunohistochemistry studies confirmed the real-time polymerase chain reaction findings. Curcumin injections alone may be effective in decreasing ketamine-induced inflammation in both brain and liver tissues.
Collapse
Affiliation(s)
- Soroush Afshar Ghahremani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Mardani
- Department of Health and Nutrition, Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, USA
| |
Collapse
|
10
|
Koch W, Zagórska J, Michalak-Tomczyk M, Karav S, Wawruszak A. Plant Phenolics in the Prevention and Therapy of Acne: A Comprehensive Review. Molecules 2024; 29:4234. [PMID: 39275081 PMCID: PMC11397085 DOI: 10.3390/molecules29174234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Plants are a rich source of secondary metabolites, among which phenolics are the most abundant. To date, over 8000 various polyphenolic compounds have been identified in plant species, among which phenolic acids, flavonoids, coumarins, stilbenes and lignans are the most important ones. Acne is one of the most commonly treated dermatological diseases, among which acne vulgaris and rosacea are the most frequently diagnosed. In the scientific literature, there is a lack of a detailed scientific presentation and discussion on the importance of plant phenolics in the treatment of the most common specific skin diseases, e.g., acne. Therefore, the aim of this review is to gather, present and discuss the current state of knowledge on the activity of various plant phenolics towards the prevention and treatment of acne, including in vitro, in vivo and human studies. It was revealed that because of their significant antibacterial, anti-inflammatory and antioxidant activities, phenolic compounds may be used in the treatment of various types of acne, individually as well as in combination with commonly used drugs like clindamycin and benzoyl peroxide. Among the various phenolics that have been tested, EGCG, quercetin and nobiletin seem to be the most promising ones; however, more studies, especially clinical trials, are needed to fully evaluate their efficacy in treating acne.
Collapse
Affiliation(s)
- Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Justyna Zagórska
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Magdalena Michalak-Tomczyk
- Department of Animal Physiology and Toxicology, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17000, Türkiye
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
11
|
Rahman L, Talha Khalil A, Ahsan Shahid S, Shinwari ZK, Almarhoon ZM, Alalmaie A, Sharifi‐Rad J, Calina D. Diosmin: A promising phytochemical for functional foods, nutraceuticals and cancer therapy. Food Sci Nutr 2024; 12:6070-6092. [PMID: 39554345 PMCID: PMC11561841 DOI: 10.1002/fsn3.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 11/19/2024] Open
Abstract
Diosmin, a potent bioflavonoid derived from citrus fruits, has gained significant attention for its anticancer potential, reflecting a critical need in the ongoing battle against cancer. Amidst increasing cancer incidence, the quest for safer and more effective treatments has brought diosmin to the forefront, given its unique pharmacological profile distinct from other flavonoids. Diosmin's anticancer mechanisms are multifaceted, involving apoptosis induction, angiogenesis inhibition, and metastasis prevention. Extensive research encompassing cellular studies, animal models, and limited clinical trials underscores its efficacy not only against cancer but also in managing chronic venous insufficiency and hemorrhoids, attributing to its anti-inflammatory properties. Furthermore, diosmin exhibits low toxicity and complements conventional chemotherapy, proposing its utility as an adjunct therapy in cancer treatment protocols. The review delves into the specific anticancer advantages of diosmin, distinguishing it from the broader flavonoid category. It provides a detailed analysis of its implications in preclinical and clinical settings, advocating for its consideration in the oncological therapeutic arsenal. By juxtaposing diosmin with other herbal medicines, the review offers a nuanced perspective on its role within the wider context of natural anticancer agents, emphasizing the need for further clinical research to substantiate its efficacy and safety in oncology.
Collapse
Affiliation(s)
- Lubna Rahman
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Ali Talha Khalil
- Department of PathologyLady Reading Hospital Medical Teaching InstitutionPeshawarPakistan
| | | | | | - Zainab M. Almarhoon
- Department of ChemistryCollege of Science, King Saud UniversityRiyadhSaudi Arabia
| | - Amnah Alalmaie
- Department of PharmaceuticsCollege of Pharmacy, King Khalid UniversityAbhaSaudi Arabia
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
12
|
Liu J, Li W, Jin L, Wang Y, Xu X, Ma E, Yang D, Zhao Z. Extraction and Isolation of Two Polysaccharides from Chloranthus japonicus Sieb. and Evaluation of Their Anti-Gastric Cancer Activities. Molecules 2024; 29:2043. [PMID: 38731534 PMCID: PMC11085155 DOI: 10.3390/molecules29092043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Two unreported heteropolysaccharides, denoted as YCJP-1 and YCJP-2, were isolated from the herbs of Chloranthus japonicus. YCJP-1 was a heteropolysaccharide composed of glucose, galactose, arabinose, mannose, rhamnose, and a minor proportion of uronic acids, with the molecular weight mainly distributed in the 74,475-228,443 Da range. YCJP-2 was mainly composed of glucose, mannose, and galactose, with the molecular weights ranging from 848 to 5810 Da. To further evaluate the anti-gastric cancer effects of C. japonicus, the inhibitory effects of the crude polysaccharide (YCJP) and the purified polysaccharides (YCJP-1 and YCJP-2) were determined using a CCK-8 assay and colon-forming assay on MGC-803 and AGS gastric cancer cell lines. Our results showed that YCJP, YCJP-1, and YCJP-2 possess prominent inhibitory effects on the proliferation of MGC-803 and AGS cells, and the AGS cell was more sensitive to YCJP, YCJP-1, and YCJP-2. Moreover, YCJP-2 demonstrated superior anti-gastric cancer effects compared to YCJP-1. This could potentially be attributed to YCJP-2's higher glucose content and narrower molecular weight distribution.
Collapse
Affiliation(s)
- Ju Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenfeng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingchao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Enyao Ma
- Department of Drug Discovery, Guangzhou Caizhilin Pharmaceutical Co., Ltd., Guangzhou 510360, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Kazemi A, Iraji A, Esmaealzadeh N, Salehi M, Hashempur MH. Peppermint and menthol: a review on their biochemistry, pharmacological activities, clinical applications, and safety considerations. Crit Rev Food Sci Nutr 2024; 65:1553-1578. [PMID: 38168664 DOI: 10.1080/10408398.2023.2296991] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this manuscript, we conducted a comprehensive review of the diverse effects of peppermint on human health and explored the potential underlying mechanisms. Peppermint contains three main groups of phytochemical constituents, including essential oils (mainly menthol), flavonoids (such as hesperidin, eriodictyol, naringenin, quercetin, myricetin, and kaempferol), and nonflavonoid phenolcarboxylic acids. Peppermint exhibits antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, anti-cancer, anti-aging, and analgesic properties and may be effective in treating various disorders, including gastrointestinal disorders (e.g., irritable bowel syndrome, dyspepsia, constipation, functional gastrointestinal disorders, nausea/vomiting, and gallbladder stones). In addition, peppermint has therapeutic benefits for psychological and cognitive health, dental health, urinary retention, skin and wound healing, as well as anti-depressant and anti-anxiety effects, and it may improve memory. However, peppermint has paradoxical effects on sleep quality and alertness, as it has been shown to improve sleep quality in patients with fatigue and anxiety, while also increasing alertness under conditions of monotonous work and relaxation. We also discuss its protective effects against toxic agents at recommended doses, as well as its safety and potential toxicity. Overall, this review provides the latest findings and insights into the properties and clinical effects of peppermint/menthol and highlights its potential as a natural therapeutic agent for various health conditions.
Collapse
Affiliation(s)
- Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Salehi
- Traditional and Complementary Medicine Research Center (TCMRC), Department of Traditional Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Forouhandeh H, Soofiyani SR, Hosseini K, Beirami SM, Ahangari H, Moammer Y, Ebrahimzadeh S, Nejad MK, Farjami A, Khodaiefar F, Tarhriz V. Modulation of the Immune System Mechanisms using Probiotic Bacteria in Allergic Diseases: Focus on Allergic Retinitis and Food Allergies. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:11-26. [PMID: 37842889 DOI: 10.2174/0127722708246899230928080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Allergic illnesses occur when an organism's immune system is excessively responsive to certain antigens, such as those that are presented in the environment. Some people suffer from a wide range of immune system-related illnesses including allergic rhinitis, asthma, food allergies, hay fever, and even anaphylaxis. Immunotherapy and medications are frequently used to treat allergic disorders. The use of probiotics in bacteriotherapy has lately gained interest. Probiotics are essential to human health by modulating the gut microbiota in some ways. Due to probiotics' immunomodulatory properties present in the gut microbiota of all animals, including humans, these bacterial strains can prevent a wide variety of allergic disorders. Probiotic treatment helps allergy patients by decreasing inflammatory cytokines and enhancing intestinal permeability, which is important in the battle against allergy. By altering the balance of Th1 and Th2 immune responses in the intestinal mucosa, probiotics can heal allergic disorders. Numerous studies have shown a correlation between probiotics and a reduced risk of allergy disorders. A wide range of allergic disorders, including atopic dermatitis, asthma, allergic retinitis and food allergies has been proven to benefit from probiotic bacteria. Therefore, the use of probiotics in the treatment of allergic diseases offers a promising perspective. Considering that probiotic intervention in the treatment of diseases is a relatively new field of study, more studies in this regard seem necessary.
Collapse
Affiliation(s)
- Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusif Moammer
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Ebrahimzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Kashef Nejad
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Khodaiefar
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
15
|
Khan K, Irfan M, Sattar AA, Faiz MB, Rahman AU, Athar H, Calina D, Sharifi-Rad J, Cho WC. LncRNA SNHG6 role in clinicopathological parameters in cancers. Eur J Med Res 2023; 28:363. [PMID: 37735423 PMCID: PMC10515066 DOI: 10.1186/s40001-023-01358-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
RNA sequencing has revealed that a substantial portion of the human genome undergoes transcription, yet a minimal fraction of these transcripts translates into proteins. LncRNAs, RNA molecules less than 200 nt in length, once deemed as transcriptional noise, have now emerged as crucial regulators of numerous cellular processes. This review focuses on the lncRNA SNHG6, aiming to elucidate its biogenesis, the pivotal roles it plays, and its mechanisms in facilitating the hallmarks of cancer. A comprehensive literature review and analysis were undertaken to delve into the biogenesis of SNHG6, its roles in cellular processes, and the mechanisms through which it contributes to the hallmarks of cancer. SNHG6 is a notable lncRNA, observed to be overexpressed in various cancer types; its perturbation has been linked to tumor progression, emphasizing its significance in oncogenesis. This lncRNA contributes to a range of cellular aberrations, influencing transcriptional, post-transcriptional, and epigenetic processes of mRNA, ultimately driving cancerous transformations. LncRNA SNHG6 serves as a potential biomarker and therapeutic target due to its association with tumorigenesis. Understanding its mechanism and role in cancer can pave the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Areej Abdul Sattar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Anees ur Rahman
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Hafsa Athar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
16
|
Forouhandeh H, Tarhriz V, Zadehkamand M, Asgharian P. Anti-proliferative activity of Artemisia marschalliana on cancerous cell lines. BMC Complement Med Ther 2023; 23:119. [PMID: 37059982 PMCID: PMC10103449 DOI: 10.1186/s12906-023-03887-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/14/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND The genus Artemisia of the Asteraceae family has different species that are used in the treatment of a wide range of diseases, including cancers due to the presence of valuable compounds and important medicinal properties. Various studies on the anti-tumor effect of different species of Artemisia have proven the cytotoxic properties of these plants in cancer treatment, and several anti-cancer compounds of this genus have been purified. OBJECTIVE The objective of this study was to investigate the cytotoxicity and related mortality mechanisms of Artemisia marschalliana essential oil and extracts. METHODS The essential oil and various extracts of Artemisia marschalliana were elicited using a Soxhlet extractor. Anti-cancer to anti-proliferative activity as MTT assay is measuring cancerous and non-cancerous cell viability. In the next step, the strongest extract fractions were obtained by using the vacuum liquid chromatography method. Flow cytometry was applied to identify the mechanism of cell death, and a Real-time polymerase chain reaction test of apoptosis genes, which encode apoptosis-regulating proteins, was measured to confirm the flow cytometry results. RESULTS The strongest extract belonged to dichloromethane extract 60% fraction of the extract on breast cancer cells and 80% fraction on liposarcoma cancer cells showed the most cytotoxicity within 48 h, while, the fractions did not notable cytotoxicity of non-cancerous cells cell. Flow cytometry analysis illustrated the mentioned extract and its fractions kill cancer cell lines through the apoptosis mechanism. Our findings confirmed the flow cytometry results. In addition, the essential oil of Artemisia marschalliana showed a considerable cytotoxic property. CONCLUSION Dichloromethane extract of Artemisia marschalliana shoot and its 60 and 80% fraction selectively inhibited the growth of cancer cells by inducing the apoptosis mechanism. Regarding obtained results, 60 and 80% fractions of dichloromethane extract can be a good candidate for future studies in the field of identification and separation of pure cytotoxic compounds.
Collapse
Affiliation(s)
- Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Zadehkamand
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Asgharian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug applied research center,, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Prasher P, Sharma M, Sharma AK, Sharifi-Rad J, Calina D, Hano C, Cho WC. Key oncologic pathways inhibited by Erinacine A: A perspective for its development as an anticancer molecule. Biomed Pharmacother 2023; 160:114332. [PMID: 36736282 DOI: 10.1016/j.biopha.2023.114332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
In the modern era, cancer can be controlled by chemotherapy treatment, and in many situations a stable disease is obtained. The significant clinical success and subsequent commercialization of naturally derived molecules have further encouraged their exploration as adjunctive therapies in cancer management. The purpose of this comprehensive review is to update the anticancer mechanisms triggered by Erinacine A and regulation of signaling pathways potentially involved in its anticancer activity.The results of preclinical research showed that Erinacin A, a therapeutically important biological metabolite isolated from the basidiomycete fungus Hericium erinaceus offers a multitude of possible chemotherapeutic applications by regulating complex signaling pathways as validated by various pharmacological in vitro and in vivo studies. As a result of Erinacin A's action on oncological signaling pathways, it resulted in induction of apoptosis, reduction of proliferation, invasiveness, generation of oxidative stress and cell cycle arrest in cancer cells.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India.
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun 248007, India.
| | - Amit Kumar Sharma
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India.
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, 45067 Orléans Cedex 2, France.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
19
|
Zahra N, Iqbal J, Arif M, Abbasi BA, Sher H, Nawaz AF, Yaseen T, Ydyrys A, Sharifi-Rad J, Calina D. A comprehensive review on traditional uses, phytochemistry and pharmacological properties of Paeonia emodi Wall. ex Royle: current landscape and future perspectives. Chin Med 2023; 18:23. [PMID: 36859262 PMCID: PMC9979516 DOI: 10.1186/s13020-023-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Paeonia emodi Wall. ex Royle is commonly known as Himalayan paeony has great importance as a food and medicine. The practice of Paeonia emodi Wall. ex Royle is very ancient and it is conventionally used for a wide range of illnesses in the folk system of medicine because of its wide beneficial phytochemical profile. The main purpose of the current review was the synthesis of recent data on botany, ethnopharmacology, phytochemistry and potential pharmacological mechanisms of action of Paeonia emodi Wall. ex Royle, thus offering new prospects for the development of new adjuvant natural therapies. Using scientific databases such as PubMed/MedLine, Scopus, Web of Science, ScienceDirect, Google Scholar, Springer, and Wiley, a comprehensive literature search was performed for Paeonia emodi Wall. ex Royle. For searching, we used the next MeSH terms: "Biological Product/isolation and purification", "Biological Products/pharmacology", "Drug Discovery/methods", "Ethnopharmacology, Medicine", "Traditional/methods", "Paeonia/chemistry", "Plant Extracts/pharmacology", "Phytochemicals/chemistry", "Phytochemicals/pharmacology", "Plants, Medicinal". The results of the most recent studies were analyzed and the most important data were summarized in tables and figures. Phytochemical research of Paeonia emodi Wall. ex Royle has led to the isolation of triterpenes, monoterpenes, phenolic acids, fatty acids, organic compounds, steroids, free radicals and some other classes of primary metabolites. In addition, diverse pharmacological activities like antibacterial, antifungal, anticoagulant, airway relaxant lipoxygenase and beta-glucuronidase inhibiting activity, radical scavenging activity, phytotoxic and insecticidal activities have been reported for Paeonia emodi Wall. ex Royle. Different bioactive compounds of Paeonia emodi Wall. ex Royle has proven their therapeutic potential in modern pharmacological and biomedical research to cure numerous gastrointestinal and nervous disorders. In future, further in vitro and in vivo therapeutic studies are required to identify new mechanisms of action, pharmacokinetics studies, and new pharmaceutical formulations for target transport and possible interaction with allopathic drugs. Also, new research regarding quality evaluation, toxicity and safety data in humans is needed.
Collapse
Affiliation(s)
- Nida Zahra
- Department of Biotechnology, University of Mianwali, Mianwali, 42200 Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa Pakistan
| | - Muhammad Arif
- Department of Biotechnology, University of Mianwali, Mianwali, 42200 Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300 Pakistan
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201 Pakistan
| | - Ayesha Fazal Nawaz
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa Pakistan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040 Almaty, Kazakhstan
- The Elliott School of International Affairs, George Washington University, 1957 E St NW, Washington, DC 20052 USA
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
20
|
Custódio L, Vizetto‐Duarte C, Cebeci F, Özçelik B, Sharopov F, Gürer ES, Kumar M, Iriti M, Sharifi‐Rad J, Calina D. Natural products of relevance in the management of attention deficit hyperactivity disorder. EFOOD 2023. [DOI: 10.1002/efd2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology University of Algarve Faro Portugal
| | - Catarina Vizetto‐Duarte
- School of Material Sciences and Engineering Nanyang Technological University Singapore Singapore
| | - Fatma Cebeci
- Department of Nutrition and Dietetics Bayburt University Bayburt Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University, Maslak Istanbul Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co., Maslak Istanbul Turkey
| | - Farukh Sharopov
- Department of Pharmaceutical Technology Avicenna Tajik State Medical University Dushanbe Tajikistan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy Sivas Cumhuriyet University Sivas Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai India
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences Università degli Studi di Milano Milan Italy
| | | | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| |
Collapse
|
21
|
SHARIFI-RAD J, ALMARHOON ZM, ADETUNJI CO, SAMUEL MICHAEL O, CHANDRAN D, RADHA R, SHARMA N, KUMAR M, CALINA D. Neuroprotective effect of curcumin and curcumin-integrated nanocarriers in stroke: from mechanisms to therapeutic opportunities. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2022. [DOI: 10.23736/s2724-542x.22.02946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|